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A few facts from lattice QCD 



Fact 1: Proton and confinement 

* In cooling numerical 
“experiments”,  the string tension 
disappears a few cooling steps:

* However, more cooling steps 
are needed to kill the proton pole 
in the 2-point correlation 
function:

Implication: protons (and pions) can be bound by QCD ‘forces’, 
without confinement. Quantitative statements are more delicate 
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TABLE I. Summary of properties of cooled configurations.

Cooling steps
0
25
50

Instanton model

(S)/So
20,211
64
31

o.a
0.18
0.05
0.03

a (fm)
0.168
0.142
0.124

p (fm)

0.36
0.35
0.33

n(fm )

1.64
1.33

y (MeV )

(177)'
(2oo)'
(180)

less severe, we see that the distributions are centered
around the mean values determined f'rom the topologi-
cal charge density correlation function, with widths of
the order of a half lattice spacing. Note that the factor
1.5 introduced to extract an approximate distribution of
p does not affect our determination of the average p and
the density n.
Table I summarizes our result in physical units. The

lattice constant a is determined using the proton mass
which is measured as described in the next section. The
string tension in lattice units was estimated in Ref. [13]
using Wilson loops up to sizes 7 x 4, which corresponds
to a distance of around 1 fm. For comparison, the rel-
evant parameters used in instanton models by Shuryak
and collaborators [8] are also included.
Finally, we should note that a similar analysis of cooled

configurations has previously been carried out in the case
of SU(2) with smaller lattices and slightly different tech-
niques [16]. In that work, the positions and magnitudes
of peaks in S(2:,y, z, t) were used to determine the distri-
bution of sizes of instantons.

IV. HADRONIC OBSERVABLES IN THE
COOLED VACUUM

In this section, we present the results for quark propa-
gation and hadron properties in the cooled vacuum and
compare them with the corresponding results before cool-
ing.
As in Ref. [2], we extrapolate the masses and vacuum

correlation functions calculated at several values of v
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to the physical pion mass. The masses extracted from
the asymptotic decay of the correlation functions (which
agree within errors with the less accurately determined
resonance masses obtained fmm fitting the spectral func-
tions) are tabulated in Table II as a function of K for 25
and 50 cooling steps. The quality of the chiral extrapola-
tion for masses calculated at 25 cooling sweeps is shown
in Fig. 7. We note that M, M~, M~, and M~ are quite
linear over the relevant region of K. They thus provide
a good determination of the values of a and v at which
simultaneously M = 140 MeV and M~ = 940 MeV.
The chiral extrapolation at 50 steps is comparable, and
together these extrapolations yield the values for n in
Table I and the masses shown in Table III. The chiral
extrapolation of the spatial dependence of the ratio of
correlation functions R ~*~ was carried out using poly-Rp(z)
nomial extrapolation as in Ref. [2]. The quality of the
extrapolation was comparable to that shown in Fig. 5 of
Ref. [2], and is not presented here to save space.
At this point it is appropriate to address error esti-

mates for the parameters tabulated in Tables II and III.
The errors quoted in Table II for hadron masses are stan-
dard jackknife errors. As observed in Fig. 1, the magni-
tude of short range Quctuations in the uncooled gluon
configurations is several orders of magnitude larger than
the smooth cooled gluon fields, which are reHected in
significantly larger statistical errors for uncooled than
for cooled configurations. Hence, we were unable to use
the asymptotic decay of correlation functions to mea-

TABLE II. Hadron masses in lattice units as a function of
~ for 25 and 50 cooling steps. The extrapolated values of K,
are 0.1285(5) for 25 steps and 0.1283(5) for 50 steps.
25 cooling steps

1.00

0,75

0.122
0.124
0.1255
0.127

Mpa

0.630(13) 0.713(13)
0.513(16) 0.631(16)
0.416(20) 0.572(17)
0.301(28) 0.507(16)

1.089(21)
0.958(23)
O.862(29)
O.75O(44)

M~a

1.102(17)
0.987(19)
0.911(22)
0.839(33)

0.50

OOO i
3.8 4

1/2~
50 cooling steps

0.122
0.124
0.127

0.571(12) 0.662(16) 0.999(17)
0.454(13) 0.581(15) 0.874(22)
0.268(39) 0.471(28) 0.603(63)

1.005(29)
0.896(26)
0.715(50)

FIG. 7. Chiral extrapolation of hadron masses for config-
urations with 25 cooling steps. Masses in lattice units cal-
culated at four values of w are denoted by error bars. The
linear extrapolations of M to determine K = 0.1285 and of
M~, M~, and M~ to the point at which M = 140 MeV are
shown by the straight lines.
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constrained, but as seen in the figure and in Table III,
it does not change significantly with cooling. Further-
more, in this channel there is virtually no change in the
correlation function ratio with cooling.
Finally, the ratios of correlation functions in the 4

channel are shown in the lower panel. Again, although
the position of the 4 peak is unconstrained, it does not
shift significantly with cooling. Although the peak height
may grow somewhat with cooling, it is also consistent
within errors with remaining constant.
The resonance masses M, couplings A, and continuum

thresholds So, characterizing these correlation functions
in each channel, are tabulated in Table III. These num-
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bers reQect the same features discussed above, and em-
phasize the similarity of the results after 25 and 50 cool-
ing steps to the uncooled results. In addition, one ob-
serves quite general agreement both with phenomenolog-
ical results where available and with the random instan-
ton model and sum rules.

B. Hadron density-density correlation functions

Density-density correlation functions in the ground
state of the x, p, and nucleon are shown in Fig. 10. The
striking result for both the p and the nucleon is the fact
that the spatial distribution of quarks is essentially un-
affected by cooling—instantons alone govern the gross
structure of these hadrons, as indeed they also governed
vacuum correlation functions of hadron currents in these
same channels.
The only case in which a noticeable change is brought

about by cooling is in the short distance behavior of the
ground state of the pion. This difference is understand-
able since in the physical pion, in addition to instanton-
induced interactions, there is also a strong attractive hy-
perfine interaction arising from perturbative QCD which,
combined with the 1/r interaction, gives rise to the cen-
tral peak in the uncooled density. In contrast, in the p
the hyperfine interaction has much less effect, both be-
cause it is repulsive and because it is three times weaker.
Despite this difference at the origin, which receives small
phase space weighting, when the correlation functions are
normalized to the same volume integral as in Fig. 10, one
observes that the overall size and long distance behavior
do not change appreciably with cooling.
It is noteworthy that the cooled density-density corre-

lation functions shown in Fig. 10 for the vr, p, and nu-
cleon are comparable, within error bars. This uniformity
strongly suggests that instantons set the overall spatial
scale for these hadrons.

V. SUMMARY AND DISCUSSION

0.01

0.5
x (fm)

1.5

FIG. 10. Comparison of unco oled and cooled den-
sity-density correlation functions for the pion, p, and nucleon.
The solid circles denote the correlation functions calculated
with uncooled +CD, the open circles with error bars show the
results for 25 cooling steps, and the crosses denote the results
for 50 cooling steps. The p and pion results are compared for
M = 0.16 GeV and the nucleon results are compared for
M = .36 GeV . As in Figs. 8 and 9, the separation is shown
in physical units using values of a from Table I. All correla-
tion functions are normalized to 1 at the origin, except for
the cooled pion correlation functions, which are normalized
to have the same volume integral as the uncooled pion result.
Errors for the uncooled results and for 50 steps, which have
been suppressed for clarity, are comparable to those shown
for 25 steps.

In this work, we have used cooling as an effective filter
to remove most of the excitations of the gluon field except
for instantons. For example, after 25 cooling steps, when
the presence of instantons and anti-instantons is clearly
visible in the action density and topological charge den-
sity, reduction of the action to 0.3%%up of its original value
has essentially removed all the perturbative, Coulomb-
like contributions and reduction of the string tension to
27% of its original value has removed most of the effects of
confinement. We have shown that the instanton content
of the QCD vacuum extracted by cooling with no free
parameters is remarkably similar to that of phenomeno-
logical models for which the average instanton size p
fm and density of the order of 1 fm are chosen to re-
produce phenomenological values of vacuum quark and
gluon condensates.
We have also demonstrated nearly quantitative agree-

ment between cooled and uncooled vacuum hadron cur-
rent correlation functions in all channels. Similarly we

⇧(x) = h0|J(x)J̄(0)|0i

π

ρ

n
* After cooling, only smooth 
lumps of topological fields 
survive 



Fact 2: Topology and chiral symmetry breaking

* In eigenvalue filtering, chiral properties of QCD are well reproduced by 
lowest eigenmodes of Dirac operator and correlate with topological 
“lumps”. 

* If the same lattice 
configurations are 
cooled, then very 
similar topological 
structures are 
obtained

Implication: Topological lumps with low Euclidean action correlate with 
chiral properties of QCD. Chiral modes bind (not confine)  the nucleon.

334 The European Physical Journal A

Fig. 1. Effect of different filtering methods on the topological density for a particular Q = 1 configuration in a fixed lattice
plane. On top we show the original topological density. In the second and third row one sees the effects of smearing (first
column) and Laplace filtering (second column) as well as the topological density in terms of Dirac eigenmodes (last column).
At the bottom the profile of the chiral zero mode is shown for the combined filtering methods. The numbers in brackets give
the heights of the corresponding maxima.

placed by a weighted average of the links and the staples
Uν

µ (x) = Uν(x)Uµ(x + ν̂)U†
ν (x + µ̂) surrounding it:

Uµ(x) → P

⎡

⎣αUµ(x) + γ
∑

ν ̸=µ

Uν
µ (x)

⎤

⎦ . (1)

Here P denotes the projection onto the gauge group (for
SU(2) just a rescaling of the matrix by a scalar). We
choose α = 0.55 and γ = 0.075, following [2]. Cooling
is obtained by ignoring the old link (α = 0) and is known
to drive the configurations towards classical solutions. We
update one link at a time, but as the weight of the cen-
tral link is quite high, our technique qualifies as smearing
rather than cooling.

A more recent idea for filtering is to use eigenmodes
of lattice Dirac operators. Generally speaking, their func-
tion as filters is based on the argument that low-lying
eigenmodes tend to be smooth, see fig. 1 for an exam-

ple. The positions revealed by the lowest-lying modes are
expected to be correlated with the location of the rele-
vant gluonic IR excitations, in particular of topological
objects [3]. Whether peaks show up at the same locations
when gluonic filtering methods are applied, is an impor-
tant consistency check for the latter.

The Dirac filtering method relies on the representa-
tion of gluonic observables through eigenmode expansions
of lattice Dirac operators (see also [4]). In the following
we will investigate the topological charge density [5] in
terms of eigenmodes of a Ginsparg-Wilson–type Dirac
operator D:

q(x) = tr γ5

(

1

2
Dx,x − 1

)

=
N

∑

n=1

(

λn

2
− 1

)

ψ†
n(x)γ5ψn(x)

(2)
which is exact for N = Vol · 4Nc and can be truncated
for filtering purposes at low N [6]. The total topological

ence correlator !to which zero modes do not contribute" is
shown in Fig. 17.
To orient the reader, keeping the lowest ten eigenmodes

amounts to keeping only eigenmodes of the Dirac operator
whose imaginary part is less than about 350 MeV.
We also looked at the simplest quantities related to chiral

symmetry that we can extract from our data, the PCAC quark
mass and the pseudoscalar decay constant. The same nu-
merator is used in the lattice measurement of the PCAC
quark mass #Eq. !2"$ and the pseudoscalar decay constant
f PS!%&"A0"0'. Overlap fermions satisfy the GMOR relation
mode by mode. This is not the case for the PCAC relation,
although one would expect that a chiral theory would also
respect it. What do low eigenmode truncations give for these
quantities?
The numerators of the relevant correlators are shown in

Fig. 18. The source C(0,0) is a Gaussian source ((5). This
picture plus Fig. 15 serve to show that the average pseudo-
scalar correlator is reproduced using only the lowest fermion
modes in the quark propagator, even at short t. By longer t,
the axial current matrix element is also saturated by the low
lying modes. Thus both the PCAC quark mass and f & will be
correctly computed using these truncated propagators at
small quark mass—as a straightforward fit shows !see Table
I". Note that by amq!0.06 the 20-mode PCAC quark mass
deviates from the full calculation. This quark mass is about
one fifth of the value of the largest eigenmode kept in the
mode sum.

B. Vector and axial vector correlators

We observe that the vector meson correlator saturates
only at a much larger time separation than the pseudoscalar

correlator. This is not very surprising based on instanton
model phenomenology #2$. The two quarks of the vector
meson have to couple to two different instantons to propa-
gate chirally. That requires a propagation distance about
twice the instanton size; at shorter distances the quarks of the
vector meson propagate like free particles, independent of
the instanton modes of the Dirac operator. This is shown in
Fig. 19.
The signal in the axial vector channel is much noisier, and

if the mode sum and the full propagators resemble each
other, it is only after our signal has disappeared into the
noise. At low t the low mode correlator even has the opposite
sign to the full correlator. Compare Fig. 20.

C. Baryon correlators

Both baryon signals !proton and delta" become increas-
ingly noisy at small quark mass. However, it appears that the
low-lying fermionic modes do a better job of saturating the
nucleon correlator than the delta correlator. Compare Figs.
21 and 22.
These features are in complete agreement with simple

instanton-based phenomenology #2$: In the instanton liquid,
different flavor quarks can travel together from instanton to
instanton, exchanging their flavor and flipping their spin. In
pseudoscalar and scalar meson channels, the quantum num-
bers of the quarks allow this kind of propagation. Nucleons
contain a spin-zero ud diquark which can also propagate in
this way. The lower the value of the eigenmode, the more it
couples to instantons, and so the low eigenmodes dominate
the correlator. Vector mesons, however, lack first order in-
stanton interactions but do interact in second order. The di-

FIG. 21. Comparison of the full nucleon cor-
relator !squares" with the correlator built from the
lowest 20 eigenmodes of H(0)2 !octagons". !a"
amq!0.01 (&/)!0.34); !b" amq!0.02 (&/)
!0.50); !c" amq!0.04 (&/)!0.61); !d" amq
!0.06 (&/)!0.64).
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* The nucleon correlation function is “saturated” 
by the lowest modes

Bruckmann et a.
 Eur. Phys. J. A 33, 333–338 (2007)



Fact 3: Chirality  
flipping interactions

* Chiral asymmetry in lattice:

Explanation: Quasi-local non perturbative chirality-flipping interactions 
large non-vector components to the quark-gluon vertex.

R(|x|) = P(LR
|x|! RL)

P(LR
|x|! LR)

ILM. On the other hand, they rule out any picture in
which the nonperturbative quark-quark interaction is
assumed to have a vector structure, like in present
DSE models.

Our analysis is based on the study of the flavor non-
singlet (NS) chirality-flip ratio, introduced in [6]:

RNS!!" :#
ANS
flip!!"

ANS
nonflip!!"

# !"!!" $!#!!"
!"!!" %!#!!"

; (1)

where !"!!" and !#!!" are pseudoscalar and scalar NS
two-point correlators (notice that the above correlators
are defined in coordinate representation, they are not
zero-momentum projections) related to the currents
J"!!" :# "uu!!"i$5d!!" and J#!!" :# "uu!!"d!!". If the propa-
gation is chosen along the (Euclidean) time direction,
ANS
flip!nonflip"!!" represents the probability amplitude for a

jq "qqi pair with isospin 1 to be found after a time inter-
val ! in a state in which the chirality of the quark and
antiquark is interchanged (not interchanged). Notice
that the ratio RNS!!" must vanish as ! ! 0 (no chirality
flips), and must approach 1 as ! ! 1 (infinitely many
chirality flips).

In [6] it was shown that the correlator (1) is a particu-
larly useful theoretical tool for studying the nonpertur-
bative dynamics of the light-quark sector of QCD. In fact,
RNS!!" receives no leading perturbative contribution and
probes directly the chirality-mixing interaction. A spec-
tral analysis of RNS!!" indicated that such an interaction
is mediated by topological fields. In particular, it was

found that the rate of chirality flips in a quark-antiquark
system is proportional to the mass of the %0 meson.
Moreover, below we shall see that RNS!!" is very sensitive
to the Dirac structure of the nonperturbative quark-quark
interaction.

The NS scalar and pseudoscalar two-point functions
appearing in (1) have been first calculated in the quenched
approximation by the MIT group [7] with Wilson fermi-
ons and more recently by one of the authors, using chiral
(overlap) fermions [5]. The curves for RNS!!" obtained
from the result of the latter calculation are the square
points plotted in Fig. 1. (We recall that, with overlap
fermions, the lattice to continuum renormalization fac-
tors of the pseudoscalar and scalar correlators are equal
and drop out in the ratio.)

As expected, the lattice data interpolate between 0
and 1. Notice that the curve has a maximum at about
0.7 fm, where the ratio is considerably larger than 1. This
implies that, after a few fractions of a fermi, the quarks
are more likely to be found in a configuration in which
their chiralities are flipped, than to be found in their
initial configuration. Below we shall see that the presence
of such a maximum is a signature of a chirality-mixing
component of the quark-quark effective interaction
vertex.

We recall that these lattice results have been obtained
in the quenched approximation. It is important to ask
what differences should be expected in full QCD. Using
general QCD inequalities [8], it is immediate to show that
RNS!!" > 1 if and only if !#!!"< 0. The negativity of
such a two-point function represents a severe failure of
the quenched approximation which appears only at suffi-
ciently small values of the quark mass. (In the large mass
limit, the quenched approximation becomes exact.) It is a
reflection of the fact that, in the quenched approximation,
the unitarity of the theory is lost.

In terms of chirality flipping amplitudes, we see that
the !#!!" & 0 constraint implies that quarks must
never be more likely to be found in the flipped chiral-
ity configuration than that in the original configuration,
Aflip!!" ' Anonflip!!". Hence, we can conclude that the
fermionic determinant suppresses some chirality flipping
events, which are otherwise allowed in the quenched
approximation. Indeed, the correlators appearing in (1)
have recently been evaluated in full QCD, with Wilson
fermions [9]. It was observed that the condition
!#!!" > 0 [or, equivalently, RNS!!"< 1] is restored in
going from quenched to full QCD. Such a dramatic quali-
tative difference between quenched and full QCD calcu-
lations of (1) can be used to test phenomenological
descriptions of the nonperturbative dynamics. Indeed
any realistic model must reproduce a dramatic enhance-
ment of the chirality flipping amplitude, when quark
loops are suppressed.

Let us now discuss how RNS!!" looks in the ILM and
DSE models mentioned above. In both approaches chiral

0.0 0.5 1.0

t   [fm]
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1
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3

R
(t
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Lattice 
One Instanton
RILM
CQM

FIG. 1 (color online). The chirality-flip ratio, RNS!!", in lat-
tice and in two phenomenological models. Squares are lattice
points of [5]. Circles are RILM points obtained numerically
from an ensemble of 100 instantons of 1=3 fm size in a 5:3 (
2:653 fm4 box. The solid line is the contribution of a single
instanton, calculated analytically in [6]. The dashed curve was
obtained from two free ‘‘constituent’’ quarks with a mass of
400 MeV. Such a curve qualitatively resembles the prediction of
a model in which chiral symmetry is broken through a vector
coupling (like in present DSE approaches).
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We perform a study of the nonperturbative dynamics of the light-quark sector of QCD, based on
some recent results of lattice simulations with chiral fermions. We analyze some correlators that are
designed to probe the Dirac structure of the quark-quark interaction at different scales. We show that, in
the nonperturbative regime, such an interaction contains very large scalar and pseudoscalar compo-
nents. We observe quantitative agreement between lattice QCD results and the predictions of the
instanton liquid model. Moreover, we study how the quark-quark interaction is modified, when quark
loops are suppressed. We observe a dramatic effect related to the loss of unitarity, which is naturally
explained in the instanton picture. Such an effect cannot be explained in a Dyson-Schwinger equations
(DSE) approach, if one assumes a vector quark-gluon coupling.
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The physics of the light-quark sector of QCD is
strongly influenced by the nonperturbative structure of
the vacuum, and, in particular, by the spontaneous
breaking of chiral symmetry (SCSB). Hence, identifying
the microscopic mechanism responsible for such a
phenomenon represents a fundamental step toward the
comprehension of the strong interaction. Unfortunately,
this dynamics resides in the nonperturbative sector of
QCD and has not been completely understood from first
principles.

The typical energy scale of phenomena related to the
breaking of chiral symmetry is 4!f! ’ 1:2 GeV, consid-
erably larger than the confinement scale, !QCD !
1 fm"1 ! 0:2 GeV. From a theoretical perspective, such
a separation of scales is crucial, because it justifies at-
tempting model descriptions of the nonperturbative phys-
ics of SCSB, without needing to simultaneously take into
account the dynamics of quark confinement. The common
feature in all these semiphenomenological approaches is a
strong attraction in the flavor-singlet O# channel, leading
to a quark condensate. On the other hand, some of the
models which have been proposed in the literature rely on
drastically different microscopic descriptions of the non-
perturbative quark-quark interaction.

Historically, the first attempt to explain the breaking of
chiral symmetry predates QCD and was developed in the
Nambu–Jona-Lasinio model [1], where a chirally sym-
metric effective Lagrangian, characterized by a scalar
and pseudoscalar four-fermion interaction, was postu-
lated. Later on, the same structure was recovered in the
context of the instanton liquid model (ILM) [2]. The
latter approach has the advantage of being formulated
in terms of quark and gluon degrees of freedom and to be
motivated from QCD through a semiclassical argument.
Moreover, it explains in a very natural way the structure

of the spectrum of lowest-lying eigenvalues of the Dirac
operator.

An alternate model description of the nonperturbative
sector of QCD which encodes the physics of SCSB has
been developed in the context of Dyson-Schwinger
equations (DSE). In such an approach, one parametrizes
the low-energy behavior of QCD through an ansatz of the
infrared structure of the quark-gluon vertex and of the
propagators [3]. DSE are then solved numerically, in a
given truncation scheme.

Although both DSE, on the one hand, and the ILM, on
the other hand, give comparable phenomenology in the
light hadron sector, they rely on drastically different mi-
croscopic pictures of the nonperturbative interaction, at
the 1 GeV scale. Most applications of the DSE developed
so far assume a simple vector ansatz for the quark-gluon
vertex function, "" / #". (For an example of a DSE
model with a more general ansatz for the quark-gluon
vertex, see Fischer and Alkhofer [4].) In other words, the
nonperturbative dynamics is mediated by the exchange of
one (albeit nonperturbative) gluon at the time.

On the other hand, in the instanton picture, the non-
perturbative dynamics is dominated by the ’t Hooft in-
teraction. Through standard bosonization of the ’t Hooft
vertex, such an instanton-induced interaction can be
thought of as being mediated by fields carrying the
quantum numbers of scalar and pseudoscalar bosons.

The goal of this Letter is to identify which one of these
two alternate microscopic pictures is closer to QCD. We
shall present evidence for the existence of a large scalar
and pseudoscalar component of the nonperturbative
quark-quark low-energy interaction. This evidence is
built using some recent results from lattice simulations
with chiral fermions [5]. On the one hand, these results
agree on a quantitative level with the predictions of the
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Summarizing…

• Light hadrons are bound also at zero string tension 

• Their quark  wave-function is saturated by near zero-
modes correlated with isolated topological gauge field 
lumps with low action (chiral dynamics) 

• Non-perturbative qq interactions flip chirality.



Can we embody this information in a qualitative 
picture leading to a calculable model?

Why bother about a model if we have LQCD?

Build qualitative insight:  
E.g. what is the structure of the 
nucleon wave function? 
-i.e. why E/M form factors are 
what they are?

 …also learn from failures 

Compute observables which are 
hard/impossible 
to get from LQCD 

E.g. time-like, hadronic resonances, 
neutron EDM, …



QCD Instantons 
(Belavin, Polyakov, Schwartz, Tyupkin, ’t Hooft )

Instanton solution:

One can build multi-instanton fields             such that: 

�SYM [AI
µ] = 0

�S[Ā⇤
µ ] ' 0

Ā

⇤
µ(x)

They are attractive because

* topological lumps with low action 

* naturally generate near zero-mode zone (chiral 
symmetry breaking) 

* they induce chirality flipping interactions 

* Do not provide confinement  
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Fig. 1. Effect of different filtering methods on the topological density for a particular Q = 1 configuration in a fixed lattice
plane. On top we show the original topological density. In the second and third row one sees the effects of smearing (first
column) and Laplace filtering (second column) as well as the topological density in terms of Dirac eigenmodes (last column).
At the bottom the profile of the chiral zero mode is shown for the combined filtering methods. The numbers in brackets give
the heights of the corresponding maxima.

placed by a weighted average of the links and the staples
Uν

µ (x) = Uν(x)Uµ(x + ν̂)U†
ν (x + µ̂) surrounding it:

Uµ(x) → P

⎡

⎣αUµ(x) + γ
∑

ν ̸=µ

Uν
µ (x)

⎤

⎦ . (1)

Here P denotes the projection onto the gauge group (for
SU(2) just a rescaling of the matrix by a scalar). We
choose α = 0.55 and γ = 0.075, following [2]. Cooling
is obtained by ignoring the old link (α = 0) and is known
to drive the configurations towards classical solutions. We
update one link at a time, but as the weight of the cen-
tral link is quite high, our technique qualifies as smearing
rather than cooling.

A more recent idea for filtering is to use eigenmodes
of lattice Dirac operators. Generally speaking, their func-
tion as filters is based on the argument that low-lying
eigenmodes tend to be smooth, see fig. 1 for an exam-

ple. The positions revealed by the lowest-lying modes are
expected to be correlated with the location of the rele-
vant gluonic IR excitations, in particular of topological
objects [3]. Whether peaks show up at the same locations
when gluonic filtering methods are applied, is an impor-
tant consistency check for the latter.

The Dirac filtering method relies on the representa-
tion of gluonic observables through eigenmode expansions
of lattice Dirac operators (see also [4]). In the following
we will investigate the topological charge density [5] in
terms of eigenmodes of a Ginsparg-Wilson–type Dirac
operator D:

q(x) = tr γ5

(

1

2
Dx,x − 1

)

=
N

∑

n=1

(

λn

2
− 1

)

ψ†
n(x)γ5ψn(x)

(2)
which is exact for N = Vol · 4Nc and can be truncated
for filtering purposes at low N [6]. The total topological

ILM. On the other hand, they rule out any picture in
which the nonperturbative quark-quark interaction is
assumed to have a vector structure, like in present
DSE models.

Our analysis is based on the study of the flavor non-
singlet (NS) chirality-flip ratio, introduced in [6]:

RNS!!" :#
ANS
flip!!"

ANS
nonflip!!"

# !"!!" $!#!!"
!"!!" %!#!!"

; (1)

where !"!!" and !#!!" are pseudoscalar and scalar NS
two-point correlators (notice that the above correlators
are defined in coordinate representation, they are not
zero-momentum projections) related to the currents
J"!!" :# "uu!!"i$5d!!" and J#!!" :# "uu!!"d!!". If the propa-
gation is chosen along the (Euclidean) time direction,
ANS
flip!nonflip"!!" represents the probability amplitude for a

jq "qqi pair with isospin 1 to be found after a time inter-
val ! in a state in which the chirality of the quark and
antiquark is interchanged (not interchanged). Notice
that the ratio RNS!!" must vanish as ! ! 0 (no chirality
flips), and must approach 1 as ! ! 1 (infinitely many
chirality flips).

In [6] it was shown that the correlator (1) is a particu-
larly useful theoretical tool for studying the nonpertur-
bative dynamics of the light-quark sector of QCD. In fact,
RNS!!" receives no leading perturbative contribution and
probes directly the chirality-mixing interaction. A spec-
tral analysis of RNS!!" indicated that such an interaction
is mediated by topological fields. In particular, it was

found that the rate of chirality flips in a quark-antiquark
system is proportional to the mass of the %0 meson.
Moreover, below we shall see that RNS!!" is very sensitive
to the Dirac structure of the nonperturbative quark-quark
interaction.

The NS scalar and pseudoscalar two-point functions
appearing in (1) have been first calculated in the quenched
approximation by the MIT group [7] with Wilson fermi-
ons and more recently by one of the authors, using chiral
(overlap) fermions [5]. The curves for RNS!!" obtained
from the result of the latter calculation are the square
points plotted in Fig. 1. (We recall that, with overlap
fermions, the lattice to continuum renormalization fac-
tors of the pseudoscalar and scalar correlators are equal
and drop out in the ratio.)

As expected, the lattice data interpolate between 0
and 1. Notice that the curve has a maximum at about
0.7 fm, where the ratio is considerably larger than 1. This
implies that, after a few fractions of a fermi, the quarks
are more likely to be found in a configuration in which
their chiralities are flipped, than to be found in their
initial configuration. Below we shall see that the presence
of such a maximum is a signature of a chirality-mixing
component of the quark-quark effective interaction
vertex.

We recall that these lattice results have been obtained
in the quenched approximation. It is important to ask
what differences should be expected in full QCD. Using
general QCD inequalities [8], it is immediate to show that
RNS!!" > 1 if and only if !#!!"< 0. The negativity of
such a two-point function represents a severe failure of
the quenched approximation which appears only at suffi-
ciently small values of the quark mass. (In the large mass
limit, the quenched approximation becomes exact.) It is a
reflection of the fact that, in the quenched approximation,
the unitarity of the theory is lost.

In terms of chirality flipping amplitudes, we see that
the !#!!" & 0 constraint implies that quarks must
never be more likely to be found in the flipped chiral-
ity configuration than that in the original configuration,
Aflip!!" ' Anonflip!!". Hence, we can conclude that the
fermionic determinant suppresses some chirality flipping
events, which are otherwise allowed in the quenched
approximation. Indeed, the correlators appearing in (1)
have recently been evaluated in full QCD, with Wilson
fermions [9]. It was observed that the condition
!#!!" > 0 [or, equivalently, RNS!!"< 1] is restored in
going from quenched to full QCD. Such a dramatic quali-
tative difference between quenched and full QCD calcu-
lations of (1) can be used to test phenomenological
descriptions of the nonperturbative dynamics. Indeed
any realistic model must reproduce a dramatic enhance-
ment of the chirality flipping amplitude, when quark
loops are suppressed.

Let us now discuss how RNS!!" looks in the ILM and
DSE models mentioned above. In both approaches chiral

0.0 0.5 1.0

t   [fm]
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1

2

3

R
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Lattice 
One Instanton
RILM
CQM

FIG. 1 (color online). The chirality-flip ratio, RNS!!", in lat-
tice and in two phenomenological models. Squares are lattice
points of [5]. Circles are RILM points obtained numerically
from an ensemble of 100 instantons of 1=3 fm size in a 5:3 (
2:653 fm4 box. The solid line is the contribution of a single
instanton, calculated analytically in [6]. The dashed curve was
obtained from two free ‘‘constituent’’ quarks with a mass of
400 MeV. Such a curve qualitatively resembles the prediction of
a model in which chiral symmetry is broken through a vector
coupling (like in present DSE approaches).
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Then the QCD partition function is written as

NB: expand this to o(δA2μ) -semiclassical approx-  
wouldn’t work (IR divergent) 

ZYM =

Z
d⇤e�SY M [Āµ(⇤)]

Z
d�Aµe

�(SY M (Ā⇤+�A)�SY M [Ā⇤])

'
Z

d⇤e�SY M [Āµ(⇤)] ⇥ n(⇤) ⌘ ZILM

Variational estimate of the QCD path integral

⇤ = (�1,�2, . . .) (collective coordinates )

Aµ(x) = Ā

⇤
µ(x) + �Aµ

Instanton liquid model  
(Shuryak, Diakonov et al. 1982-200X) 



Instanton Models

Lattice ILM

NB: (near) zero-mode wave function is analytically known  
(light-quark propagator in a given background)

n̄ ⇠ 1 fm�4 ⇢̄ ⇠ 1

3
fm

phenomenology or self-consistent variational principle



Can we compute these parameters from LQCD?

Cooling computing n(ρ) by cooling or filtering is tricky: when should we stop?

Can we compute it without “touching” the lattice configurations? 

Inspiration: potential of mean-force in stat. mech.

R

e��G(R) ⌘
Z

dPdQ �(R� |r1 � rN |) e��H[P,Q]

Project onto the plane of reaction coordinate and count….

How can we extent this simple idea to lattice QCD?



Computing n(ρ) from LQCD

II. THE VACUUM MANIFOLD
PROJECTION METHOD

Let us consider a gauge theory defined by the
(Euclidean) path integral

Z ¼
Z

DA!e
"S½A!$; (1)

where the S½A!$ formally includes the gauge-fixing and
ghost terms, along with the fermionic determinant. In the
following, we shall assume that the path integral is defined
in the Landau gauge, although in principle the formalism to
be presented here holds in any fixed gauge.

Let " % ð"1; . . . ;"kÞ be a set of k collective coordinates
which parametrize a manifoldM of vacuum field configu-
rations ~A!ðx;"1; . . . ;"kÞ. For example, in instanton
models, "1; . . . ;"N are the positions, sizes, and color ori-
entations of all the pseudoparticles in the instanton en-
semble. However, in general, we do not require the field
configurations ~A!ðx;"1; . . . ;"kÞ to be solutions of the
classical Yang-Mills equations of motion.

For any given choice of the set of collective coordinates
", a generic vacuum gauge field configuration A!ðxÞ con-
tributing to the path integral (1) can be decomposed as

A!ðxÞ % ~A!ðx;"1; . . . ;"kÞ þ B!ðxÞ; (2)

where B!ðxÞ will be referred to as the ‘‘fluctuation field.’’
Our goal is to use LGT to perform the path integral over
such a field. More precisely, we want to compute the
function H ð"1; . . . ;"kÞ such that

Z ¼
Z

DA!e
"S½A!$ ¼

Z
d"1 . . . d"ke

"H ð"1;...;"kÞ: (3)

Equation (3) defines a statistical model in which "1; . . . ;"k

are the effective low-energy degrees of freedom and
H ð"1; . . . ;"kÞ is the effective Hamiltonian. We shall see
shortly that such function is defined as the logarithm of a
gauge-fixed path integral.

Since the representation (3) of the path integral contains
k additional integrals over d"1; . . . ; d"k, we need to in-
troduce k constraints. A natural choice is to impose a set of
k orthogonality conditions:

ðB!ðxÞ; g"i;!ðx; !"ÞÞ % Trc

!Z
d4xB!ðxÞg"i;!ðx; !"Þ

"
¼ 0;

i ¼ 1; . . . ; k (4)

g"i;!ðx; !"Þ ¼
@

@"i

~A!ðx;"Þ
########"¼ !"

: (5)

We observe that the functions fg"i
ðx; !"Þgi¼1;...;k identify the

k directions tangent to the manifold M of background
vacuum fields, in the point of curvilinear coordinates
!" ¼ ð !"1; . . . ; !"kÞ—see Fig. 1. We consider only choices

of the manifoldM and of the point !" such that the vectors
(5) define a system of coordinates.
In the path-integral formalism, the orthogonality con-

ditions (4) can be implemented by introducing a Fadeev-
Popov representation of the unity. After some formal
manipulation (see e.g. Refs. [5,10]), one arrives at an
expression in the form of Eq. (3), where the effective
Hamiltonian H ð"1; . . . ;"kÞ is defined as

H ð"1; . . . ;"kÞ¼"log
!Z

DB#½@!B!$

)
Y

i

#½ðB!ðxÞ;g"i;!ðx; !"ÞÞ$

)"½ ~Aðx;"ÞþBðxÞ$e"S½ ~Aðx;"ÞþBðxÞ$
"
; (6)

where " is a Jacobian factor and reads

""1½A!ðxÞ$¼
Z Yk

l¼1

d"l

Z
DU##½@!A#

! $

)
Y

i

#½ðA#
! ðxÞ" ~A!ðx;"Þ;g"i;!ðx; !"ÞÞ$: (7)

U#ðxÞ denotes a generic gauge transformation and A#
! ðxÞ

is result of gauge transforming the field A!ðxÞ according to
U#ðxÞ. Note that, while the path integral Z is obviously
gauge invariant, the definition of the effective Hamiltonian
H ð"1; . . . ;"kÞ relies on the choice of the gauge, in this
case the Landau gauge.
The orthogonality condition (4) and the system of coor-

dinates (5) can be used to devise an algorithm to explicitly
compute the effective Hamiltonian (6). We begin by ob-
serving that, on such a system of coordinates, a functional

FIG. 1 (color online). Pictorial representation of the projection
of the gauge field configuration A!ðtÞ of the path integral

Z ¼ R
DA!e

"S½A!$ onto a specific vacuum field manifold,

spanned by two collective coordinates "1, and "2. A generic
path is represented by a point in this three-dimensional space.
The constraints given in Eq. (4) imply that the fluctuation field
B!ðxÞ is perpendicular to the plane tangent to the manifold in a

given point.
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Step 1: define a local system of coordinates in the back-ground field manyfold 

In Fig. 3 we show that our results are in quantitative
agreement with the leading-order perturbative prediction
in the range 0:1 fm & ! & 0:2 fm. The VMP results for
very small-sized instantons (! & 0:1 fm) are affected
by lattice discretization errors, while the perturbative
calculation is not reliable for large instanton sizes, ! *
1=!SUð2Þ. Such a comparison shows that the suppression of
the large-sized instantons is a purely nonperturbative effect.

It is also interesting to compare our fully nonperturbative
result, with the variational estimate of the instanton size
distribution obtained by Diakonov and collaborators [5,36]:

nvarð!Þ ¼ none-loopð!Þe$ðð11=6ÞNc$2Þð!2=h!2iÞ: (27)

Note that such a variational ansatz assumes an exponential
suppression of large-size instantons. In order to test such an
assumption, we performed a fit of (27) on our VMP data,
obtained using the a ¼ 0:12 fm lattice. Such a fit was
restricted to the range ! 2 ½a; 1 fm& in order to avoid the
bias from discretization errors. The best fit is shown in
Fig. 4, which corresponds to choosing

h!2ifit ¼ 0:083ð3Þ fm2: (28)

This parameter is very close to the numerical value of
the second moment evaluated from the a ¼ 0:12 fm
VMP data:

h!2iVMPða¼0:12 fmÞ ¼ 0:12ð3Þ fm2: (29)

In addition, also the first moment of the fitted curve is
compatible with the VMP results:

h!ifit ¼ 0:27ð1Þ fm (30)

h!iVMPða¼0:12f mÞ ¼ 0:31ð4Þ fm: (31)

We conclude that variational estimates of the instanton size
distribution can be considered realistic.
We conclude this part by commenting on the fact that,

although the total number of pseudoparticles which are
present in a given lattice configuration is neither fixed nor
known, the one-body instanton density has been calculated
by projecting onto a single-instanton manifold. This is
made possible by the fact that the projection functions for
the single-instanton manyfold are peaked around the pro-
jection point. Whatever the number of instantons in the box,
the projection method will only characterize the size of the
pseudoparticle nearest to the projection point. Similarly, if
the vacuum ensemble is sufficiently dilute, the calculation
of the two-body termsmay be performed by projecting onto
a two-pseudoparticle manifold, as was done in Ref. [10].
Clearly, this way, it is not possible to compute the normal-
ization of the different terms in the effective Hamiltonian
(e.g. the total number of instantons and anti-instantons).
On the other hand, these normalization constants can be
evaluated a posteriori, by minimizing the free energy of the
statistical vacuum model—see e.g. Ref. [37].

C. Testing the accuracy of the VMP calculation
of the instanton size

In this section we present a study of the accuracy of our
VMP calculation of the instanton size distribution based on
an instanton model. We generated 1000 configurations of
an ensemble of configurations constructed by superimpos-
ing the fields of 20 instantons and 20 anti-instantons in a
box of volume V ¼ ð2:7 fmÞ4. The positions and color
orientations of the pseudoparticles were randomly chosen,
while the size of the pseudoparticles was sampled from a
Gaussian distribution:

FIG. 3 (color online). Logarithm of the instanton size distri-
bution nð!Þ, obtained with the VMP technique from two differ-
ent sets of gauge-fixed configurations. The results are compared
with the exact one-loop calculation obtained by ’t Hooft [35].
The VMP results are in agreement with the one-loop calculation,
in the small-sized instantons range 0:1 fm & ! & 0:2 fm. The
VMP results for very small-sized instantons (! & 0:1 fm) is
affected by lattice discretization errors.

FIG. 4 (color online). Solid line: Instanton size distribution
nð!Þ obtained with the VMP technique, from gauge-fixed con-
figurations with a ¼ 0:12 fm; dashed line: result of the fit of the
VMP data in the range ! 2 ½a; 1 fm&, with the variational
estimate nvarð!Þ in Eq. (27).
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Computing the effective Hamiltonian of low-energy vacuum gauge fields
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1Università degli Studi di Trento, Via Sommarive 14, Povo (Trento), Italy
2INFN, Gruppo Collegato di Trento, Via Sommarive 14, Povo (Trento), Italy

(Received 20 May 2011; published 23 August 2011)

A standard approach to investigate the nonperturbative QCD dynamics is through vacuum models

which emphasize the role played by specific gauge field fluctuations, such as instantons, monopoles, or

vortexes. The effective Hamiltonian describing the dynamics of the low-energy degrees of freedom in

such approaches is usually postulated phenomenologically, or obtained through uncontrolled approx-

imations. In a recent paper, we have shown how lattice field theory simulations can be used to rigorously

compute the effective Hamiltonian of arbitrary vacuum models by stochastically performing the path

integral over all the vacuum field fluctuations which are not explicitly taken into account. In this work,

we present the first illustrative application of such an approach to a gauge theory and we use it to compute

the instanton size distribution in SUð2Þ gluon dynamics in a fully model independent and parameter-

free way.

DOI: 10.1103/PhysRevD.84.034504 PACS numbers: 12.38.Gc, 12.38.#t

I. INTRODUCTION

Contemporary lattice gauge theory (LGT) simulations
allow one to compute from first principles a large class of
hadronic matrix elements in QCD, in some cases even
within a few percent accuracy. On the other hand, such
simulations do not provide much detailed information
about the structure of the gluonic fluctuations which drive
the QCD dynamics in the strongly coupled regime. For
example, despite several decades of investigations, the
dynamical processes underlying chiral symmetry breaking
and color confinement are still a matter of debate.

The problem of identifying the dynamical origin of
such nonperturbative phenomena has been extensively
addressed in the context of phenomenological models
which emphasize the role played by specific vacuum field
fluctuations, such as e.g. instantons [1], monopoles [2], and
center vortexes [3]. The configuration space of these mod-
els is defined by the collective coordinates of the selected
low-energy vacuum fields. On the other hand, the statistical
distribution of such collective coordinates (or, equiva-
lently, their effective Hamiltonian) is usually obtained
through approximations upon which one does not have
full theoretical control, e.g. by completely neglecting the
contribution of the fluctuations around the chosen vacuum
fields [4] or by estimating the role of such fluctuations
through variational methods [5].

In principle, LGT simulations can be used to test the
predictions of the phenomenological vacuum models, for
example, by looking for some specific signatures of the
dynamics generated by instantons [6,7], monopoles [8], or
vortexes [9]. On the other hand, the model dependence

associated to the effective Hamiltonian for the vacuum
field degrees of freedom makes it difficult to draw defini-
tive conclusions about the validity of a given model.
Indeed, a moderate disagreement with the experimental
data or with the results of lattice QCD simulations may
be due to either a wrong choice of the low-energy vacuum
fields, or to the strong approximations involved in the
definition of their partition function.
In order to tackle this problem, in a recent work we have

developed a technique, which we shall refer to as vacuum
manifold projection (VMP), by which lattice simulations
are used to rigorously compute the effective Hamiltonian
of arbitrary vacuum models [10], in a model independent
way. This is done by nonperturbatively performing the path
integral over all the vacuum field configurations which are
not explicitly taken into account in the given low-energy
vacuum model. For example, in an instanton model, one
performs the path integral over all the configurations which
are orthogonal to the functional manifold spanned by
multi-instanton configurations. Clearly, once the partition
function has been evaluated from first principles, any fail-
ure of the model must be entirely due to the wrong choice
of the effective low-energy degrees of freedom.
In our first work, the VMP method was illustrated and

tested by evaluating the instanton-anti-instanton interac-
tion in a simple quantum-mechanical toy model [10].
Here, we present the first application to a gauge theory.
In particular, we use the VMP method to compute the
instanton size distribution in two-color Yang-Mills theory.
The paper is organized as follows. In Sec. II we review

the VMP method for a generic choice of vacuum field
degrees of freedom. In Sec. III we focus on an effective
theory based on instanton degrees of freedom and we use
the VMP method to compute the instanton size distribution
in SUð2Þ gluon dynamics. The main results, conclusions,
and perspectives are summarized in Sec. IV.

*Present address: Theoretical Physics Division, Department of
Mathematical Sciences, University of Liverpool, Liverpool, L69
3BX, UK.
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NB some observables depend only on ρ!

In Fig. 3 we show that our results are in quantitative
agreement with the leading-order perturbative prediction
in the range 0:1 fm & ! & 0:2 fm. The VMP results for
very small-sized instantons (! & 0:1 fm) are affected
by lattice discretization errors, while the perturbative
calculation is not reliable for large instanton sizes, ! *
1=!SUð2Þ. Such a comparison shows that the suppression of
the large-sized instantons is a purely nonperturbative effect.

It is also interesting to compare our fully nonperturbative
result, with the variational estimate of the instanton size
distribution obtained by Diakonov and collaborators [5,36]:

nvarð!Þ ¼ none-loopð!Þe$ðð11=6ÞNc$2Þð!2=h!2iÞ: (27)

Note that such a variational ansatz assumes an exponential
suppression of large-size instantons. In order to test such an
assumption, we performed a fit of (27) on our VMP data,
obtained using the a ¼ 0:12 fm lattice. Such a fit was
restricted to the range ! 2 ½a; 1 fm& in order to avoid the
bias from discretization errors. The best fit is shown in
Fig. 4, which corresponds to choosing

h!2ifit ¼ 0:083ð3Þ fm2: (28)

This parameter is very close to the numerical value of
the second moment evaluated from the a ¼ 0:12 fm
VMP data:

h!2iVMPða¼0:12 fmÞ ¼ 0:12ð3Þ fm2: (29)

In addition, also the first moment of the fitted curve is
compatible with the VMP results:

h!ifit ¼ 0:27ð1Þ fm (30)

h!iVMPða¼0:12f mÞ ¼ 0:31ð4Þ fm: (31)

We conclude that variational estimates of the instanton size
distribution can be considered realistic.
We conclude this part by commenting on the fact that,

although the total number of pseudoparticles which are
present in a given lattice configuration is neither fixed nor
known, the one-body instanton density has been calculated
by projecting onto a single-instanton manifold. This is
made possible by the fact that the projection functions for
the single-instanton manyfold are peaked around the pro-
jection point. Whatever the number of instantons in the box,
the projection method will only characterize the size of the
pseudoparticle nearest to the projection point. Similarly, if
the vacuum ensemble is sufficiently dilute, the calculation
of the two-body termsmay be performed by projecting onto
a two-pseudoparticle manifold, as was done in Ref. [10].
Clearly, this way, it is not possible to compute the normal-
ization of the different terms in the effective Hamiltonian
(e.g. the total number of instantons and anti-instantons).
On the other hand, these normalization constants can be
evaluated a posteriori, by minimizing the free energy of the
statistical vacuum model—see e.g. Ref. [37].

C. Testing the accuracy of the VMP calculation
of the instanton size

In this section we present a study of the accuracy of our
VMP calculation of the instanton size distribution based on
an instanton model. We generated 1000 configurations of
an ensemble of configurations constructed by superimpos-
ing the fields of 20 instantons and 20 anti-instantons in a
box of volume V ¼ ð2:7 fmÞ4. The positions and color
orientations of the pseudoparticles were randomly chosen,
while the size of the pseudoparticles was sampled from a
Gaussian distribution:

FIG. 3 (color online). Logarithm of the instanton size distri-
bution nð!Þ, obtained with the VMP technique from two differ-
ent sets of gauge-fixed configurations. The results are compared
with the exact one-loop calculation obtained by ’t Hooft [35].
The VMP results are in agreement with the one-loop calculation,
in the small-sized instantons range 0:1 fm & ! & 0:2 fm. The
VMP results for very small-sized instantons (! & 0:1 fm) is
affected by lattice discretization errors.

FIG. 4 (color online). Solid line: Instanton size distribution
nð!Þ obtained with the VMP technique, from gauge-fixed con-
figurations with a ¼ 0:12 fm; dashed line: result of the fit of the
VMP data in the range ! 2 ½a; 1 fm&, with the variational
estimate nvarð!Þ in Eq. (27).
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Applications to light hadron phenomenology:



Strategies to compute in the ILM

Single Instanton Approximation (Shifman, Shuryak, Forkel,PF)
+ Anaytic, one parameter ρ=0.3 
-  Valid only for Q2>1 GeV

Mean Field (chiral soliton) (Dyakonov, Petrov …)
+ Analytic
- Mean field for hadrons….

Monte Carlo Simulations (Shuryak, Schäfer) 
+ no further approx. 
-  numeric (limited insight)

Systematic study of the single instanton approximation in QCD

P. Faccioli* and E. V. Shuryak†
Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, New York 11794

!Received 1 August 2001; published 12 November 2001"

The single-instanton approximation !SIA" is often used to evaluate analytically instanton contributions to the
Euclidean correlation function in QCD at small distances. We discuss how this approximation can be consis-
tently derived from the theory of instanton ensemble and give precise definitions to a number of different
‘‘quark effective masses,’’ generalizing the parameter m*, which was introduced long ago to account for the
collective contribution of the whole ensemble. We test numerically the range of applicability of the SIA for
different quantities. Furthermore, we determine all the effective masses !for random and interacting instanton
liquid models" as well as from phenomenology, and discuss to what extent those are universal.

DOI: 10.1103/PhysRevD.64.114020 PACS number!s": 12.38.Lg

I. INTRODUCTION

The instanton liquid model of the QCD vacuum #1$ is
based on a semiclassical approximation, in which all gauge
configurations are replaced by an ensemble of topologically
nontrivial fields, instantons, and anti-instantons. It remains a
model because we still do not understand why large-size in-
stantons are not present in the ensemble. Fits to phenomenol-
ogy and later lattice studies #23$ showed that their total den-
sity is n0!1 fm!4 with a typical size of about %&1/3 fm,
leading to a small diluteness parameter n0%3&10!2 #1$.
With these parameters, the model quantitatively explains
such important phenomena as spontaneous SU(Nf) chiral
symmetry breaking for Nf quark flavors, explicit U!1" sym-
metry breaking, and many more other details of hadronic
correlators and spectroscopy !for a recent example see the
discussion of vector and axial correlators #2$, for a review
see #3$". The main feature of the instanton #4$ ensemble is
that each pseudoparticle is an effective vertex with 2Nf
quark lines #5$, which are exchanged between them and fill
the vacuum. A theory is developed, called the interacting
instanton liquid model !IILM", which includes these ’t Hooft
interactions to all orders #3$.
If new sources !external currents" are added, they produce

extra quarks which interact with those in vacuum and pro-
duce nontrivial correlation functions. In particular, many
!Lorentz scalar" chirally odd local operators obtain nonzero
vacuum expectation values. In general, all of those ‘‘conden-
sates’’ and correlation functions are determined by the inter-
action of instantons and thus depend on the global !collec-
tive" properties of the ensemble.
On the other hand, as the instanton vacuum is fairly di-

lute, one may think that the correlation functions at distances
short compared to instanton spacing x"R#n!1/4&1 fm
may be dominated by a single instanton, the closest !or lead-
ing" one !LI". This framework #which we shall refer to as the
single instanton approximation, !SIA"$ has the advantage of
allowing us to carry out calculations analytically. It is there-

fore possible to obtain closed expressions for an instanton
contribution to Green’s functions in momentum or in Borel
space.
In SIA the collective contribution of all instantons other

than the leading one is taken care of by a single effective
parameter, usually called the effective mass, m*. In the sim-
plest approximation, it can be associated with an average
value of the quark condesate #6$:

m*#m!
2
3 '2%2(ūu), !1"

which leads to the value m*!170 MeV #1$. Note that it is
already very different from what one infers from the same
model for the long distance !or zero Euclidean momentum"
limit of the quark propagator, which gives the constituent
quark mass of the order of 400 MeV.
Furthermore, although the SIA has been used in several

phenomenological studies !e.g., #1,7–9$, and references
therein", its derivation was never discussed in detail, its
range of applicability was never quantitatively checked, and
the values of relevant effective masses well specified. And
indeed, if one uses the value m*!170 MeV the correlation
functions, evaluated in the SIA, do not agree with the results
of the random and interacting instanton liquid #3$.
In this paper we identify the origin of such a discrepancy

and calculate the values of effective mass appropriate for
different observables. This analysis reveals that the discrep-
ancy between the SIA and full liquid calculations is due to an
incorrect estimate of the effective mass, m*. We also present
a systematic study of the SIA in QCD by itself. We show that
the approach is really accurate only for calculations that in-
volve operators of dimension six or more, or correlators with
more than one zero-mode propagator. We shall also prove
that the mass terms, appearing in matrix elements involving
different numbers of zero-mode propagators, are indeed in-
dependent parameters that have to be fixed separately. We
provide with the definitions of all such mass factors in terms
of averages of the instanton ensembles and prove that they
are nearly universal, i.e., the same for all similar correlation
functions.
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I. INTRODUCTION

The goal of this work is to gain insight into the mecha-
nism by which the structure of hadrons arises from QCD.
Although lattice field theory provides a powerful tool for
solving nonperturbative QCD and is now beginning to
successfully calculate experimental observables with dy-
namical quarks in the chiral regime, the physical mecha-
nism by which hadron structure arises and the dominant
degrees of freedom are not directly evident. Hence, in this
work, we explore the complementary insight that can be
obtained from a model that focuses on what we believe to
be the dominant degrees of freedom relevant to hadron
structure. In nonperturbative QCD, the way in which glu-
ons interact with quarks depends dramatically on the quark
mass. In the limit of large mass, heavy quarks move
adiabatically in a flux tube potential, whereas in the limit
of light mass, a variety of evidence suggests that the
instanton-induced ’t Hooft quark interaction plays an im-
portant role and provides the mechanism for spontaneous
chiral symmetry breaking. To understand the structure of
hadrons containing light up and down quarks, we therefore
seek to explore the role of instantons and their associated
zero modes in hadron structure, and do so in the context of
the interacting instanton liquid model (IILM).

In the IILM, the QCD path integral over all gluons is
replaced by an effective theory in which instantons are the
effective degrees of freedom, and the gauge fields of the
theory are those generated by integrating over the posi-
tions, color orientations, and sizes of instantons. In the
context of this model, we would like to understand the
mass range in which instanton mediated chiral dynamics is
manifested and the extent to which it is described by chiral
perturbation theory. In particular, we would like to know
the mass scale or scales at which the continuum fermion

determinant is suppressed, at which zero modes become
subdominant, and at which the density of quasi zero modes
becomes independent of quark mass.

In the present paper, we set-up the formalism to use the
IILM [1] to address these questions. The instanton picture
(for recent reviews see [2,3]) was originally introduced as a
model for the QCD vacuum based on semiclassical argu-
ments [4]. It was shown that instantons lead to spontaneous
chiral symmetry breaking by introducing strong nonper-
trubative correlations between fermionic zero-modes lo-
calized around the instanton positions. Specific features of
the instanton picture have been observed in a number of
lattice studies [5–9] and there is evidence that chiral
symmetry breaking is correlated with smooth lumps of
topological charge, whose profile is consistent with that
of singular-gauge instantons [10,11]. In addition,
instanton-induced correlations in hadrons have been
studied in a number of phenomenological model calcula-
tions, where it was shown that the Instanton Liquid Model,
(ILM), provides a good description of the mass and the
electro-weak structure of pions, nucleons and hyperons
[12–21].

Before trusting the IILM to provide useful insight into
the role of instantons and their associated zero modes, it is
important to verify several essential properties. One key
issue is to verify the chiral behavior of the spectrum of the
Dirac operator. By analyzing the dependence on the quark
mass of the density of eigenvalues of the Dirac operator,
!$"%. we show that, in the chiral limit, the IILM results are
consistent with the well-known chiral perturbation theory
(#pt) result [22]:

 lim
"!0

lim
mq!0

!$"% " Const&O$"2% $Nf " 2%: (1)

In addition, we check that at small but-finite quark masses,
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lattice results [6,29–32]. The complete set of values of
masses extracted from our IILM calculations is presented
in Table I.

In Fig. 5 we can see that the IILM extracted nucleon
masses are compatible with the available Lattice date for
the pion mass range considered.

 

FIG. 3. Pion and nucleon effective-mass plots in the IILM at different quark masses.
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V. CHIRAL EFFECTIVE PARAMETERS IN THE
IILM

In the previous sections, we have shown that the IILM
provides a realistic description of the microscopic dynam-
ics responsible for chiral symmetry and that it contains

pions as low-energy vacuum excitations. Thus, we con-
clude that the effective theory approximates the path in-
tegral sufficiently well that the IILM can be described by
chiral perturbation theory, and we therefore ask the next
question of how similar the low-energy constants are to
those arising in QCD. Hence, we determine the quark
condensate and the pion decay constant from the depen-
dence of the pion mass on the quark mass. Note that the
numerical value of the quark mass in QCD depends on the
renormalization scale. In the IILM we do not have this
freedom since the ultraviolet cut-off scale is provided by
the inverse instanton size 1= !! ’ 600 MeV. Chiral pertur-
bation theory to O!p4" predicts a dependence of the form:

 m2
" # 2mqB0

!
1$ 2mqB0

32"2f2
0

ln
!
2mB0

"2

""
: (36)

The chiral scale " is set at the ! vector meson mass, which
in this model is found to be independent on the quark mass,
with the valueM! # 1 GeV [35]. Then, using the value for
B0

f2
0
# 340 GeV%1 which was extracted from the analysis of

the Dirac spectrum (29), one can extract B0.
The results of the chiral fit to the numerical IILM

calculations are shown in Fig. 6. The corresponding low-
energy chiral coefficients calculated in our model are

 f0 # 0:085& 0:003 GeV; (37)

 B0 # 2:43& 0:02 GeV; (38)

corresponding to a chiral condensate of

 h !qqi ' %!0:259 GeV"3: (39)

The fact that these quantities are rather close to the corre-
sponding values extracted in QCD implies that the low-
energy effective theory of the IILM is indeed not far from
that of QCD. Note that a recent analysis of the quark mass
dependence of the chiral condensate in the instanton vac-
uum leading to comparable results can be found in [36].
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FIG. 5. Nucleon mass: the IILM, CP-PACS, and MILC data
are denoted by the squares, triangles, and diamonds, respec-
tively, and the star represents the physical point.

 

FIG. 4. Comparison between nucleon masses obtained with the
IILM for three different choices of the average instanton size !!
and those calculated on the Lattice by the CP-PACS [27] and
MILC [28] collaborations.

TABLE I. Pion and nucleon masses fitted by effective-mass
plot with #2=ndf ( 1. The quark masses are determined at a
scale 2 GeV as in [33,34].

mq [GeV] Pion [GeV] Nucleon [GeV]

0.021 0:300& 0:004 1:11$0:05
%0:05

0.03 0:360& 0:004 1:15$0:01
%0:07

0.05 0:460& 0:004 1:20$0:02
%0:02

0.07 0:530& 0:004 1:28$0:01
%0:01

0.09 0:600& 0:004 1:35$0:02
%0:1
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FIG. 6. Chiral extrapolation of the pion mass, obtained in the
IILM using O!p4" #pt.
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Meff (⌧) = � d

d⌧
logG2(⌧)

G2(⌧) =

Z
d3xh0|JN (x, ⌧)J†(0, 0)|0i
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I. INTRODUCTION

The goal of this work is to gain insight into the mecha-
nism by which the structure of hadrons arises from QCD.
Although lattice field theory provides a powerful tool for
solving nonperturbative QCD and is now beginning to
successfully calculate experimental observables with dy-
namical quarks in the chiral regime, the physical mecha-
nism by which hadron structure arises and the dominant
degrees of freedom are not directly evident. Hence, in this
work, we explore the complementary insight that can be
obtained from a model that focuses on what we believe to
be the dominant degrees of freedom relevant to hadron
structure. In nonperturbative QCD, the way in which glu-
ons interact with quarks depends dramatically on the quark
mass. In the limit of large mass, heavy quarks move
adiabatically in a flux tube potential, whereas in the limit
of light mass, a variety of evidence suggests that the
instanton-induced ’t Hooft quark interaction plays an im-
portant role and provides the mechanism for spontaneous
chiral symmetry breaking. To understand the structure of
hadrons containing light up and down quarks, we therefore
seek to explore the role of instantons and their associated
zero modes in hadron structure, and do so in the context of
the interacting instanton liquid model (IILM).

In the IILM, the QCD path integral over all gluons is
replaced by an effective theory in which instantons are the
effective degrees of freedom, and the gauge fields of the
theory are those generated by integrating over the posi-
tions, color orientations, and sizes of instantons. In the
context of this model, we would like to understand the
mass range in which instanton mediated chiral dynamics is
manifested and the extent to which it is described by chiral
perturbation theory. In particular, we would like to know
the mass scale or scales at which the continuum fermion

determinant is suppressed, at which zero modes become
subdominant, and at which the density of quasi zero modes
becomes independent of quark mass.

In the present paper, we set-up the formalism to use the
IILM [1] to address these questions. The instanton picture
(for recent reviews see [2,3]) was originally introduced as a
model for the QCD vacuum based on semiclassical argu-
ments [4]. It was shown that instantons lead to spontaneous
chiral symmetry breaking by introducing strong nonper-
trubative correlations between fermionic zero-modes lo-
calized around the instanton positions. Specific features of
the instanton picture have been observed in a number of
lattice studies [5–9] and there is evidence that chiral
symmetry breaking is correlated with smooth lumps of
topological charge, whose profile is consistent with that
of singular-gauge instantons [10,11]. In addition,
instanton-induced correlations in hadrons have been
studied in a number of phenomenological model calcula-
tions, where it was shown that the Instanton Liquid Model,
(ILM), provides a good description of the mass and the
electro-weak structure of pions, nucleons and hyperons
[12–21].

Before trusting the IILM to provide useful insight into
the role of instantons and their associated zero modes, it is
important to verify several essential properties. One key
issue is to verify the chiral behavior of the spectrum of the
Dirac operator. By analyzing the dependence on the quark
mass of the density of eigenvalues of the Dirac operator,
!$"%. we show that, in the chiral limit, the IILM results are
consistent with the well-known chiral perturbation theory
(#pt) result [22]:

 lim
"!0

lim
mq!0

!$"% " Const&O$"2% $Nf " 2%: (1)

In addition, we check that at small but-finite quark masses,
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Hadron effective mass form phenomenology:
GH(⌧) =

Z
d3xh0|JH(x, ⌧)J†

H(0, 0)|0i

nificantly smaller than the threshold for decaying into three
and two pions, respectively. In the presence of confinement
such hadrons would be stable. However, in our IILM
calculations we find a ! meson width of 10 MeV. Our
interpretation of these results is that, in the presence of
chiral interaction only, the ! meson eventually tends to
dissociate into its constituents.

In the next section we present our phenomenological
approach to extract information about hadron resonances
from the effective-mass plot. In Sec. III we present and
discuss the results of our calculations. Section IV is de-
voted to the summary and conclusions.

II. RESONANCES AND THE EFFECTIVE-MASS
PLOT

In QCD the information about the hadron spectrum is
encoded in the two-point correlation functions, defined as

 !H!x; "" # h0jT$JH!x; ""JyH!0; 0"%j0i: (1)

JH!x; "" is an overlap operator that creates states with the
quantum numbers of the hadron H. The lowest-
dimensional overlap operators generating states with quan-
tum numbers of #, !, a1 mesons are:

 JH!x" # "q!x"#Hq!x"; (2)

 ## # "&i$5; #! # "&$%; #a1
# "&i$5$%:

(3)

In the following we consider the effective mass Meff
H !"",

defined as

 Meff
H !"" # lim

$"!0

1

$"
ln
!

GH!""
GH!"& $""

"
; (4)

where GH!"" is the zero-momentum-projected hadronic
two-point function,

 GH!"" #
Z
d3x!H!x; ""; (5)

which can be written in the spectral representation:

 GH!"" #
Z ds

2
###
s
p !H!s"e'

##
s
p
"; (6)

where !H!s" is the spectral function.
In the large Euclidean time limit, the effective mass

filters out the lowest singularity in the two-point function,
i.e. the smallest eigenvalue of the transfer matrix. If the
lowest-lying state in a given channel is a stable hadron,
then the two-point function develops a pole at the bound-
state mass below the threshold of the branch-cut associated
to multiparticle production. Then, the effective mass
asymptotically approaches the value of the mass of the
bound-state:

 lim
"!1

Meff
H !"" # MH: (7)

In QCD the only bound-states are pions and nucleons. In
all the other channels, the two-point functions display
branch-cut singularities only.

It is instructive to study the behavior of the effective-
mass plot if the spectral function !H!s" displays a narrow
resonance with a finite-width, emerging above a continuum
background at small s and converging to the asymptotic
perturbative continuum, in the large s limit. As a working
example, we consider the effective-mass plot for the
vector-meson channel. In this case, the spectral function
can be extracted from the ALEPH Collaboration data [21]
for " decays in two pions. A reasonable parametrization of
such data can be constructed from a Breit-Wigner function
for the ! meson resonance, supplemented by a term simu-
lating the perturbative continuum (see Fig. 1, left panel)
[22]:

 !!!s" # C!1
!#!=2"2

!#!=2"2 & ! ###
s
p 'm!"2

& C!2
1& exp$!E0 '

###
s
p "=0:2% : (8)

The right panel shows the effective-mass plot obtained
from a phenomenological parametrization of the two-point
function, using Eqs. (4), (6), and (8). At small Euclidean
times, " & 0:4 fm, the effective mass MH

eff!"" drops expo-
nentially. Such a rapid falloff is due to the exponential
suppression of the perturbative continuum of excitations
induced by the propagation in the imaginary time. At larger
Euclidean times, 0:5 fm & " & 2 fm, the effective mass
displays a linear, nearly flat region. In this regime, the
spectral representation of MH

eff!"" is dominated by the !
meson resonance peak. In fact, it is easy to check that, in
the limit of vanishing width, one recovers a completely flat
straight line, i.e. the familiar signature of a stable bound-
state. Eventually, at even larger ", the effective mass slowly
converges to the threshold energy for multiparticle produc-
tion.1 We stress the fact that the effective-mass plot analy-
sis is much more efficient than the corresponding point-to-
point correlation function study in distinguishing a reso-
nance peak from a stable bound-state.

From this discussion it follows that it is in principle
possible to extract the width of the resonance from the
effective-mass plot in the intermediate Euclidean time
region. We note that, in (unquenched) lattice simulations,
the stability of all hadrons except nucleon and pions de-
pends on the size of the simulation box and on the value of
the pion mass used. For example, at large pion masses
2m# >m! the ! meson is a stable state, because there is
no phase-space available for decaying into two pions. In

1Note that, since our simple phenomenological parametriza-
tion (8) does not vanish below the two-pion threshold, s ###########

2m#
p

, the resulting effective mass converges to 0 in the asymp-
totically large Euclidean times.
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this case, one can simply read off its mass from the plateau
in the effective-mass plot, at large Euclidean times.

On the other hand, for sufficiently small pion masses, the
phase-space for decaying into two pions opens up and the
! meson appears in the spectral density as a resonance. In
this case, the smallest eigenvalue of the transfer matrix
filtered out by the propagation in imaginary time is related
to the two-pion p-wave state. Note however that, if the
periodic box is too small, the quantization of momentum
may shift the p-wave two-pion state threshold above the !
meson mass. As an example, let us consider a simulation
performed in a box with size of L ! 2:5 fm and with a pion
mass of 500 MeV. In this case, the smallest nonvanishing
unit of momentum is 2"=L ’ 500 MeV, and the threshold
for decay into a two-pion p-wave state is at
2
!!!!!!!!!!!!!!!!!!!!!!!!!!!!
m2
" " #"=L$2

p
’ 1:1 GeV which can be above the !

meson mass.
Note that in our IILM calculations we do not have to

worry about effects related to quantization of momentum,
as we do not adopt periodic boundary conditions. Instead,
we choose simulation boxes which are sufficiently large for
the integrand !H#x; #$ in the momentum projection inte-
gral (5) to become very small and negligible near the
borders of the box.2 Under such conditions, the lowest

point in the branch-cut for the ! meson two-point correla-
tion function is located at the threshold for two-pion pro-
duction, i.e.

!!!
s
p ! 2M".

Let us now discuss the axial-vector channel. In this case,
the hadronic current has an overlap with both the pion state
and the a1 resonance. A rough parametrization of the
ALEPH Collaboration data [21] for # decays into three
pions (see the left panel of Fig. 2) leads to the spectral
function [22]:
 

!#s$ ! Ca1
1

#"a1
=2$2

#"a1
=2$2 " # !!!

s
p %ma1

$2 % f
2
"m2

"$#s%m2
"$

" Ca1
2

1" exp&#E0 %
!!!
s
p $=0:2' ; (9)

where the pion pole arises from the matrix element
h0jJ%5 #0$j"i ! ip%f". We note that the pion contribution
to this spectral function comes with an opposite sign with
respect to that of the a1 resonance. Using (9) and dialing
the physical value for m" and f", we obtain the effective-
mass plot shown in the central panel of Fig. 2. This plot
displays a structure which is qualitatively similar to that of
the vector-meson channel. On the other hand, dramatic
differences emerge when the width of the a1 is reduced
(for instance because of heavy pions in the spectrum). For
example, if we reduce "a1

by 1 order of magnitude we
obtain the effective-mass plot shown in the right panel of
Fig. 2. In the limit of stable a1 (vanishing width), a singu-
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FIG. 1. Left panel: parametrization of the ALEPH Collaboration [21] data for the vector spectral density. Right panel: the
corresponding effective-mass plot.
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FIG. 2. Left panel: parametrization of the ALEPH Collaboration data [21] for # decays in three pions using Eq. (9). Center panel: the
corresponding phenomenological effective-mass plot for the a1 meson. Right panel: effective-mass plot for the a1 meson with reduced
width "a1

! 0:03 GeV.

2Note that this is different from imposing Dirichlet boundary
conditions, as we do not impose wave functions or correlators to
vanish at the border of the box.
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ρ meson:
ALEPH

nificantly smaller than the threshold for decaying into three
and two pions, respectively. In the presence of confinement
such hadrons would be stable. However, in our IILM
calculations we find a ! meson width of 10 MeV. Our
interpretation of these results is that, in the presence of
chiral interaction only, the ! meson eventually tends to
dissociate into its constituents.

In the next section we present our phenomenological
approach to extract information about hadron resonances
from the effective-mass plot. In Sec. III we present and
discuss the results of our calculations. Section IV is de-
voted to the summary and conclusions.

II. RESONANCES AND THE EFFECTIVE-MASS
PLOT

In QCD the information about the hadron spectrum is
encoded in the two-point correlation functions, defined as

 !H!x; "" # h0jT$JH!x; ""JyH!0; 0"%j0i: (1)

JH!x; "" is an overlap operator that creates states with the
quantum numbers of the hadron H. The lowest-
dimensional overlap operators generating states with quan-
tum numbers of #, !, a1 mesons are:

 JH!x" # "q!x"#Hq!x"; (2)

 ## # "&i$5; #! # "&$%; #a1
# "&i$5$%:

(3)

In the following we consider the effective mass Meff
H !"",

defined as

 Meff
H !"" # lim

$"!0

1

$"
ln
!

GH!""
GH!"& $""

"
; (4)

where GH!"" is the zero-momentum-projected hadronic
two-point function,

 GH!"" #
Z
d3x!H!x; ""; (5)

which can be written in the spectral representation:

 GH!"" #
Z ds

2
###
s
p !H!s"e'

##
s
p
"; (6)

where !H!s" is the spectral function.
In the large Euclidean time limit, the effective mass

filters out the lowest singularity in the two-point function,
i.e. the smallest eigenvalue of the transfer matrix. If the
lowest-lying state in a given channel is a stable hadron,
then the two-point function develops a pole at the bound-
state mass below the threshold of the branch-cut associated
to multiparticle production. Then, the effective mass
asymptotically approaches the value of the mass of the
bound-state:

 lim
"!1

Meff
H !"" # MH: (7)

In QCD the only bound-states are pions and nucleons. In
all the other channels, the two-point functions display
branch-cut singularities only.

It is instructive to study the behavior of the effective-
mass plot if the spectral function !H!s" displays a narrow
resonance with a finite-width, emerging above a continuum
background at small s and converging to the asymptotic
perturbative continuum, in the large s limit. As a working
example, we consider the effective-mass plot for the
vector-meson channel. In this case, the spectral function
can be extracted from the ALEPH Collaboration data [21]
for " decays in two pions. A reasonable parametrization of
such data can be constructed from a Breit-Wigner function
for the ! meson resonance, supplemented by a term simu-
lating the perturbative continuum (see Fig. 1, left panel)
[22]:

 !!!s" # C!1
!#!=2"2

!#!=2"2 & ! ###
s
p 'm!"2

& C!2
1& exp$!E0 '

###
s
p "=0:2% : (8)

The right panel shows the effective-mass plot obtained
from a phenomenological parametrization of the two-point
function, using Eqs. (4), (6), and (8). At small Euclidean
times, " & 0:4 fm, the effective mass MH

eff!"" drops expo-
nentially. Such a rapid falloff is due to the exponential
suppression of the perturbative continuum of excitations
induced by the propagation in the imaginary time. At larger
Euclidean times, 0:5 fm & " & 2 fm, the effective mass
displays a linear, nearly flat region. In this regime, the
spectral representation of MH

eff!"" is dominated by the !
meson resonance peak. In fact, it is easy to check that, in
the limit of vanishing width, one recovers a completely flat
straight line, i.e. the familiar signature of a stable bound-
state. Eventually, at even larger ", the effective mass slowly
converges to the threshold energy for multiparticle produc-
tion.1 We stress the fact that the effective-mass plot analy-
sis is much more efficient than the corresponding point-to-
point correlation function study in distinguishing a reso-
nance peak from a stable bound-state.

From this discussion it follows that it is in principle
possible to extract the width of the resonance from the
effective-mass plot in the intermediate Euclidean time
region. We note that, in (unquenched) lattice simulations,
the stability of all hadrons except nucleon and pions de-
pends on the size of the simulation box and on the value of
the pion mass used. For example, at large pion masses
2m# >m! the ! meson is a stable state, because there is
no phase-space available for decaying into two pions. In

1Note that, since our simple phenomenological parametriza-
tion (8) does not vanish below the two-pion threshold, s ###########

2m#
p

, the resulting effective mass converges to 0 in the asymp-
totically large Euclidean times.
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nificantly smaller than the threshold for decaying into three
and two pions, respectively. In the presence of confinement
such hadrons would be stable. However, in our IILM
calculations we find a ! meson width of 10 MeV. Our
interpretation of these results is that, in the presence of
chiral interaction only, the ! meson eventually tends to
dissociate into its constituents.

In the next section we present our phenomenological
approach to extract information about hadron resonances
from the effective-mass plot. In Sec. III we present and
discuss the results of our calculations. Section IV is de-
voted to the summary and conclusions.

II. RESONANCES AND THE EFFECTIVE-MASS
PLOT

In QCD the information about the hadron spectrum is
encoded in the two-point correlation functions, defined as

 !H!x; "" # h0jT$JH!x; ""JyH!0; 0"%j0i: (1)

JH!x; "" is an overlap operator that creates states with the
quantum numbers of the hadron H. The lowest-
dimensional overlap operators generating states with quan-
tum numbers of #, !, a1 mesons are:

 JH!x" # "q!x"#Hq!x"; (2)

 ## # "&i$5; #! # "&$%; #a1
# "&i$5$%:

(3)

In the following we consider the effective mass Meff
H !"",

defined as

 Meff
H !"" # lim

$"!0

1

$"
ln
!

GH!""
GH!"& $""

"
; (4)

where GH!"" is the zero-momentum-projected hadronic
two-point function,

 GH!"" #
Z
d3x!H!x; ""; (5)

which can be written in the spectral representation:

 GH!"" #
Z ds

2
###
s
p !H!s"e'

##
s
p
"; (6)

where !H!s" is the spectral function.
In the large Euclidean time limit, the effective mass

filters out the lowest singularity in the two-point function,
i.e. the smallest eigenvalue of the transfer matrix. If the
lowest-lying state in a given channel is a stable hadron,
then the two-point function develops a pole at the bound-
state mass below the threshold of the branch-cut associated
to multiparticle production. Then, the effective mass
asymptotically approaches the value of the mass of the
bound-state:

 lim
"!1

Meff
H !"" # MH: (7)

In QCD the only bound-states are pions and nucleons. In
all the other channels, the two-point functions display
branch-cut singularities only.

It is instructive to study the behavior of the effective-
mass plot if the spectral function !H!s" displays a narrow
resonance with a finite-width, emerging above a continuum
background at small s and converging to the asymptotic
perturbative continuum, in the large s limit. As a working
example, we consider the effective-mass plot for the
vector-meson channel. In this case, the spectral function
can be extracted from the ALEPH Collaboration data [21]
for " decays in two pions. A reasonable parametrization of
such data can be constructed from a Breit-Wigner function
for the ! meson resonance, supplemented by a term simu-
lating the perturbative continuum (see Fig. 1, left panel)
[22]:
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The right panel shows the effective-mass plot obtained
from a phenomenological parametrization of the two-point
function, using Eqs. (4), (6), and (8). At small Euclidean
times, " & 0:4 fm, the effective mass MH

eff!"" drops expo-
nentially. Such a rapid falloff is due to the exponential
suppression of the perturbative continuum of excitations
induced by the propagation in the imaginary time. At larger
Euclidean times, 0:5 fm & " & 2 fm, the effective mass
displays a linear, nearly flat region. In this regime, the
spectral representation of MH

eff!"" is dominated by the !
meson resonance peak. In fact, it is easy to check that, in
the limit of vanishing width, one recovers a completely flat
straight line, i.e. the familiar signature of a stable bound-
state. Eventually, at even larger ", the effective mass slowly
converges to the threshold energy for multiparticle produc-
tion.1 We stress the fact that the effective-mass plot analy-
sis is much more efficient than the corresponding point-to-
point correlation function study in distinguishing a reso-
nance peak from a stable bound-state.

From this discussion it follows that it is in principle
possible to extract the width of the resonance from the
effective-mass plot in the intermediate Euclidean time
region. We note that, in (unquenched) lattice simulations,
the stability of all hadrons except nucleon and pions de-
pends on the size of the simulation box and on the value of
the pion mass used. For example, at large pion masses
2m# >m! the ! meson is a stable state, because there is
no phase-space available for decaying into two pions. In

1Note that, since our simple phenomenological parametriza-
tion (8) does not vanish below the two-pion threshold, s ###########

2m#
p

, the resulting effective mass converges to 0 in the asymp-
totically large Euclidean times.
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a1 meson:

this case, one can simply read off its mass from the plateau
in the effective-mass plot, at large Euclidean times.

On the other hand, for sufficiently small pion masses, the
phase-space for decaying into two pions opens up and the
! meson appears in the spectral density as a resonance. In
this case, the smallest eigenvalue of the transfer matrix
filtered out by the propagation in imaginary time is related
to the two-pion p-wave state. Note however that, if the
periodic box is too small, the quantization of momentum
may shift the p-wave two-pion state threshold above the !
meson mass. As an example, let us consider a simulation
performed in a box with size of L ! 2:5 fm and with a pion
mass of 500 MeV. In this case, the smallest nonvanishing
unit of momentum is 2"=L ’ 500 MeV, and the threshold
for decay into a two-pion p-wave state is at
2
!!!!!!!!!!!!!!!!!!!!!!!!!!!!
m2
" " #"=L$2

p
’ 1:1 GeV which can be above the !

meson mass.
Note that in our IILM calculations we do not have to

worry about effects related to quantization of momentum,
as we do not adopt periodic boundary conditions. Instead,
we choose simulation boxes which are sufficiently large for
the integrand !H#x; #$ in the momentum projection inte-
gral (5) to become very small and negligible near the
borders of the box.2 Under such conditions, the lowest

point in the branch-cut for the ! meson two-point correla-
tion function is located at the threshold for two-pion pro-
duction, i.e.

!!!
s
p ! 2M".

Let us now discuss the axial-vector channel. In this case,
the hadronic current has an overlap with both the pion state
and the a1 resonance. A rough parametrization of the
ALEPH Collaboration data [21] for # decays into three
pions (see the left panel of Fig. 2) leads to the spectral
function [22]:
 

!#s$ ! Ca1
1

#"a1
=2$2

#"a1
=2$2 " # !!!

s
p %ma1

$2 % f
2
"m2

"$#s%m2
"$

" Ca1
2

1" exp&#E0 %
!!!
s
p $=0:2' ; (9)

where the pion pole arises from the matrix element
h0jJ%5 #0$j"i ! ip%f". We note that the pion contribution
to this spectral function comes with an opposite sign with
respect to that of the a1 resonance. Using (9) and dialing
the physical value for m" and f", we obtain the effective-
mass plot shown in the central panel of Fig. 2. This plot
displays a structure which is qualitatively similar to that of
the vector-meson channel. On the other hand, dramatic
differences emerge when the width of the a1 is reduced
(for instance because of heavy pions in the spectrum). For
example, if we reduce "a1

by 1 order of magnitude we
obtain the effective-mass plot shown in the right panel of
Fig. 2. In the limit of stable a1 (vanishing width), a singu-
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FIG. 1. Left panel: parametrization of the ALEPH Collaboration [21] data for the vector spectral density. Right panel: the
corresponding effective-mass plot.

 

0 0.5 1 1.5 2 2.5 3 3.5
s [GeV]^2

0

0.025

0.05

0.075

0.1

0.125

0.15

a

0 0.5 1 1.5 2 2.5 3
t [fm]

0.5

1

1.5

2

2.5

3

3.5

4

M
a1ef

f
[G

eV
]

0 0.5 1 1.5 2 2.5 3
t [fm]

0

1

2

3

4

M
a1ef

f
[G

eV
]

FIG. 2. Left panel: parametrization of the ALEPH Collaboration data [21] for # decays in three pions using Eq. (9). Center panel: the
corresponding phenomenological effective-mass plot for the a1 meson. Right panel: effective-mass plot for the a1 meson with reduced
width "a1

! 0:03 GeV.

2Note that this is different from imposing Dirichlet boundary
conditions, as we do not impose wave functions or correlators to
vanish at the border of the box.
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this case, one can simply read off its mass from the plateau
in the effective-mass plot, at large Euclidean times.

On the other hand, for sufficiently small pion masses, the
phase-space for decaying into two pions opens up and the
! meson appears in the spectral density as a resonance. In
this case, the smallest eigenvalue of the transfer matrix
filtered out by the propagation in imaginary time is related
to the two-pion p-wave state. Note however that, if the
periodic box is too small, the quantization of momentum
may shift the p-wave two-pion state threshold above the !
meson mass. As an example, let us consider a simulation
performed in a box with size of L ! 2:5 fm and with a pion
mass of 500 MeV. In this case, the smallest nonvanishing
unit of momentum is 2"=L ’ 500 MeV, and the threshold
for decay into a two-pion p-wave state is at
2
!!!!!!!!!!!!!!!!!!!!!!!!!!!!
m2
" " #"=L$2

p
’ 1:1 GeV which can be above the !

meson mass.
Note that in our IILM calculations we do not have to

worry about effects related to quantization of momentum,
as we do not adopt periodic boundary conditions. Instead,
we choose simulation boxes which are sufficiently large for
the integrand !H#x; #$ in the momentum projection inte-
gral (5) to become very small and negligible near the
borders of the box.2 Under such conditions, the lowest

point in the branch-cut for the ! meson two-point correla-
tion function is located at the threshold for two-pion pro-
duction, i.e.
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s
p ! 2M".

Let us now discuss the axial-vector channel. In this case,
the hadronic current has an overlap with both the pion state
and the a1 resonance. A rough parametrization of the
ALEPH Collaboration data [21] for # decays into three
pions (see the left panel of Fig. 2) leads to the spectral
function [22]:
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where the pion pole arises from the matrix element
h0jJ%5 #0$j"i ! ip%f". We note that the pion contribution
to this spectral function comes with an opposite sign with
respect to that of the a1 resonance. Using (9) and dialing
the physical value for m" and f", we obtain the effective-
mass plot shown in the central panel of Fig. 2. This plot
displays a structure which is qualitatively similar to that of
the vector-meson channel. On the other hand, dramatic
differences emerge when the width of the a1 is reduced
(for instance because of heavy pions in the spectrum). For
example, if we reduce "a1

by 1 order of magnitude we
obtain the effective-mass plot shown in the right panel of
Fig. 2. In the limit of stable a1 (vanishing width), a singu-
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FIG. 1. Left panel: parametrization of the ALEPH Collaboration [21] data for the vector spectral density. Right panel: the
corresponding effective-mass plot.
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FIG. 2. Left panel: parametrization of the ALEPH Collaboration data [21] for # decays in three pions using Eq. (9). Center panel: the
corresponding phenomenological effective-mass plot for the a1 meson. Right panel: effective-mass plot for the a1 meson with reduced
width "a1

! 0:03 GeV.

2Note that this is different from imposing Dirichlet boundary
conditions, as we do not impose wave functions or correlators to
vanish at the border of the box.
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this case, one can simply read off its mass from the plateau
in the effective-mass plot, at large Euclidean times.

On the other hand, for sufficiently small pion masses, the
phase-space for decaying into two pions opens up and the
! meson appears in the spectral density as a resonance. In
this case, the smallest eigenvalue of the transfer matrix
filtered out by the propagation in imaginary time is related
to the two-pion p-wave state. Note however that, if the
periodic box is too small, the quantization of momentum
may shift the p-wave two-pion state threshold above the !
meson mass. As an example, let us consider a simulation
performed in a box with size of L ! 2:5 fm and with a pion
mass of 500 MeV. In this case, the smallest nonvanishing
unit of momentum is 2"=L ’ 500 MeV, and the threshold
for decay into a two-pion p-wave state is at
2
!!!!!!!!!!!!!!!!!!!!!!!!!!!!
m2
" " #"=L$2

p
’ 1:1 GeV which can be above the !

meson mass.
Note that in our IILM calculations we do not have to

worry about effects related to quantization of momentum,
as we do not adopt periodic boundary conditions. Instead,
we choose simulation boxes which are sufficiently large for
the integrand !H#x; #$ in the momentum projection inte-
gral (5) to become very small and negligible near the
borders of the box.2 Under such conditions, the lowest

point in the branch-cut for the ! meson two-point correla-
tion function is located at the threshold for two-pion pro-
duction, i.e.

!!!
s
p ! 2M".

Let us now discuss the axial-vector channel. In this case,
the hadronic current has an overlap with both the pion state
and the a1 resonance. A rough parametrization of the
ALEPH Collaboration data [21] for # decays into three
pions (see the left panel of Fig. 2) leads to the spectral
function [22]:
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where the pion pole arises from the matrix element
h0jJ%5 #0$j"i ! ip%f". We note that the pion contribution
to this spectral function comes with an opposite sign with
respect to that of the a1 resonance. Using (9) and dialing
the physical value for m" and f", we obtain the effective-
mass plot shown in the central panel of Fig. 2. This plot
displays a structure which is qualitatively similar to that of
the vector-meson channel. On the other hand, dramatic
differences emerge when the width of the a1 is reduced
(for instance because of heavy pions in the spectrum). For
example, if we reduce "a1

by 1 order of magnitude we
obtain the effective-mass plot shown in the right panel of
Fig. 2. In the limit of stable a1 (vanishing width), a singu-
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FIG. 1. Left panel: parametrization of the ALEPH Collaboration [21] data for the vector spectral density. Right panel: the
corresponding effective-mass plot.
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FIG. 2. Left panel: parametrization of the ALEPH Collaboration data [21] for # decays in three pions using Eq. (9). Center panel: the
corresponding phenomenological effective-mass plot for the a1 meson. Right panel: effective-mass plot for the a1 meson with reduced
width "a1

! 0:03 GeV.

2Note that this is different from imposing Dirichlet boundary
conditions, as we do not impose wave functions or correlators to
vanish at the border of the box.
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hand, it should be noted that a fit of these points using a
spectral function which does not account for a narrow
meson resonance would be inconsistent with our IILM
points. The ! meson contribution is needed to explain
the nearly flat behavior of the effective mass for ">
0:6 fm.

Our results for the calculation of the a1 meson effective
mass for several quark masses are shown in Fig. 4, where
they are compared with the best fit obtained from the
phenomenological representation of the spectral function
(9). In order to reduce the number of free fitting parame-
ters, we have chosen to neglect the contribution of the
continuum, and to restrict the fit of the IILM points to
the region "> 0:6 fm. In addition, we have used the value
for the pion mass and decay constant calculated in the
IILM in [19]. The qualitative behavior predicted in the
previous section is very well reproduced by our model.
In particular, we observe that the singularity arising from
the cancellation of the # and a1 contribution to the two-
point correlator is clearly developed. This result provides a
clean evidence that both the pion and the a1 meson exist in
the instanton vacuum. We note that, in this channel, the

simple parametrization (9) of the ALEPH Collaboration
data [21] is quite poor in the low s region. This is presum-
ably the source of the small discrepancy observed for some
quark masses, at the largest Euclidean times.

For comparison, in Fig. 5 we show our effective-mass
plots for the pion, which were obtained in [19] and display
a completely flat behavior at large Euclidean times.

The complete list of ! meson and a1 masses extracted
from the fit of the effective-mass plot are summarized in
Table I. In general the masses obtained in the IILM are
about 30% larger than the corresponding experimental

TABLE I. #, !, a1 masses (in GeV units) calculated in the
IILM for different quark masses.

mq M# M! Ma1
!! !a1

0.02 0:30! 0:04 1:0! 0:1 1:6! 0:1 ’ 0:01 <0:02
0.03 0:36! 0:04 0:9! 0:1 1:6! 0:1 & 0:01 <0:03
0.05 0:46! 0:04 1:0! 0:1 1:7! 0:1 ’ 0:05 <0:01
0.07 0:53! 0:04 1:0! 0:1 1:7! 0:1 ’ 0:05 <0:01
0.09 0:60! 0:04 0:9! 0:1 1:8! 0:2 ’ 0:05 <0:01

 

FIG. 4. Effective-mass plots in the a1 meson channel, evaluated in the IILM at different quark masses and compared to the
phenomenological parametrization (solid line). The latter does not include the contribution from the perturbative continuum (see
discussion in the text).
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this case, one can simply read off its mass from the plateau
in the effective-mass plot, at large Euclidean times.

On the other hand, for sufficiently small pion masses, the
phase-space for decaying into two pions opens up and the
! meson appears in the spectral density as a resonance. In
this case, the smallest eigenvalue of the transfer matrix
filtered out by the propagation in imaginary time is related
to the two-pion p-wave state. Note however that, if the
periodic box is too small, the quantization of momentum
may shift the p-wave two-pion state threshold above the !
meson mass. As an example, let us consider a simulation
performed in a box with size of L ! 2:5 fm and with a pion
mass of 500 MeV. In this case, the smallest nonvanishing
unit of momentum is 2"=L ’ 500 MeV, and the threshold
for decay into a two-pion p-wave state is at
2
!!!!!!!!!!!!!!!!!!!!!!!!!!!!
m2
" " #"=L$2

p
’ 1:1 GeV which can be above the !

meson mass.
Note that in our IILM calculations we do not have to

worry about effects related to quantization of momentum,
as we do not adopt periodic boundary conditions. Instead,
we choose simulation boxes which are sufficiently large for
the integrand !H#x; #$ in the momentum projection inte-
gral (5) to become very small and negligible near the
borders of the box.2 Under such conditions, the lowest

point in the branch-cut for the ! meson two-point correla-
tion function is located at the threshold for two-pion pro-
duction, i.e.

!!!
s
p ! 2M".

Let us now discuss the axial-vector channel. In this case,
the hadronic current has an overlap with both the pion state
and the a1 resonance. A rough parametrization of the
ALEPH Collaboration data [21] for # decays into three
pions (see the left panel of Fig. 2) leads to the spectral
function [22]:
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where the pion pole arises from the matrix element
h0jJ%5 #0$j"i ! ip%f". We note that the pion contribution
to this spectral function comes with an opposite sign with
respect to that of the a1 resonance. Using (9) and dialing
the physical value for m" and f", we obtain the effective-
mass plot shown in the central panel of Fig. 2. This plot
displays a structure which is qualitatively similar to that of
the vector-meson channel. On the other hand, dramatic
differences emerge when the width of the a1 is reduced
(for instance because of heavy pions in the spectrum). For
example, if we reduce "a1

by 1 order of magnitude we
obtain the effective-mass plot shown in the right panel of
Fig. 2. In the limit of stable a1 (vanishing width), a singu-
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FIG. 1. Left panel: parametrization of the ALEPH Collaboration [21] data for the vector spectral density. Right panel: the
corresponding effective-mass plot.
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FIG. 2. Left panel: parametrization of the ALEPH Collaboration data [21] for # decays in three pions using Eq. (9). Center panel: the
corresponding phenomenological effective-mass plot for the a1 meson. Right panel: effective-mass plot for the a1 meson with reduced
width "a1

! 0:03 GeV.

2Note that this is different from imposing Dirichlet boundary
conditions, as we do not impose wave functions or correlators to
vanish at the border of the box.
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larity develops at the Euclidean time

 ! ! 1

Ma1
"M"

log
! !2

a1

f2
"m2

"

"
; (10)

where !a1
is the coupling of the axial-vector current to the

a1 state. This is a consequence of the cancellation between
the contributions of the pion and axial-vector poles in the
denominator of Eq. (4).

In the next section we compare these phenomenological
representations of the effective-mass plot with the results
of calculations performed in the IILM.

III. RESULTS AND DISCUSSION

In the IILM, hadronic correlation functions are eval-
uated by means of Monte Carlo averages over instanton
ensemble configurations. The only phenomenological pa-
rameters of the model are the instanton average size "# !
0:33 fm and the dimensionless strength of the instanton-
anti-instanton bosonic short-distance repulsion (for a con-
cise review of this model see [19], for an extended treat-

ment see [20]). In the present calculations we used five sets
of ensemble configurations, corresponding to quark masses
ranging from 20 to 90 MeV and we estimated statistical
errors using jackknife technique, with bin size of 10 con-
figurations. In order to isolate the instanton-induced chiral
interactions, we have adopted the so-called zero-mode
approximation, in which the part of the quark propagator
which does not receive contribution from the instanton
zero-modes has been replaced by a free propagator (for
further details, see the discussions in [19,20]). For com-
parison, we have performed the same calculations also
including the nonzero-mode part of the propagator and
we have not found significant differences, hence
instanton-induced correlations not associated to the chiral
zero-mode zone play only a marginal role.

Our results for the calculation of the # meson effective
mass for several quark masses are shown in Fig. 3, where
they are compared with the best fit obtained from the
phenomenological representation of the spectral function
(8). The IILM points can be very well interpolated through-
out the entire region 0:4 fm & ! & 1:2 fm. On the other
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FIG. 3. Effective-mass plots in the # meson channel evaluated in the IILM at different quark masses and compared to the
phenomenological parametrization (solid line). The dashed straight line represents the expected asymptotic plateau if the # meson
decays into two pions, while the solid straight line represents the expected asymptotic plateau if the # meson decays into two
constituent quarks with masses estimated from the IILM calculation in [24].
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hand, it should be noted that a fit of these points using a
spectral function which does not account for a narrow
meson resonance would be inconsistent with our IILM
points. The ! meson contribution is needed to explain
the nearly flat behavior of the effective mass for ">
0:6 fm.

Our results for the calculation of the a1 meson effective
mass for several quark masses are shown in Fig. 4, where
they are compared with the best fit obtained from the
phenomenological representation of the spectral function
(9). In order to reduce the number of free fitting parame-
ters, we have chosen to neglect the contribution of the
continuum, and to restrict the fit of the IILM points to
the region "> 0:6 fm. In addition, we have used the value
for the pion mass and decay constant calculated in the
IILM in [19]. The qualitative behavior predicted in the
previous section is very well reproduced by our model.
In particular, we observe that the singularity arising from
the cancellation of the # and a1 contribution to the two-
point correlator is clearly developed. This result provides a
clean evidence that both the pion and the a1 meson exist in
the instanton vacuum. We note that, in this channel, the

simple parametrization (9) of the ALEPH Collaboration
data [21] is quite poor in the low s region. This is presum-
ably the source of the small discrepancy observed for some
quark masses, at the largest Euclidean times.

For comparison, in Fig. 5 we show our effective-mass
plots for the pion, which were obtained in [19] and display
a completely flat behavior at large Euclidean times.

The complete list of ! meson and a1 masses extracted
from the fit of the effective-mass plot are summarized in
Table I. In general the masses obtained in the IILM are
about 30% larger than the corresponding experimental

TABLE I. #, !, a1 masses (in GeV units) calculated in the
IILM for different quark masses.

mq M# M! Ma1
!! !a1

0.02 0:30! 0:04 1:0! 0:1 1:6! 0:1 ’ 0:01 <0:02
0.03 0:36! 0:04 0:9! 0:1 1:6! 0:1 & 0:01 <0:03
0.05 0:46! 0:04 1:0! 0:1 1:7! 0:1 ’ 0:05 <0:01
0.07 0:53! 0:04 1:0! 0:1 1:7! 0:1 ’ 0:05 <0:01
0.09 0:60! 0:04 0:9! 0:1 1:8! 0:2 ’ 0:05 <0:01

 

FIG. 4. Effective-mass plots in the a1 meson channel, evaluated in the IILM at different quark masses and compared to the
phenomenological parametrization (solid line). The latter does not include the contribution from the perturbative continuum (see
discussion in the text).
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this case, one can simply read off its mass from the plateau
in the effective-mass plot, at large Euclidean times.

On the other hand, for sufficiently small pion masses, the
phase-space for decaying into two pions opens up and the
! meson appears in the spectral density as a resonance. In
this case, the smallest eigenvalue of the transfer matrix
filtered out by the propagation in imaginary time is related
to the two-pion p-wave state. Note however that, if the
periodic box is too small, the quantization of momentum
may shift the p-wave two-pion state threshold above the !
meson mass. As an example, let us consider a simulation
performed in a box with size of L ! 2:5 fm and with a pion
mass of 500 MeV. In this case, the smallest nonvanishing
unit of momentum is 2"=L ’ 500 MeV, and the threshold
for decay into a two-pion p-wave state is at
2
!!!!!!!!!!!!!!!!!!!!!!!!!!!!
m2
" " #"=L$2

p
’ 1:1 GeV which can be above the !

meson mass.
Note that in our IILM calculations we do not have to

worry about effects related to quantization of momentum,
as we do not adopt periodic boundary conditions. Instead,
we choose simulation boxes which are sufficiently large for
the integrand !H#x; #$ in the momentum projection inte-
gral (5) to become very small and negligible near the
borders of the box.2 Under such conditions, the lowest

point in the branch-cut for the ! meson two-point correla-
tion function is located at the threshold for two-pion pro-
duction, i.e.

!!!
s
p ! 2M".

Let us now discuss the axial-vector channel. In this case,
the hadronic current has an overlap with both the pion state
and the a1 resonance. A rough parametrization of the
ALEPH Collaboration data [21] for # decays into three
pions (see the left panel of Fig. 2) leads to the spectral
function [22]:
 

!#s$ ! Ca1
1

#"a1
=2$2

#"a1
=2$2 " # !!!

s
p %ma1

$2 % f
2
"m2

"$#s%m2
"$

" Ca1
2

1" exp&#E0 %
!!!
s
p $=0:2' ; (9)

where the pion pole arises from the matrix element
h0jJ%5 #0$j"i ! ip%f". We note that the pion contribution
to this spectral function comes with an opposite sign with
respect to that of the a1 resonance. Using (9) and dialing
the physical value for m" and f", we obtain the effective-
mass plot shown in the central panel of Fig. 2. This plot
displays a structure which is qualitatively similar to that of
the vector-meson channel. On the other hand, dramatic
differences emerge when the width of the a1 is reduced
(for instance because of heavy pions in the spectrum). For
example, if we reduce "a1

by 1 order of magnitude we
obtain the effective-mass plot shown in the right panel of
Fig. 2. In the limit of stable a1 (vanishing width), a singu-
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FIG. 1. Left panel: parametrization of the ALEPH Collaboration [21] data for the vector spectral density. Right panel: the
corresponding effective-mass plot.

 

0 0.5 1 1.5 2 2.5 3 3.5
s [GeV]^2

0

0.025

0.05

0.075

0.1

0.125

0.15

a

0 0.5 1 1.5 2 2.5 3
t [fm]

0.5

1

1.5

2

2.5

3

3.5

4

M
a1ef

f
[G

eV
]

0 0.5 1 1.5 2 2.5 3
t [fm]

0

1

2

3

4

M
a1ef

f
[G

eV
]

FIG. 2. Left panel: parametrization of the ALEPH Collaboration data [21] for # decays in three pions using Eq. (9). Center panel: the
corresponding phenomenological effective-mass plot for the a1 meson. Right panel: effective-mass plot for the a1 meson with reduced
width "a1

! 0:03 GeV.

2Note that this is different from imposing Dirichlet boundary
conditions, as we do not impose wave functions or correlators to
vanish at the border of the box.
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Abstract

We study the instanton contribution to the proton and neutron electric form factors. Using the single instanton approximation,
we perform the calculations in a mixed time-momentum representation in order to obtain the form factors directly in momentum
space. We find good agreement with the experimentally measured electric form factor of the proton. For the neutron, our result
falls short of the experimental data. We argue that this discrepancy is due to the fact that we neglect the contribution of the sea
quarks. We compare to lattice calculations and a relativistic version of the quark–diquark model.
 2002 Elsevier Science B.V. All rights reserved.

PACS: 13.40.Gp; 14.20.Dh; 12.38.Lg

1. Introduction

Electro-magnetic form factors provide valuable in-
formation about the structure of hadrons and the strong
interaction dynamics. At low momenta, they directly
probe the electric and magnetic charge distribution in-
side the hadron. In general, the form factors are related
to the elastic amplitude for a given hadron to absorb a
virtual photon. Thus, one can access the interaction re-
sponsible for the recombination of the partons into the
hadron.
The electro-magnetic form factors of the nucleon

are currently subject to a renewed experimental inter-
est. At low momenta, the proton electric and magnetic

E-mail address: aschwenk@mps.ohio-state.edu
(A. Schwenk).

form factors can be very well described by the same
dipole fit,

G
p
E(M)dip = e(µ)

(1+ Q2/M2
dip)

2 ,

where Mdip = 0.84 GeV. For larger momenta (Q2 !
2 GeV2), however, recent measurements at JLab show
that the electric form factor falls off faster than the
magnetic one [1,2]. On the other hand, the electric
form factor of the neutron has been measured up
to Q2 ≈ 2 GeV2 [3–9]. It was found to be posi-
tive, which indicates an inhomogeneous distribution
of the positive and the negative charge in the neutron,
with the positive charge concentrated near the cen-
ter.
From the theoretical point of view, the nucleon

form factor is one of the few hadronic quantities of
fundamental importance. Perturbative QCD (pQCD)

0370-2693/02/$ – see front matter  2002 Elsevier Science B.V. All rights reserved.
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We study the effects of instantons on the charged pion electromagnetic form factor at intermediate momenta.
In the single instanton approximation !SIA", we predict the pion form factor in the kinematic region Q2

!2–10 GeV2. By developing the calculation in a mixed time-momentum representation, it is possible to
maximally reduce the model dependence and to calculate the form factor directly. We find the intriguing result
that the SIA calculation coincides with the vector dominance monopole form, up to a surprisingly high
momentum transfer Q2#10 GeV2. This suggests that vector dominance for the pion holds beyond low energy
nuclear physics.
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I. INTRODUCTION

Bridging the gap between the nonperturbative and the per-
turbative sectors of QCD is a central step toward our under-
standing of the strong interaction. In this context, the elec-
tromagnetic form factor of the charged pion F$ is of great
interest. It is, at low momenta, extremely well reproduced by
the vector dominance model. In addition, at very high mo-
mentum transfer, it is constrained by perturbative !P"QCD
predictions !for a review on hadronic form factors, see e.g.
%1&". The asymptotic behavior for large spacelike momentum
transfer, Q2!"(p"p!)2#0, is derived in a closed form in
perturbation theory %2–4&:

Q2F$!Q2" !
Q2→'

16$ f$
2(s!Q ", !1"

where f $!92.4 MeV denotes the pion decay constant.
A comparison of the asymptotic behavior and the experi-

mental data determines the momentum scale where the per-
turbative regime of QCD is reached. Recently, the charged
pion form factor has been measured very accurately at mo-
mentum transfers 0.6 GeV2$Q2$1.6 GeV2 by the Jeffer-
son Laboratory !JLAB" F$ Collaboration %5& and led to quite
surprising results. Not only are the data at highest experi-
mentally accessible momenta still very far from the
asymptotic limit, but the trend is away from the PQCD pre-
diction !see Fig. 1".
Moreover, it is quite remarkable that the data are still

completely consistent with the vector dominance monopole
fit,

F$ ,mon.!Q2"!
M )
2

M )
2%Q2 , M )!770 MeV, !2"

at relatively high momentum transfer (Q2*1 GeV2).
Clearly, the measurements currently undertaken at JLAB in
the region 0.5 GeV2&Q2&6 GeV2 are very much needed
and will provide information about whether the perturbative
region is reached at that scale.
The charged pion form factor has attracted a lot of atten-

tion from the theoretical side %7–13&. Despite this debate, we
feel that there are still a number of open questions. What are

the leading nonperturbative effects responsible for the devia-
tion from PQCD, Eq. !1", at intermediate momenta? Where
can we expect the transition to PQCD? Is it within experi-
mentally accessible momentum transfers? Is there a micro-
scopic explanation of the success of the monopole form? Can
it be justified at so large momenta, where the vector domi-
nance model should be inadequate?
In this work we suggest answers to these questions. In

particular, we study the effects of the leading !i.e. zero-
mode" interaction of light quarks with the intense classical
vacuum fields !instantons" on the pion form factor, for Q2

#1 GeV2. We show that, in this kinematic region, the pion
form factor is dominated by the interaction of quarks with a
single instanton.
The pion plays a special role among the hadrons. Not only

is it nearly massless !which is explained by the Goldstone
theorem", but unusually compact as well. Phenomenologi-
cally, this is seen, e.g., from the rather large electromagnetic
mass splittings between the charged and neutral pions. Theo-
retically, it was explained by studying instanton-induced ef-
fects on the two-point correlators; see %14& for a review. In

FIG. 1. The recent JLAB data for Q2F$(Q2) in comparison
with the asymptotic PQCD prediction %thick bar, for a typical (s
*0.2–0.4 in Eq. !1"&, the monopole fit !dashed line", and our SIA
calculation !solid line". The single instanton approximation !SIA"
calculation is not reliable below Q2#1 GeV2. The solid circles
denote the SLAC data %6&.
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Bridging the gap between the nonperturbative and the per-
turbative sectors of QCD is a central step toward our under-
standing of the strong interaction. In this context, the elec-
tromagnetic form factor of the charged pion F$ is of great
interest. It is, at low momenta, extremely well reproduced by
the vector dominance model. In addition, at very high mo-
mentum transfer, it is constrained by perturbative !P"QCD
predictions !for a review on hadronic form factors, see e.g.
%1&". The asymptotic behavior for large spacelike momentum
transfer, Q2!"(p"p!)2#0, is derived in a closed form in
perturbation theory %2–4&:
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Q2→'
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where f $!92.4 MeV denotes the pion decay constant.
A comparison of the asymptotic behavior and the experi-

mental data determines the momentum scale where the per-
turbative regime of QCD is reached. Recently, the charged
pion form factor has been measured very accurately at mo-
mentum transfers 0.6 GeV2$Q2$1.6 GeV2 by the Jeffer-
son Laboratory !JLAB" F$ Collaboration %5& and led to quite
surprising results. Not only are the data at highest experi-
mentally accessible momenta still very far from the
asymptotic limit, but the trend is away from the PQCD pre-
diction !see Fig. 1".
Moreover, it is quite remarkable that the data are still

completely consistent with the vector dominance monopole
fit,

F$ ,mon.!Q2"!
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2%Q2 , M )!770 MeV, !2"

at relatively high momentum transfer (Q2*1 GeV2).
Clearly, the measurements currently undertaken at JLAB in
the region 0.5 GeV2&Q2&6 GeV2 are very much needed
and will provide information about whether the perturbative
region is reached at that scale.
The charged pion form factor has attracted a lot of atten-

tion from the theoretical side %7–13&. Despite this debate, we
feel that there are still a number of open questions. What are

the leading nonperturbative effects responsible for the devia-
tion from PQCD, Eq. !1", at intermediate momenta? Where
can we expect the transition to PQCD? Is it within experi-
mentally accessible momentum transfers? Is there a micro-
scopic explanation of the success of the monopole form? Can
it be justified at so large momenta, where the vector domi-
nance model should be inadequate?
In this work we suggest answers to these questions. In

particular, we study the effects of the leading !i.e. zero-
mode" interaction of light quarks with the intense classical
vacuum fields !instantons" on the pion form factor, for Q2

#1 GeV2. We show that, in this kinematic region, the pion
form factor is dominated by the interaction of quarks with a
single instanton.
The pion plays a special role among the hadrons. Not only

is it nearly massless !which is explained by the Goldstone
theorem", but unusually compact as well. Phenomenologi-
cally, this is seen, e.g., from the rather large electromagnetic
mass splittings between the charged and neutral pions. Theo-
retically, it was explained by studying instanton-induced ef-
fects on the two-point correlators; see %14& for a review. In

FIG. 1. The recent JLAB data for Q2F$(Q2) in comparison
with the asymptotic PQCD prediction %thick bar, for a typical (s
*0.2–0.4 in Eq. !1"&, the monopole fit !dashed line", and our SIA
calculation !solid line". The single instanton approximation !SIA"
calculation is not reliable below Q2#1 GeV2. The solid circles
denote the SLAC data %6&.
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Bridging the gap between the nonperturbative and the per-
turbative sectors of QCD is a central step toward our under-
standing of the strong interaction. In this context, the elec-
tromagnetic form factor of the charged pion F$ is of great
interest. It is, at low momenta, extremely well reproduced by
the vector dominance model. In addition, at very high mo-
mentum transfer, it is constrained by perturbative !P"QCD
predictions !for a review on hadronic form factors, see e.g.
%1&". The asymptotic behavior for large spacelike momentum
transfer, Q2!"(p"p!)2#0, is derived in a closed form in
perturbation theory %2–4&:
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where f $!92.4 MeV denotes the pion decay constant.
A comparison of the asymptotic behavior and the experi-

mental data determines the momentum scale where the per-
turbative regime of QCD is reached. Recently, the charged
pion form factor has been measured very accurately at mo-
mentum transfers 0.6 GeV2$Q2$1.6 GeV2 by the Jeffer-
son Laboratory !JLAB" F$ Collaboration %5& and led to quite
surprising results. Not only are the data at highest experi-
mentally accessible momenta still very far from the
asymptotic limit, but the trend is away from the PQCD pre-
diction !see Fig. 1".
Moreover, it is quite remarkable that the data are still

completely consistent with the vector dominance monopole
fit,
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at relatively high momentum transfer (Q2*1 GeV2).
Clearly, the measurements currently undertaken at JLAB in
the region 0.5 GeV2&Q2&6 GeV2 are very much needed
and will provide information about whether the perturbative
region is reached at that scale.
The charged pion form factor has attracted a lot of atten-

tion from the theoretical side %7–13&. Despite this debate, we
feel that there are still a number of open questions. What are

the leading nonperturbative effects responsible for the devia-
tion from PQCD, Eq. !1", at intermediate momenta? Where
can we expect the transition to PQCD? Is it within experi-
mentally accessible momentum transfers? Is there a micro-
scopic explanation of the success of the monopole form? Can
it be justified at so large momenta, where the vector domi-
nance model should be inadequate?
In this work we suggest answers to these questions. In

particular, we study the effects of the leading !i.e. zero-
mode" interaction of light quarks with the intense classical
vacuum fields !instantons" on the pion form factor, for Q2

#1 GeV2. We show that, in this kinematic region, the pion
form factor is dominated by the interaction of quarks with a
single instanton.
The pion plays a special role among the hadrons. Not only

is it nearly massless !which is explained by the Goldstone
theorem", but unusually compact as well. Phenomenologi-
cally, this is seen, e.g., from the rather large electromagnetic
mass splittings between the charged and neutral pions. Theo-
retically, it was explained by studying instanton-induced ef-
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FIG. 1. The recent JLAB data for Q2F$(Q2) in comparison
with the asymptotic PQCD prediction %thick bar, for a typical (s
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CASE 2: Compute observables which are not 
accessible to exact calculations

* Electric dipole momento of the neutron. 

chiral logs) both in the quenched and unquenched cases.
We have found that, when the fermionic determinant is
included, the neutron EDM is expected to vanish linearly
with the quark mass, whereas in the quenched approxi-
mation it should diverge as 1=mNf in the chiral limit.

We have performed several model simulations and
found that quenched and unquenched calculations give

comparable results for the neutron EDM at large quark
masses ( ’ !QCD), whereas they strongly differ at lower
quark masses. At the lowest value of the quark mass used
in our simulations (m ’ 130 MeV) the quenched result is
a factor of ’ 4 larger than the unquenched one.

We have obtained the ILM prediction for the neutron
EDM by extrapolating the unquenched IILM results to
the physical value of the quark mass, assuming a linear
mass dependence. The ILM result is roughly a factor 2=4
larger than existing model estimates [3,4].

Our main conclusion is that quenched and unquenched
lattice QCD simulations of the neutron EDM as well as of
other observables governed by topology might show up
similar important differences in the quark mass depen-
dence, near the chiral limit. In particular, our semiclas-
sical analysis suggests that a quenched lattice calculation
of the neutron EDM could be affected by a topology-
driven divergence, which would make it impossible to
perform the extrapolation to the physical value of the
quark mass.

We insist on the fact that the qualitative predictions in
Eq. (4.9) and (4.10) do not depend on the particular values
of the model parameters which define the ILM. They rely
only on a semiclassical description of the quantum mix-
ing in the !-vacuum, in terms of isolated tunneling events.
Hence, the observation of a divergence in a quenched
lattice calculation of the neutron EDM would represent
a clean, parameter-free signature of instanton-induced
dynamics in QCD.
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FIG. 3 (color online). ILM results obtained at different values
of the quark masses with quenched (circles) and unquenched
(squares) simulations. The behavior of the unquenched and
quenched calculations for small quark masses is consistent
with Eqs. (4.9) and (4.10), respectively.
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Neutron electric dipole moment in the instanton vacuum:
Quenched versus unquenched simulations
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We investigate the role played by the fermionic determinant in the evaluation of the CP-violating
neutron electric dipole moment (EDM) adopting the Instanton Liquid Model. Significant differences
between quenched and unquenched calculations are found. In the case of unquenched simulations the
neutron EDM decreases linearly with the quark mass and is expected to vanish in the chiral limit. On
the contrary, within the quenched approximation, the neutron EDM increases as the quark mass
decreases and is expected to diverge as 1=mNf in the chiral limit. We argue that such a qualitatively
different behavior is a parameter-free, semiclassical prediction and occurs because the neutron EDM is
sensitive to the topological structure of the vacuum. The present analysis suggests that quenched and
unquenched lattice QCD simulations of the neutron EDM as well as of other observables governed by
topology might show up important differences in the quark mass dependence for mq & !QCD.

DOI: 10.1103/PhysRevD.70.074017 PACS numbers: 12.38.Lg, 11.30.Er, 14.20.Dh

I. INTRODUCTION

The electric dipole moment (EDM) of the neutron
provides direct information on the violation of the parity
and time-reversal symmetries. Both the strong and the
electroweak sectors of the Standard Model (SM) can
generate violations of the above symmetries. As for the
strong sector, it is known [1] that a gauge-invariant defi-
nition of the QCD vacuum requires to supplement the
classical action with an additional gauge-invariant and
renormalizable term, which in Euclidean space reads

S 0
QCD ! SQCD " S!; (1.1)

S ! ! i!
1

32"2

Z
d4xF#$ eF#$; (1.2)

where

Q ! 1

32"2

Z
d4xF#$ eF#$ (1.3)

is the topological charge operator, eF#$ ! #1=2$"#$%&F%&
is the dual gluon field strength (incorporating the strong
coupling constant), and ! is a (real) dimensionless pa-
rameter. The term (1.2) is a source of CP violation and
goes under the name of strong !-term.

A second independent physical origin for a term of the
form (1.2) comes from the weak sector of the SM. The
observation of CP violation in K-meson systems implies
that the quark mass matrix M is not real and the mass
term in the Lagrangian has the general form

LM !  Ri Mij L "  Li M
y
ij 

R: (1.4)

The mass matrix can be made real and diagonal by means
of an appropriate chiral rotation, which generates a shift

in the ! parameter:

!! ! !: !" argdet#M$: (1.5)

The real constant ! is an additional dimensionless
parameter, which has to be fixed from experiment. This
can be done by exploiting the fact that (1.2) is a source of
CP violation which leads to a nonvanishing value of the
neutron EDM. At present there are only upper bounds on
the neutron EDM and the most constraining one is jdnj<
6:3% 10&13#e% fm$ [2].

In order to translate this experimental information into
a constraint on !, one needs to compute the neutron EDM
in QCD, including the contribution of the topological
term i!Q. So far, this has been done only within
model-dependent frameworks, starting from the works
of Refs. [3,4]. In [3] Baluni performed a calculation of the
EDM in the Bag Model and found jdnj ! 2:7%
10&3!#e% fm$. In [4] Crewther et al. proposed an ap-
proach based
on current algebra relations and found
jdnj ! 3:6% 10&3!#e% fm$.

The above model calculations agree in pointing out that
j!j & 2% 10&10. Understanding why ! is so small is an
open challenge, which goes under the name of strong CP
problem.

In order to estimate the relevant matrix element in a
model-independent way, a nonperturbative approach
based on the fundamental theory, like lattice QCD, is
required. However a lattice estimate of the neutron
EDM is not yet available [5]. Recently [6] a new strategy
for computing the neutron EDM in lattice QCD has been
proposed. The starting point is the expansion of the
matrix element of the EDM operator to lowest order in
!. This allows to remove the complex !-term (1.2) from
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CASE 3: Learn from failures

These results would seem to imply that the chiral properties of the QCD 
vacuum are at most weakly entangled with color confinement  

Puzzle: however, the de-confinement and chiral restoration phase transition 
occur at (almost?) the same temperature. Some strong entanglement must 
there!

Chiral physics and confinement

Interacting ensemble of the instanton-dyons and the deconfinement
phase transition in the SU(2) gauge theory

Rasmus Larsen and Edward Shuryak
Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA

(Received 4 September 2015; published 19 November 2015)

Instanton-dyons, also known as instanton-monopoles or instanton-quarks, are topological constituents of
the instantons at nonzero temperature and holonomy. We perform numerical simulations of the ensemble of
interacting dyons for the SU(2) pure gauge theory, using standard Metropolis Monte Carlo and integration
over parameter methods. We calculate the free energy as a function of the holonomy (logarithm of the
Polyakov line), the dyon densities, and the Debye mass, and find its minima as a function of those
parameters. We show that the backreaction on the holonomy potential does generate confinement, provided
the density is sufficiently high (or the temperature sufficiently low). We then report various properties of the
self-consistent ensembles as a function of temperature.

DOI: 10.1103/PhysRevD.92.094022 PACS numbers: 12.38.Aw

I. INTRODUCTION

QCD description of strongly interacting matter at finite
temperature T has originated from the 1970s. At first, its
high temperature phase—known as quark-gluon plasma,
QGP—has been studied using weak coupling methods, see
e.g. reviews [1,2]. The interest then switched to nonpertur-
bative phenomena, related with the topological solitons of
various dimensionality and two basic nonperturbative
phenomena: confinement and chiral symmetry breaking.
Instantons [3], the Euclidean 4-dimensional topological
solitons, have at high T the sizes ρ ∼ 1=T and appear with
the probability

ninstantons
T4

∼ exp½−8π2=g2ðTÞ$ ∼
!
Λ
T

"
b
; ð1Þ

where the power is the one loop beta function coefficient,
b ¼ 11Nc=3 for SUðNcÞ gauge theory. So, at high T the
density is small and the topological solitons are unim-
portant. Conversely, as T decreases, the instanton density
rapidly grows, till they become an important ingredient of
the gauge fields in the QCD vacuum. Index theorems
ensure existence of the fermionic zero modes of topo-
logical solitons. Those generate the so-called ’t Hooft
effective interaction of 2Nf fermions, which explicitly
violates the UAð1Þ chiral symmetry. Furthermore, collec-
tivization of the zero modes create the so-called zero mode
zone of quasizero eigenstates, which break spontaneously
the SUðNfÞ chiral symmetry. Although those states
include only a tiny subset of all fermionic states in lattice
numerical simulations, they are the key elements of the
chiral symmetry breaking and the hadronic spectroscopy.
The so-called interacting instanton liquid model (IILM)
has been developed, including ’t Hooft interaction to all
orders, for a review see [4].

The presence of the topological solitons in the vacuum
has been related with the issue of confinement. In particu-
lar, in [5,6] it has been noted that superposition of regular
gauge instantons, or merons, can disorder the Wilson loop
to an area law. These effects are due to accumulated
contributions of distant solitons, which are assumed to have
long-range (1/r) tails of the gauge fields. However, already
using more appropriate configurations of singular gauge
instantons,with fields decaying as 1=r3, one finds only finite
and nonconfining heavy-quark potential [7]. Similar con-
fining effect can be generated by the instanton-dyons [8]: in
this case most components of the gauge field obtain a mass
due to nonzero holonomy, but the diagonal (Abelian) gluons
do not and remain massless. So again, there are 1=r tails of
the solitons, also disordering the Wilson loop.
Some IR effects can be argued to be artifacts since all

physical correlators in the vacuum are exponentially
decaying with distance. In particular, the holonomy vac-
uum expectation value (VEV) has a certain effective
potential, and its second derivative at the minimum
provides a nonzero Debye screening mass MD. If included
consistently, it leads to exponentially decaying tails and
eliminates infrared artifacts. However, Wilson lines can
also be disordered by magnetic (center) vortices [9] not
related to the IR effects: in this paper we will not discuss
this aspect of confinement.
In this paper we focus instead on derivation of the (local

and average) effective holonomy potential. By “confine-
ment” we will below imply its modification with temper-
ature, such that at T < Tc the minimum corresponds to the
“confining” value of the holonomy. More specifically, the
holonomy potential contains two terms. One is the well
known Gross-Pisarski-Yaffe one-loop effective potential,
coming from QGP effects on holonomy. The second term
—the main object discussed below—is due to backreac-
tion of the instanton-dyons. As we show below, together
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QCD topology at finite temperature: Statistical mechanics of self-dual dyons
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Topological phenomena in gauge theories have long been recognized as the driving force for

chiral symmetry breaking and confinement. These phenomena can be conveniently investigated in the

semiclassical picture, in which the topological charge is entirely carried by (anti-)self-dual gauge

configurations. In such an approach, it has been shown that near the critical temperature, the nonzero

expectation value of the Polyakov loop (holonomy) triggers the ‘‘Higgsing’’ of the color group, generating

the splitting of instantons into Nc self-dual dyons. A number of lattice simulations have provided some

evidence for such dyons, and traced their relation with specific observables, such as the Dirac eigenvalue

spectrum. In this work, we formulate a model, based on one-loop partition function and including

Coulomb interaction, screening and fermion zero modes. We then perform the first numerical Monte Carlo

simulations of a statistical ensemble of self-dual dyons, as a function of their density, quark mass and the

number of flavors. We study different dyonic two-point correlation functions and we compute the Dirac

spectrum, as a function of the ensemble diluteness and the number of quark flavors.

DOI: 10.1103/PhysRevD.87.074009 PACS numbers: 12.38.Aw

I. INTRODUCTION

Topological phenomena in gauge theories have been
discovered more than three decades ago, and remain the
subject of intense theoretical research ever since. In par-
ticular, magnetic objects (monopoles) have been identified
as a possible source of confinement [1,2], while instantons
have been proposed as the driving mechanism for chiral
symmetry breaking [3,4].

The index theorem establishes a direct connection be-
tween the vacuum topology and zero-eigenvalue solutions
of the Dirac equation, i.e., the so-called fermionic zero
modes. These quark states are insensitive to any perturba-
tive fluctuation of the gauge field, hence encode purely
nonperturbative QCD dynamics. Furthermore, lattice
simulations have shown that the Dirac eigenstates with
near-zero eigenvalues—also known as the ‘‘zero-mode
zone’’ (ZMZ)—directly correlate with local fluctuations
of the topological charge density. After filtering out quan-
tum fluctuations, lattice fields reveal nearly (anti-)self-dual
smooth fields responsible for topology and ZMZ states [5].
Using only fermionic states attributed to the ZMZ (a tiny
subset of Dirac eigenstates, of only about !10"4 of all
eigenstates) one finds the correct pion mass, quark con-
densate as well as many other hadronic properties. On the
other hand, filtering out the ZMZ states removes the chiral
symmetry breaking and leads to drastic changes in the
hadronic spectrum computed on the lattice. In particular,
some masses get shifted by as much as !30% and parity
doublets appear (for a recent analysis, see e.g., Ref. [6]).

This body of results coherently supports a picture inwhich
the nonperturbative chiral dynamics in vacuum is mediated
by instantons. Indeed, instanton model calculations (for a

review see Ref. [7]) have been very successful in
reproducing the mass and electromagnetic structure of
pions [8], vector mesons [9], nucleons [10–15] and even
the !I ¼ 1=2 rule for hyperon [16] and kaon [17] nonlep-
tonic decays.
In the instanton picture, the width of the ZMZ depends

on the size of the typical ‘‘hopping’’ matrix element of
the Dirac operator between two instantons, which is
of the order ! "!2= "R3 ! 20 MeV, where "! is the typical
instanton size and "R the typical interinstanton
density [3]. This value is comparable to the typical light
quark masses used in many lattice simulations, and this
explains why the corresponding results display significant
deviations from the naive chiral perturbation theory pre-
dictions. Furthermore, the specific shape of the density
of eigenvalues !ð"Þ in the ZMZ depends crucially
on the theory parameters, such as the number of light
fermions Nf.
In this work, we will further investigate topological

phenomena in the semiclassical picture, focusing on tem-
peratures close to those at which the expectation value of
the Polyakov line

hPðxÞi ¼
!
exp

"
i
Z #

0
dx4A

a
4ðx; x4Þ

"a

2

#$
(1)

drastically changes from 1 to 0.
The gauge invariant expectation value (1) defines the

holonomy of the gauge connection corresponding to a full
circle around the periodic time direction and is related to
the free energy Fq of a single static quark:

hPi! exp ð"Fq=TÞ: (2)
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Conclusions and models

The wave function of light hadrons is strongly influenced by topology and 
chiral symmetry breaking 

To a point that global phenomenology of pions and nucleon is well 
reproduced even in a theory which ignores confinement 

…but we  know confinement is there…Fundamental ingredients are 
missing and are needed to understand the QCD phase transition and the 
heavy hadron sector. 

The discovery of instanton dyons open an interesting perspective to unify 
the monopole picture with the instanton picture. 



Prologue: a suggestive analogy
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Instanton Theory of Protein folding
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With electronic excitations: 
MOLECULAR QUANTUM FIELD THEORY:

NB: The relativistic notation allows us to get rid of the Keldish contour

Chapter 3

Quantum Propagation at
Short-Distance and Short-Time

Phenomena of quantum transport along short-distance and for short-time can be studied ana-
lytically by means of the field theory derived in the previous chapter, adopting the perturbation
diagrammatic scheme. In this chapter we illustrate this approach computing the relevant leading-
order Feynman diagrams of our QTFT, and presenting a simple application to the charge transport
along a conjugate polymer [1].

3.1 Perturbation Theory and Feynman Diagrams
3.1.1 Dirac-Like Notation
The symmetric structure of the exponent in the path integral representation of the reduced density
matrix fl

ij

(t) between forward, „
Õ , and backward field, „

ÕÕ , suggests the collection of all coherent
field degrees of freedom into a single 2-component Grassmann field Â defined as:

Â
n

©
3

„
Õ

n

„
ÕÕ

n

4
. (3.1)

Similarly, we collect all conjugate fields into Â†
n

©
1

„
Õú
n

, „
ÕÕú
n

2
. In view of the formal analogy with

a Dirac theory in two-dimension, it is convenient to introduce also the following 2 ◊ 2 matrices,
which define the projection onto the upper and lower component of the doublet and the interchange
between them:

“
0

=
3

1 0
0 ≠1

4
, “

+

=
3

1 0
0 0

4
,

“≠ =
3

0 0
0 1

4
, “

5

=
3

0 1
1 0

4
.

(3.2)

In addition, we change variables in the integration over the Â† field by means of the substitution

Â̄
n

(t) © Â†
n

(t) “
0

. (3.3)

Using the notation defined in Eq.s (3.1), (3.2) and (3.3), the reduced density matrix in Eq. (2.26)
is written as:

fl
ij

(t) = ≠1
Tr [fl̂(0)]

⁄
DÂ̄ DÂ e≠L1(t,0)

!
Â̄

j

(t) “≠“
5

Â
i

(t) Â̄
ki

(0) “
+

“
5

Â
ki

(0)
"

◊ e
i
~ S

0

[

¯Â,Â] e
i
~ S

I

[

¯Â,Â], (3.4)
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real time 
irreversible dynamics

Dynamics of electronic excitations
where the term1

S
0

[Â̄, Â] =
⁄ t

0

dtÕ Â̄
m

!
i~ ˆtÕ”

mn

≠ f0

mn

"
Â

n

, (3.5)

corresponds to Eq. (2.27) in the new variables, and it describes the quantum propagation of the
charge in the absence of any coupling with the molecular dynamics. In this Dirac-like notation,
the interaction action in Eq. (2.28) reads
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where � and V are the non-local interaction terms derived in the previous chapter. The surface
term L

1

(t, 0) follows from the over completeness of the coherent-field basis, and reads
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Some comments on Eq. (3.4) are in order. Firstly, we note that the overall minus sign appearing
in front of the integral is a consequence of the Fermi statistics and ensures the overall positivity of
the probability density. Secondly, we observe that, while the path integral (2.22) is defined over
forward- and backward- propagating fields, the path integral Eq. (3.4) contains only the integration
in the forward time direction. Indeed, the backward-propagating fields have been replaced by lower-
components of the doublet field, hence they can be formally interpreted as anti-matter degrees of
freedom propagating forward in time. This analogy can be useful to derive perturbative calculation
and to adopt non-perturbative quantum field theory technique.

3.1.2 Short-time Regime
Let us now evaluate the reduced density matrix fl

ij

(t) in the short-time regime by means of pertur-
bation theory. This method derives by performing a Taylor expansion of the exponents in Eq. (3.4)
in powers of the interaction terms
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The reduced density matrix is then written as
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where fl
(0)

ij

(t) corresponds to the unperturbed reduced density matrix, which neglects all the cou-
plings between the quantum excitation, the heat bath and the vibronic modes,
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Its normalization factor Z(0) can be written in path integral form as:
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1 Throughout this thesis we shall adopt Einstein’s notation and implicitly assume the summation over all bold
repeated indexes, except for the initial exciton position ki which is held fixed.

32
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MR̈+M�Ṙ+rRV (R) +rRH0[ ̄, ]

i2
SOM = � �

4M�

Z t

0
d⌧

h
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Tackling nuclear physics fundamental questions 

(such as the origin on proton mass) 

is useful  beyond nuclear physics…
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