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ew facts from lattice QCD




Fact 1:

* In cooling numerical
“experiments”, the string tension
disappears a few cooling steps:

* However, more cooling steps
are needed to kill the proton pole
INn the 2-point correlation
function:

* After cooling, only smooth
lumps of topological fields
survive

Proton and confinement
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Implication: protons (and pions) can be bound by QCD ‘forces’,
without confinement. Quantitative statements are more delicate



Fact 2: Topology and chiral symmetry breaking

* In eigenvalue filtering, chiral properties of QCD are well reproduced by
lowest eigenmodes of Dirac operator and correlate with topological
“lumps”.

* The nucleon correlation function is “saturated”
by the lowest modes

* It the same lattice
configurations are
cooled, then very f,

C - Bruckmann et a.

similar topological Eur. Phys. J. A 33, 333-338 (2007)
structures are

obtained

Implication: Topological lumps with low Euclidean action correlate with
chiral properties of QCD. Chiral modes bind (not confine) the nucleon.
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flipping Interactions

* Chiral asymmetry in lattice:

o Lattice

—— One Instanton

Explanation: Quasi-local non perturbative chirality-flipping interactions
large non-vector components to the quark-gluon vertex.



Summarizing...

- Light hadrons are bound also at zero string tension

- Thelr quark wave-function is saturated by near zero-
modes correlated with isolated topological gauge field
lumps with low action (chiral dynamics)

- Non-perturbative gg_interactions flip chirality.



Can we embody this information in a qualitative
picture leading to a calculable model?

Why bother about a model if we have LQCD?

g =\

Compute observables which are
hard/impossible
to get from LQCD

E.g. time-like, hadronic resonances,

Vi

( Build qualitative insight:

E.g. what is the structure of the
nucleon wave function”

-l.e. why E/M form factors are
what they are”

neutron EDM, ...
\_ J

\_

~

...also learn from failures
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QCD Instantons

(Belavin, Polyakov, Schwartz, Tyupkin, 't Hooft )

Instanton solution: 4.5y M[Afb] =0

One can build multi-instanton fields A’} (x) such that: 05 AN ~ 0

They are attractive because

* topological lumps with low action

= Lattice

One Instanton
ey O RILM

X7 -——- Ccam T

* naturally generate near zero-mode zone (chiral :
symmetry breaking) |

* they induce chirality flipping interactions

* Do not provide confinement




Instanton liquid model
(Shuryak, Diakonov et al. 1982-200X)

AM (:Ij) — Aﬁ (w) + 514“ A=A, A, 0) (collective coordinates )

Then the QCD partition function is written as

Tvrnp = /dAe—SYM[AM(A)]/déAMG(SYM(AA—I—5A)SyM[AA])

NB: expand this to 0(6A<,) -semiclassical approx-
wouldn’t work (IR divergent)

~ /dAe_SYM[AM(A)] % n(A) =ZrrM

Variational estimate of the QCD path integral



Instanton Models

L attice ILM

phenomenology or self-consistent variational principle

NB: (near) zero-mode wave function is analytically known
(light-quark propagator in a given background)



Can we compute these parameters from LQC

Cooling computing n(p) by cooling or filtering is tricky: when should

Can we compute it without “touching” the lattice configurations?

Inspiration: potential of mean-force in stat. mech.

DY

we stop?

6—5G(R) — /deQ 5(R . ‘I'l L I'ND e [ P,Q)]

R Project onto the plane of reaction coordinate and count...

How can we extent this simple idea to lattice QCD?



PHYSICAL REVIEW D 84, 034504 (2011)
Computing the effective Hamiltonian of low-energy vacuum gauge fields

R. Millo"** and P. Faccioli'*?

Computing n(p) from LQCD

Step 1: define a local system of coordinates in the back-ground field manyfold

Tangent space
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NB some observables depend only on p!



Applications to light hadron phenomenology:



Strategies to compute in the [LM

Monte Carlo Simulations (Shuryak, Schafer)

+ Nno further approx.
- numeric (limited insight)

Mean Field (chiral soliton) (Dyakonov, Petrov ...)

+ Analytic
- Mean field for hadrons....

Single Instanton Approximation (Shifman, Shuryak, Forkel,PF)
+ Anavtic, one parameter p=0.3
- Valid only for Q°>1 GeV
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Systematic study of the single instanton approximation in QCD
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SpEectroscopy:
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Exploring the chiral regime of QCD in the interacting instanton liquid model
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SpEectroscopy:
Lowest-lying resonances
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Hadron effective mass form phenomenology:

Gh(r) = / x(0J51(x, 7)1} (0,0)|0)

-
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ILM analysis

0 meson:
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| earn from failure: No confinement!
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TABLE I. 7, p, a; masses (in GeV units) calculated in the

ITILM for different quark masses.

m, M, M, M, r, T,

0.02 030+004 1.0=x01 16=0.1 =001 <0.02
0.03 036+004 09=01 16+0.1 =001 <0.03
0.05 046+004 1.0x01 17=0.1 =005 <00l
007 053+004 1.0=01 17+0.1 =005 <00l
0.09 0.60+004 09=01 18+02 =005 <00l
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“lectro-weak structure of light hadrons

=/M form factors of pion, neutrons and proton

Instanton contribution to the proton and neutron

PHYSICAL REVIEW D 67, 113009 (2003)
electric form factors

Instanton contribution to the pion electromagnetic form factor at 9>>1 GeV?>

P. FaCCIOh’ A. SChwenk’ E.V. Shuryak P. Faccioli, A. Schwenk, and E. V. Shuryak
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Instanton contribution to the electromagnetic form factors of
the nucleon
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Non-leptonic decays of kaons & hyperons (Al = 1/2 rule)

Instantons, diquarks, and nonleptonic weak decays of Instantons and the AT = 1/2 Rule
hyperons
M. Cristoforetti, P. Faccioli, E. V. Shuryak, and M. Traini N. I. Kochelev and V. Vento
Phys. Rev. D 70, 054016 ~ Published 16 September 2004 Phys. Rev. Lett. 87, 111601 — Published 24 August 2001
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Are there digquarks in the nucleon?
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Phys. Rev. D 71, 114010 — Published 27 June 2005



SO what?

Why bother
about a
model ?

Build qualitative insight:
E.g. what is the structure of the nucleon wave function?

-i.e. why E/M form factors are what they are”?

Compute observables which are hard/impossible
to get from LQCD

E.g. time-like, hadronic resonances, neutron EDM, ...

Learn from failures

The purpose of this exercise is not that of trying to prove
the model “is right” (what does it mean?)
But rather to learn from success and failures
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Instanton contribution to the pion electromagnetic form factor at 0?>1 GeV?
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Department of Physics and Astronomy, State University of New York, Stony Brook, New York 11794-3800, USA
(Received 1 March 2002; published 26 June 2003)
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Picture: localized tluctuations of size 0.3 fm explain short range non
perturbative forces at the ~1 GeV scale -> Delay of the onset of pert.
theory
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It also qualitatively explains the earlier on-set of pert. regime in yy* -> 1o
form factror.



CASE 2: Compute observables which are not
accessible to exact calculations

Electric dipole momento of the neutron.
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Neutron electric dipole moment in the instanton vacuum:
Quenched versus unquenched simulations
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CASE 3: Learn from failures

Chiral physics and confinement

These results would seem to imply that the chiral properties of the QCD
vacuum are at most weakly entangled with color confinement

Puzzle: however, the de-confinement and chiral restoration phase transition
occur at (almost?) the same temperature. Some strong entanglement must
there!

Discovery of instanton monopoles (Kraan-van-Baal-Lee-Lu calorons )

PHYSICAL REVIEW D 87, 074009 (2013) PHYSICAL REVIEW D 92, 094022 (2015)

QCD topology at finite temperature: Statistical mechanics of self-dual dyons Interacting ensemble of the instanton-dyons and the deconfinement
phase transition in the SU(2) gauge theory

Pietro Faccioli' and Edward Shuryak3
]Physics Department, Trento University, Via Sommarive 14, Povo, Trento 1-38100, Italy

2Gruppo Collegato di Trento, Istituto Nazionale di Fisica Nucleare, Via Sommarive 14, Povo, Trento 1-38100, Italy . . .
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Conclusions and models

The wave function of light hadrons is strongly influenced by topology anad
chiral symmetry breaking

To a point that global phenomenology of pions and nucleon is well
reproduced even in a theory which ignores confinement

...but we know confinement is there...Fundamental ingredients are

missing and are needed to understand the QCD phase transition and the
heavy hadron sector.

The discovery of instanton dyons open an interesting perspective to unify
the monopole picture with the instanton picture.



Prologue: a suggestive analogy
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ONLY EXTREMELY SPECIFIC COMBINATION OF AMINOACID

LEAD TO A UNIQUE NATIVE STATE:
random
heteropolymer

Glassy
enerqgy landscape

Energy

configuration

Funneled
enerqgy landscape

Energy

configuration



Instanton Theory of Protein folding
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Develop variational approximations for this path integral



Protein folding instanton
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With electronic excitations:
MOLECULAR QUANTUM FIELD THEORY:
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Tackling nuclear physics fundamental questions
(such as the origin on proton mass)
Is useful beyond nuclear physics...

Thank you
for your
attention!




