Hadron charges and role of excited states

David Richards Jefferson Lab

The Proton Mass: at the Heart of most Visible Matter ECT*, 3rd -7th April, 2017

Outline

- Nucleon Charges and Matrix elements removing excited states.
- The excited-state spectrum *examining excited states* and their mass origin

Precise and Accurate Hadron Matrix Elements

Fundamental Symmetries: Nucleon Charges

e.g. novel interactions probed in ultracold neutron decay

$$H_{eff} \supset G_F \Big[\varepsilon_S \,\overline{u}d \times \overline{e}(1-\gamma_5) v_e + \varepsilon_T \,\overline{u}\sigma_{\mu\nu}d \times \overline{e}\sigma^{\mu\nu}(1-\gamma_5) v_e \Big]$$

$$\mathbf{g}_{\mathrm{S}} = \mathbf{Z}_{\mathrm{S}} \left\langle p \left| \overline{u} d \right| n \right\rangle \quad \mathbf{g}_{\mathrm{T}} = \mathbf{Z}_{\mathrm{T}} \left\langle p \left| \overline{u} \sigma_{\mu\nu} d \right| n \right\rangle$$

Require precise knowledge of QCD nucleon matrix elements, g_A, g_T, g_S

Thomas Jefferson National Accelerator Facility

V, A, S, T, P

Hadron Structure

Calculation of Physics Observables

Our paradigm: nucleon mass
$$C(t) = \sum_{\vec{x}} \langle N(\vec{x}, t) \bar{N}(0) \rangle = \sum_{n} A_{n} e^{-E_{n}t}$$
Noise:
$$C_{\sigma^{2}}(t) = \sum_{\vec{x}} \langle \bar{N}N(\vec{x}, t) \bar{N}N(0) \rangle \propto \sum_{n} A_{n} e^{-3m_{\pi}t}$$
whence
$$C(t)/\sqrt{C_{\sigma^{2}}(t)} \simeq e^{-(m_{N}-3m_{\pi}/2)t}$$
Alexandrou et al, arXiv:0910.2149
$$m_{\text{eff}} = \ln C(t)/C(t+1) \rightarrow E_{0}$$
Functional decelerator Facility
$$m_{\text{eff}} = \ln C(t)/C(t+1) \rightarrow E_{0}$$

Variational Method

Subleading terms → *Excited* states

Construct matrix of correlators with judicious choice of operators $C_{ij}(t,0) = \frac{1}{V_3} \sum_{\vec{x},\vec{y}} \langle \mathcal{O}_i(\vec{x},t) \mathcal{O}_j^{\dagger}(\vec{y},0) \rangle = \sum_N \frac{Z_i^{N*} Z_j^N}{2E_N} e^{-E_N t}$ $Z_i^N = \langle N \mid \bar{N}_i(0) \mid 0 \rangle$

Delineate contributions using *variational method*: solve

$$C(t)v^{(N)}(t,t_0) = \lambda_N(t,t_0)C(t_0)v^{(N)}(t,t_0).$$

$$\lambda_N(t,t_0) \to e^{-E_N(t-t_0)}(1+\mathcal{O}(e^{-\Delta E(t-t_0)}))$$

Eigenvectors, with metric $C(t_0)$, are orthonormal and project onto the respective states

$$v^{(N')\dagger}C(t_0)v^{(N)} = \delta_{N,N'}$$

$$Z_i^N = \sqrt{2m_N} e^{m_N t_0/2} v_j^{(N)*} C_{ji}(t_0).$$

Excited States: Variational Method

Replace quark field by spatially extended (smeared) quark field

$$\psi \longrightarrow (1 - \sigma^2 \nabla^2 / 4N)^N \psi$$

Use local nucleon interpolating operators

 $[uC\gamma_5(1\pm\gamma_4)d]u$

ID	Method	Analysis	Smearing Parameters	$t_{ m sep}$	LP	HP
R1	AMA	2-state	$\{5, 60\}$	10,12,14,16,18	96	3
R2	LP	VAR	$\{3, 22\}, \{5, 60\}, \{7, 118\}$	12	96	
R3	AMA	VAR	$\{5, 46\}, \{7, 91\}, \{9, 150\}$	12	96	3
R4	AMA	2-state	$\{9, 150\}$	10,12,14,16,18	96	3

Only admits calculation of quasi-local operators - not orbital structure

Yoon et al., Phys. Rev. D 93, 114506 (2016)

Nucleon Mass - II

Matrix Elements

Variational Method

Variational Comparison - II

Variational - III

Controlling excited states essential for precision calculations!

Renormalized Charges

				\frown			
ID	Lattice Theory	$a~{ m fm}$	$M_{\pi}({ m MeV})$	g_A^{u-d}	g_S^{u-d}	g_T^{u-d}	g_V^{u-d}
a127m285	2+1 clover-on-clover	0.127(2)	285(6)	1.249(28)	0.89(5)	1.023(21)	1.014(28
a12m310	2+1+1 clover-on-HISQ	0.121(1)	310(3)	1.229(14)	0.84(4)	1.055(36)	0.969(22
a094m280	2+1 clover-on-clover	0.094(1)	278(3)	1.208(33)	0.99(9)	0.973(36)	0.998(20
a09m310	2+1+1 clover-on-HISQ	0.089(1)	313(3)	1.231(33)	0.84(10)	1.024(42)	0.975(33)
a091m170	2+1 clover-on-clover	0.091(1)	166(2)	1.210(19)	0.86(9)	0.996(23)	1.012(2)
a09m220	2+1+1 clover-on-HISQ	0.087(1)	226(2)	1.249(35)	0.80(12)	1.039(36)	0.969(32)
a09m130	2+1+1 clover-on-HISQ	0.087(1)	138(1)	1.230(29)	0.90(11)	0.975(38)	0.971(32)
1							

Consistency between different actions

ID	Type	$\langle 0 \mathcal{O}_A 1 \rangle$	$\langle 0 \mathcal{O}_S 1 \rangle$	$\langle 0 \mathcal{O}_T 1 \rangle$	$\langle 0 \mathcal{O}_V 1 \rangle$	$\langle 1 \mathcal{O}_A 1 \rangle$	$\langle 1 \mathcal{O}_S 1 \rangle$	$\langle 1 \mathcal{O}_T 1 \rangle$	$\langle 1 \mathcal{O}_V 1 \rangle$
		-0.179(21)		0.182(16)		-0.9(2.4)		-0.2(1.2)	
			-0.35(4)		-0.014(2)		0.6(1.1)		0.80(34)
a127m285	S_5S_5	-0.172(18)	-0.37(4)	0.210(15)	-0.015(2)	0.75(48)	0.8(9)	0.42(27)	0.87(28)
		-0.295(58)	-0.45(15)	0.167(40)	-0.014(6)	1.5(3.0)	1.8(1.4)	0.54(86)	0.86(55)
		-0.295(57)	-0.45(15)	0.166(47)	-0.014(6)	1.46(54)	1.8(1.4)	0.54(41)	0.86(28)
	ı 1		-()	-()		-()			-()

Matrix Elements of 1st excited state?

Probing (Gluon) Contributions to Mass in Excited-State Spectrum

Variational Method Revisited

Subleading terms → *Excited* states

Construct matrix of correlators with judicious choice of operators

$$C_{\alpha\beta}(t,t_0) = \langle 0 \mid \mathcal{O}_{\alpha}(t)\mathcal{O}_{\beta}^{\dagger}(t_0) \mid 0 \rangle$$

$$\longrightarrow \sum Z_{\alpha}^n Z_{\beta}^{n\dagger} e^{-M_n(t-t_0)}$$

Delineate contributions using variational method: solve

$$C(t)u(t,t_0) = \lambda(t,t_0)C(t_0)u(t,t_0)$$

$$\lambda_i(t,t_0) \to e^{-E_i(t-t_0)} \left(1 + O(e^{-\Delta E(t-t_0)})\right)$$

Eigenvectors, with metric $C(t_0)$, are orthonormal and project onto the respective states

Signal-to-noise ratio degrades with increasing E - Solution: anisotropic lattice with $a_t < a_s$

Essential to almost all calculations of excited-state spectroscopy

Excited-State Spectrum

Excitations of the string between infinitely heavy quarks

Juge, Kuti, Morningstar, 2002

Glueball Spectrum

Morningstar, Peardon 97,99

This is the pure Yang-Mills spectrum. Predicts existence of bound states with all mass coming from gluons!

Variational Method: Meson Operators

Aim: interpolating operators of *definite* (continuum) JM: \bigcirc^{JM} $\langle 0 \mid O^{JM} \mid J', M' \rangle = Z^J \delta_{J,J'} \delta_{M,M'}$ Starting point $\bar{\psi}(\vec{x},t) \Gamma D_i D_j \dots \psi(\vec{x},t)$ Introduce circular basis: $\overleftrightarrow{D}_{m=-1} = \frac{i}{\sqrt{2}} \left(\overleftrightarrow{D}_x - i \overleftrightarrow{D}_y \right)$ $\overleftrightarrow{D}_{m=0} = i \overleftrightarrow{D}_z$ $\overleftrightarrow{D}_{m=+1} = -\frac{i}{\sqrt{2}} \left(\overleftrightarrow{D}_x + i \overleftrightarrow{D}_y \right).$

Straighforward to project to definite spin - for example J = 0, 1, 2

$$(\Gamma \times D_{J=1}^{[1]})^{J,M} = \sum_{m_1,m_2} \langle 1,m_1;1,m_2 | J,M \rangle \,\bar{\psi} \Gamma_{m_1} \overleftrightarrow{D}_{m_2} \psi.$$

$$D_{J=1}^{[2]} \text{ is the signature of hybrid}$$

Caveat: rotational symmetry not a good symmetry of the lattice *but realized in practice for operators of "hadronic size"*

Baryon Operators

 $\langle 0 \mid O^{JM} \mid J', M' \rangle = Z^J \delta_{J,J'} \delta_{M,M'}$ Starting point $B = (\mathcal{F}_{\Sigma_F} \otimes \mathcal{S}_{\Sigma_S} \otimes \mathcal{D}_{\Sigma_D}) \{ \psi_1 \psi_2 \psi_3 \}$ Introduce circular basis: $\overleftarrow{D}_{m=-1} = \frac{i}{\sqrt{2}} \left(\overleftarrow{D}_x - i \overleftarrow{D}_y \right)$ $\overleftarrow{D}_{m=0} = i \overleftarrow{D}_z$ $\overleftarrow{D}_{m=+1} = -\frac{i}{\sqrt{2}} \left(\overleftarrow{D}_x + i \overleftarrow{D}_y \right).$ Straighforward to project to definite spin: J = 1/2, 3/2, 5/2 $|[J,M]\rangle = \sum |[J_1, m_1]\rangle \otimes |[J_2, m_2]\rangle \langle J_1 m_1; J_2 m_2 | JM \rangle$

 m_1, m_2

 $D_{J=1}^{[2]}$ is the *signature* of hybrid baryon

Distillation

 $C_{ij}(t) \equiv \sum \langle N_i(\vec{x}, t) \bar{N}_j(\vec{y}, 0) \rangle$ Measure matrix of correlation functions: M. Peardon et al., PRD80,054506 (2009) $\vec{x}.\vec{u}$ Can we evaluate such a matrix efficiently, for reasonable basis of operators? Introduce $\ ec{\psi}(ec{x},t) = L(ec{x},ec{y})\psi(ec{y},t)$ where L is 3D Laplacian $L\equiv (1-\kappa
abla /n)^n = \sum f(\lambda_i)\xi^i imes \xi^{*i}$ where λ_i and ξ_i are Write eigenvalues and eigenvectors of the Laplacian. We now truncate the expansion at $i = N_{eigen}$ where N_{eigen} is sufficient to capture the low-energy physics. Insert between each quark field in our correlation function. Perambulators $\tau^{ij}_{\alpha\beta}(t,0) = \xi^{*i}(t)M^{-1}(t,0)_{\alpha\beta}\xi^{j}$ $C_{ij}(t) = \phi^{i,(pqr)}_{\alpha\beta\gamma}(t)\phi^{j,(\bar{p}\bar{q}\bar{r})}_{\bar{\alpha}\bar{\beta}\bar{\gamma}}(0) \times \left[\tau^{p\bar{p}}_{\alpha\bar{\alpha}}(t,0)\tau^{q\bar{q}}_{\beta\bar{\beta}}(t,0)\tau^{r\bar{r}}_{\gamma\bar{\gamma}}(t,0) + \dots\right]$ Meson correlation functions N^3 Severely constrains baryon lattice sizes Baryon correlation functions N^4 • Stochastic sampling of eigenvectors - stochastic LaPH • Thomas Jefferson National Accelerator Facility Jefferson Lab

Isovector Meson Spectrum - I

Dudek *et al,* PRL 103:262001 (2009)

Isovector spectrum with quantum numbers reliably identified

N*: Interpolating Operators

Examine overlaps onto different NR operators, i.e. containing upper components of spinors: *ground state has substantial hybrid component*

Variational method gives important *indications* of structure of hadrons

Excited Baryon Spectrum

A Picture Emerges

Subtract p

Common mechanism in meson and baryon hybrids: chromomagnetic field with $E_g \sim 1.2 - 1.3 \text{ GeV}$

Resonant Phase Shift

We have treated excitations as stable states - *resonances under strong interaction Luscher: finite-volume energy levels to infinite-volume scattering phase shift*

Wilson, Briceno, Dudek, Edwards, Thomas, arXiv:1507.02599

Energy-Momentum Tensor?

"Understanding the Glue That Binds Us All: The Next QCD Frontier in Nuclear Physics"

- Quark masses contribute only 1% to mass of proton: binding through gluon confinement
- Gluon spin and orbital angular momentum to spin of proton largely unknown

$$T_{\mu\nu} = \frac{1}{4} \bar{\psi} \gamma_{(\mu} D_{\nu)} \psi + G_{\mu\alpha} G_{\nu\alpha} - \frac{1}{4} \delta_{\mu\nu} G^2; \langle P \mid T_{\mu\nu} \mid P \rangle = P_{\mu} P_{\nu} / M$$

$$\begin{array}{c} 0 \text{ Ouark mass} \\ 0 \text{ Ouark energy} \\ 0 \text{ Ouark energy} \\ 0 \text{ Glue energy} \\ 0 \text{ Trace Anomaly: } T_{\mu\mu} = -(1 + \gamma_m) \bar{\psi} \psi + \frac{\beta(g)}{2g} G^2$$

$$\begin{array}{c} 0 \text{ Trace anomaly} \\ 0 \text{ Tr$$

Transition form factor of ρ

Briceno et al., Phys. Rev. D 93, 114508 (2016)

Summary

- Controlling the contribution from excited states in study of hadron structure is a crucial for precise and accurate calculations
- The approach of the variational method is a powerful way of addressing systematic uncertainties due to excited states
- Structure of Excited-State Spectrum provides important insights into origins of mass
 - Chromomagnetic excitations of string responsible for hybrids in both mesons and baryonsEfficient implementation for nucleons a challenge - but making progress...
- Theoretical underpinning of computing the energy-momentum tensor for resonances is now in place.

