Hadron charges and role of excited states

David Richards
Jefferson Lab

The Proton Mass: at the Heart of most Visible Matter ECT*, 3rd -7th April, 2017

Outline

- Nucleon Charges and Matrix elements - removing excited states.
- The excited-state spectrum - examining excited states and their mass origin

Precise and Accurate Hadron Matrix Elements

Fundamental Symmetries: Nucleon Charges

e.g. novel interactions probed in ultracold neutron decay

$$
\begin{aligned}
& H_{e f f} \supset G_{F}\left[\varepsilon_{s} \bar{u} d \times \bar{e}\left(1-\gamma_{5}\right) v_{e}+\varepsilon_{T} \bar{u} \sigma_{\mu v} d \times \bar{e} \sigma^{\mu v}\left(1-\gamma_{5}\right) v_{e}\right] \\
& \mathrm{g}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{S}}\langle p| \bar{u} d|n\rangle \mathrm{g}_{\mathrm{T}}=\mathrm{Z}_{\mathrm{T}}\langle p| \bar{u} \sigma_{\mu v} d|n\rangle
\end{aligned}
$$

Require precise knowledge of QCD nucleon matrix elements, $\mathrm{g}_{\mathrm{A}}, \mathrm{g}_{\mathrm{T}}, \mathrm{gs}$

Hadron Structure

M Constantinou, arXiv:1511.00214

- Governs beta-decay rate
- Important for proton-proton fusion rate in solar models
- Benchmark for lattice QCD
> calculations of hadron structure

> Luxury of large statistical errors! $m_{\pi} L<4$

Calculation of Physics Observables

Our paradigm: nucleon mass

$$
C(t)=\sum_{\vec{x}}\langle N(\vec{x}, t) \bar{N}(0)\rangle=\sum_{n} A_{n} e^{-E_{n} t}
$$

Noise: $\quad C_{\sigma^{2}}(t)=\sum_{\vec{x}}\langle\bar{N} N(\vec{x}, t) \bar{N} N(0)\rangle \propto \sum_{n} A_{n} e^{-3 m_{\pi} t}$
whence

$$
C(t) / \sqrt{C_{\sigma^{2}}(t)} \simeq e^{-\left(m_{N}-3 m_{\pi} / 2\right) t}
$$

Variational Method

Subleading terms \rightarrow Excited states

Construct matrix of correlators with judicious choice of operators

$$
\begin{aligned}
C_{i j}(t, 0) & =\frac{1}{V_{3}} \sum_{\vec{x}, \vec{y}}\left\langle\mathcal{O}_{i}(\vec{x}, t) \mathcal{O}_{j}^{\dagger}(\vec{y}, 0)\right\rangle=\sum_{N} \frac{Z_{i}^{N *} Z_{j}^{N}}{2 E_{N}} e^{-E_{N} t} \\
Z_{i}^{N} & =\langle N| \bar{N}_{i}(0)|0\rangle
\end{aligned}
$$

Delineate contributions using variational method: solve

$$
\begin{aligned}
& C(t) v^{(N)}\left(t, t_{0}\right)=\lambda_{N}\left(t, t_{0}\right) C\left(t_{0}\right) v^{(N)}\left(t, t_{0}\right) \\
& \lambda_{N}\left(t, t_{0}\right) \rightarrow e^{-E_{N}\left(t-t_{0}\right)}\left(1+\mathcal{O}\left(e^{-\Delta E\left(t-t_{0}\right)}\right)\right)
\end{aligned}
$$

Eigenvectors, with metric $\mathrm{C}\left(\mathrm{t}_{0}\right)$, are orthonormal and project onto the respective states

$$
\begin{gathered}
v^{\left(N^{\prime}\right) \dagger} C\left(t_{0}\right) v^{(N)}=\delta_{N, N^{\prime}} \\
Z_{i}^{N}=\sqrt{2 m_{N}} e^{m_{N} t_{0} / 2} v_{j}^{(N) *} C_{j i}\left(t_{0}\right)
\end{gathered}
$$

Excited States: Variational Method

Replace quark field by spatially extended (smeared) quark field

$$
\psi \longrightarrow\left(1-\sigma^{2} \nabla^{2} / 4 N\right)^{N} \psi
$$

Use local nucleon interpolating operators

$$
\left[u C \gamma_{5}\left(1 \pm \gamma_{4}\right) d\right] u
$$

ID	Method	Analysis	Smearing Parameters	$t_{\text {sep }}$	LP	HP
R1	AMA	2-state	$\{5,60\}$	$10,12,14,16,18$	12	96
R2	LP	VAR	$\{3,22\},\{5,60\},\{7,118\}$	12	3	
R3	AMA	VAR	$\{5,46\},\{7,91\},\{9,150\}$	10	96	
R4	AMA	2-state	$\{9,150\}$	$12,14,16,18$	9	

Only admits calculation of quasi-local operators - not orbital structure

$$
\text { Yoon et al., Phys. Rev. D 93, } 114506 \text { (2016) }
$$

Nucleon Mass - II

Matrix Elements

$\longrightarrow\langle 0| N|N, \vec{p}+\vec{q}\rangle\langle N, \vec{p}+\vec{q}| V_{\mu}|N \vec{p}\rangle\langle N, \vec{p}| \bar{N}|0\rangle e^{-E(\vec{p}+\vec{q})\left(t_{\text {sep }}-t\right)} e^{-E(\vec{p}) t}$

Variational Method

Grey Band : $t_{\text {sep }} \rightarrow \infty$

Variational Comparison - II

Variational - III

Renormalized Charges

ID	Lattice Theory	$a \mathrm{fm}$	$M_{\pi}(\mathrm{MeV})$	g_{A}^{u-d}	g_{S}^{u-d}	g_{T}^{u-d}	g_{V}^{u-d}
$a 127 m 285$	$2+1$ clover-on-clover	0.127(2)	285(6)	$1.249(28)$	0.89(5)	1.023(21)	1.014(2¢
a12m310	$2+1+1$ clover-on-HISQ	0.121(1)	310(3)	$1.229(14)$	0.84(4)	$1.055(36)$	0.969(26
$a 094 m 280$	$2+1$ clover-on-clover	0.094(1)	278(3)	1.208(33)	0.99(9)	0.973(36)	0.998(2f
a09m310	$2+1+1$ clover-on-HISQ	0.089(1)	313(3)	1.231(33)	0.84(10)	1.024(42)	0.975(3)
$a 091 m 170$	$2+1$ clover-on-clover	0.091(1)	166(2)	1.210(19)	0.86(9)	0.996(23)	1.012(2]
a09m220	$2+1+1$ clover-on-HISQ	0.087(1)	226(2)	$1.249(35)$	0.80(12)	1.039(36)	0.969(36
a09m130	$2+1+1$ clover-on-HISQ	0.087(1)	138(1)	1.230(29)	0.90(11)	0.975(38)	0.971 (36

ID	Type	$\langle 0\| \mathcal{O}_{A}\|1\rangle$	$\langle 0\| \mathcal{O}_{S}\|1\rangle$	$\langle 0\| \mathcal{O}_{T}\|1\rangle$	$\langle 0\| \mathcal{O}_{V}\|1\rangle$	$\langle 1\| \mathcal{O}_{A}\|1\rangle$	$\langle 1\| \mathcal{O}_{S}\|1\rangle$	$\langle 1\| \mathcal{O}_{T}\|1\rangle$	$\langle 1\| \mathcal{O}_{V}\|1\rangle$
a127m285	$S_{5} S_{5}$	-0.179(21)		0.182(16)		-0.9(2.4)		-0.2(1.2)	
			-0.35(4)		-0.014(2)		0.6(1.1)		0.80(34)
		-0.172(18)	-0.37(4)	0.210(15)	-0.015(2)	0.75(48)	$0.8(9)$	0.42(27)	$0.87(28)$
		$-0.295(58)$	$-0.45(15)$	0.167(40)	-0.014(6)	$1.5(3.0)$	1.8(1.4)	0.54(86)	0.86(55)
		-0.295(57)	-0.45(15)	0.166(47)	-0.014(6)	1.46 (54)	1.8(1.4)	0.54(41)	0.86(28)

Matrix Elements of 1st excited state?

Probing (Gluon) Contributions to Mass in Excited-State Spectrum

Variational Method Revisited

Subleading terms \rightarrow Excited states

Construct matrix of correlators with judicious choice of operators

$$
\begin{aligned}
C_{\alpha \beta}\left(t, t_{0}\right) & =\langle 0| \mathcal{O}_{\alpha}(t) \mathcal{O}_{\beta}^{\dagger}\left(t_{0}\right)|0\rangle \\
& \longrightarrow \sum_{n} Z_{\alpha}^{n} Z_{\beta}^{n \dagger} e^{-M_{n}\left(t-t_{0}\right)}
\end{aligned}
$$

Delineate contributions using variational method: solve

$$
\begin{aligned}
& C(t) u\left(t, t_{0}\right)=\lambda\left(t, t_{0}\right) C\left(t_{0}\right) u\left(t, t_{0}\right) \\
& \lambda_{i}\left(t, t_{0}\right) \rightarrow e^{-E_{i}\left(t-t_{0}\right)}\left(1+O\left(e^{-\Delta E\left(t-t_{0}\right)}\right)\right)
\end{aligned}
$$

Eigenvectors, with metric $C\left(\mathrm{t}_{0}\right)$, are orthonormal and project onto the respective states

Signal-to-noise ratio degrades with increasing E - Solution: anisotropic lattice with $a_{t}<a_{s}$

> Essential to almost all calculations of excited-state spectroscopy

Excited-State Spectrum

Excitations of the string between infinitely heavy quarks

Juge, Kuti, Morningstar, 2002

Glueball Spectrum

Variational Method: Meson Operators

Aim: interpolating operators of definite (continuum) $\mathrm{JM}: \mathrm{O}^{J M}$

Starting point

$$
\begin{aligned}
& \langle 0| O^{J M}\left|J^{\prime}, M^{\prime}\right\rangle=Z^{J} \delta_{J, J^{\prime}} \delta_{M, M^{\prime}} \\
& \bar{\psi}(\vec{x}, t) \Gamma D_{i} D_{j} \ldots \psi(\vec{x}, t)
\end{aligned}
$$

Introduce circular basis: $\overleftrightarrow{D}_{m=-1}=\frac{i}{\sqrt{2}}\left(\overleftrightarrow{D}_{x}-i \overleftrightarrow{D}_{y}\right)$

$$
\begin{aligned}
\overleftrightarrow{D}_{m=0} & =i \overleftrightarrow{D}_{z} \\
\overleftrightarrow{D}_{m=+1} & =-\frac{i}{\sqrt{2}}\left(\overleftrightarrow{D}_{x}+i \overleftrightarrow{D}_{y}\right)
\end{aligned}
$$

Straighforward to project to definite spin - for example $J=0,1,2$

$$
\begin{aligned}
& \quad\left(\Gamma \times D_{J=1}^{[1]}\right)^{J, M}=\sum_{m_{1}, m_{2}}\left\langle 1, m_{1} ; 1, m_{2} \mid J, M\right\rangle \bar{\psi} \Gamma_{m_{1}} \overleftrightarrow{D}_{m_{2}} \psi . \\
& D_{J=1}^{[2]} \text { is the signature of hybrid }
\end{aligned}
$$

Caveat: rotational symmetry not a good symmetry of the lattice but realized in practice for operators of "hadronic size"

Baryon Operators

$$
\langle 0| O^{J M}\left|J^{\prime}, M^{\prime}\right\rangle=Z^{J} \delta_{J, J^{\prime}} \delta_{M, M^{\prime}}
$$

Starting point $\quad B=\left(\mathcal{F}_{\Sigma_{\mathrm{F}}} \otimes \mathcal{S}_{\Sigma_{\mathrm{S}}} \otimes \mathcal{D}_{\Sigma_{\mathrm{D}}}\right)\left\{\psi_{1} \psi_{2} \psi_{3}\right\}$
Introduce circular basis: $\quad \overleftrightarrow{D}_{m=-1}=\frac{i}{\sqrt{2}}\left(\overleftrightarrow{D}_{x}-i \overleftrightarrow{D}_{y}\right)$

$$
\begin{aligned}
\overleftrightarrow{D}_{m=0} & =i \overleftrightarrow{D}_{z} \\
\overleftrightarrow{D}_{m=+1} & =-\frac{i}{\sqrt{2}}\left(\overleftrightarrow{D}_{x}+i \overleftrightarrow{D}_{y}\right)
\end{aligned}
$$

Straighforward to project to definite spin: $J=1 / 2,3 / 2,5 / 2$

$$
|[J, M]\rangle=\sum_{m_{1}, m_{2}}\left|\left[J_{1}, m_{1}\right]\right\rangle \otimes\left|\left[J_{2}, m_{2}\right]\right\rangle\left\langle J_{1} m_{1} ; J_{2} m_{2} \mid J M\right\rangle
$$

$D_{J=1}^{[2]}$ is the signature of hybrid baryon

Distillation

Measure matrix of correlation functions:

$$
C_{i j}(t) \equiv \sum_{\vec{x}, \vec{y}}\left\langle N_{i}(\vec{x}, t) \bar{N}_{j}(\vec{y}, 0)\right\rangle
$$

Can we evaluate such a matrix efficiently, for reasonable basis of operators?
Introduce $\tilde{\psi}(\vec{x}, t)=L(\vec{x}, \vec{y}) \psi(\vec{y}, t) \quad$ where L is 3D Laplacian Write $\quad L \equiv(1-\kappa \nabla / n)^{n}=\sum f\left(\lambda_{i}\right) \xi^{i} \times \xi^{* i} \quad$ where $\boldsymbol{\lambda}_{\mathbf{i}}$ and $\xi_{\mathbf{i}}$ are eigenvalues and eigenvectors of i the Laplacian.

We now truncate the expansion at $\mathrm{i}=\mathrm{N}_{\text {eigen }}$ where $\mathrm{N}_{\text {eigen }}$ is sufficient to capture the low-energy physics.
Insert between each quark field in our correlation function.
Perambulators $\quad \tau_{\alpha \beta}^{i j}(t, 0)=\xi^{* i}(t) M^{-1}(t, 0)_{\alpha \beta} \xi^{j}$
$C_{i j}(t)=\phi_{\alpha \beta \gamma)}^{i,(p q r)}(t) \phi_{\bar{\alpha} \bar{\beta} \bar{\gamma}}^{j,(\bar{q} \bar{r})}(0) \times\left[\tau_{\alpha \bar{\alpha}}^{p \bar{p}}(t, 0) \tau_{\beta \bar{\beta}}^{q \bar{q}}(t, 0) \tau_{\gamma \bar{\gamma}}^{r \bar{r}}(t, 0)+\ldots\right]$

- Meson correlation functions N^{3} Severely constrains
- Baryon correlation functions N^{4} baryon lattice sizes
- Stochastic sampling of eigenvectors - stochastic LaPH

Isovector Meson Spectrum - I

$N_{f}=3$ theory - three mass-degenerate "strange" quarks

Dudek et al, PRL 103:262001 (2009)

Isovector spectrum with quantum numbers reliably identified

N*: Interpolating Operators

Examine overlaps onto different NR operators, i.e. containing upper components of spinors: ground state has substantial hybrid component

Variational method gives important indications of structure of hadrons

Excited Baryon Spectrum

A Picture Emerges

Resonant Phase Shift

We have treated excitations as stable states - resonances under strong interaction Luscher: finite-volume energy levels to infinite-volume scattering phase shift

Inelastic Threshold

$$
\mathcal{O}_{\pi \pi}^{\Gamma, \gamma}(|\vec{p}|)=\sum_{m} \mathcal{S}_{\Gamma, \gamma}^{\ell, m} \sum_{\hat{p}} Y_{\ell}^{m}(\hat{p}) \mathcal{O}_{\pi}(\vec{p}) \mathcal{O}_{\pi}(-\vec{p})
$$

Wilson, Briceno, Dudek, Edwards, Thomas, arXiv:1507.02599

Energy-Momentum Tensor?

"Understanding the Glue That

 Binds Us All: The Next QCD Frontier in Nuclear Physics"- Quark masses contribute only 1% to mass of proton: binding through gluon confinement
- Gluon spin and orbital angular momentum

LONG RANGE The 2015 for NUCLEAR SCIENCE
(ㅇ)
 to spin of proton largely unknown

$$
T_{\mu \nu}=\frac{1}{1} \bar{\psi} \gamma_{(\mu} D_{\nu)} \psi+G_{\mu \alpha} G_{\nu \alpha}-\frac{1}{4} \delta_{\mu \nu} G^{2} ;\langle P| T_{\mu \nu}|P\rangle=P_{\mu} P_{\nu} / M
$$

Quark mass

- Quark energy

Glue energy

- Trace anomaly

Trace Anomaly: $T_{\mu \mu}=-\left(1+\gamma_{m}\right) \bar{\psi} \psi+\frac{\beta(g)}{2 g} G^{2}$

Briceno, Hansen and Walker-Loud, PRD 91, 034501 (2015)
Yang, this meeting

,

Transition form factor of ρ

Briceno et al., Phys. Rev. D 93, 114508 (2016)

Summary

- Controlling the contribution from excited states in study of hadron structure is a crucial for precise and accurate calculations
- The approach of the variational method is a powerful way of addressing systematic uncertainties due to excited states
- Structure of Excited-State Spectrum provides important insights into origins of mass
- Chromomagnetic excitations of string responsible for hybrids in both mesons and baryonsEfficient implementation for nucleons a challenge - but making progress...
- Theoretical underpinning of computing the energy-momentum tensor for resonances is now in place.

