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Aim: Address striking features of hadron data within QCD:

* qq and qqq quantum numbers, even for relativistic states (7T, 0, V,...)

e Freezing of gluon degrees of freedom at low scales (hybrids, glueballs)

e OZI rule: ¢(1020) — KK » ¢(1020) = w7
e Quark <> hadron duality (DIS, ete-, hh, ...)

At face value: These phenomena indicate a weak coupling dynamics.

How 1is this consistent with relativistic binding and confinement?

How to proceed?
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"The J/y is the Hydrogen atom of QCD"
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PQED works for atoms

Example: Hyperfine splitting in Positronium

Avgep = meoz4 l _Z § + ln_2 M. Baker et al, 1402.0876
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A. Ishida et al, 1310.6923 :  Avexp = 203.3941+ .003 GHz

e Binding energy 1s perturbative in o and log(a)

e Wave function (r) « exp(— mar) is of O(0L™)
How can all powers of a arise in a perturbative expansion?
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Master formula for perturbative S-matrix

Sri = out<f]{TeXp [—z/

— OO

o

it Hi(0)] | ),
Generates Feynman diagrams to arbitrary order for any scattering process

The free in- and our-states at 1 = =% must overlap the physical i, f states.

Bound states have no overlap with free in- and out-states at t = £ o

No finite order Feynman diagram for e*e- — e*e~ has a positronium pole.

We need to perturbatively expand around a proto-bound state:
The first approximation is already of O(0*)

 How do we choose the proto-atom in QED?

e Can we find a proto-hadron in QCD, with perturbative, O((Ls) corrections?
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Brief history of the proto-atom ,

tT 3
1951: Salpeter & Bethe ---- = K

Perturbatively expand propagators S and kernel K L3
Explicit Lorentz covariance ensured

1975: Caswell & Lepage: Not unique: o # of equivalent equations, S <> K

1986: Caswell & Lepage NRQED: Effective NR field theory

Relativistic electrons are rare in atomic wave functions

Today: Accurate calculations of atomic properties use NRQED

Explicit Lorentz covariance is traded for physical arguments.
QED ensures validity of a rest frame calculation in any frame

The proto-atom (starting point of the expansion) is taken to be:

The solution of the Schrodinger equation with V(r) = — o/r

Why choose the classical potential?
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The 7 expansion

Recall functional integral formulation of QFT:
Gl van) = [ ldgl exp (SIol/1) plar) . olan)
The limit 77— 0 gives classical field eqs: — =0

Higher orders in /1 correspond to loop corrections in Feynman diagrams.

The S-atom with a classical potential is the Born term of the physical state:

@( ho) No phot9n loop correct19ns 62( O(OO)
No fermion loop corrections (NR)

The Born approximation applies also to relativistic dynamics. QCD?
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Lattice QCD: Quenched approximation (1)

Light hadron spectrum in quenched approximation

mg 1nput
Expt. Mass (GeV) Deviation

K 0.4977

K* 0.8961 0.858(09) —42% 430
¢ 10194 0957(13) —6.1% 480
N 09396 0.878(25) —6.6%250
A 1.1157 1.019(20) —8.6% 4.7
> 1.1926 1.117(19) —64% 4.10
= 13149 1.201(17) —8.7% 6.80
A 12320 125735) 20%0.70
>*1.3837 1.359(29) —1.8% 090
=* 15318 1.459(26) —4.7% 280
Q 16725 1561(24) —6.7% 470

S. Aoki, et al., Phys. Rev. Lett. 84 (2000) 238

Neglecting quark loops gives
the light hadron spectrum
at 10% accuracy
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Lattice QCD: Quenched approximation (2)

What about glu on lo OpS(7 The quenched Wilson action SU(3) potential.
. . 3T ﬁ =06.0 —=—
The static (heavy quark) potential 5 | E fg-i e
agrees with the Cornell potential used Cornell ———
in the Schrodinger equation. o I
Consistent with dominance of £ Of
a classical gluon field = 4t
=
2+
Neglecting quark and gluon loops 3L
gives a reasonable approximation Gunnar S. Bali, Phys.Rept. 343 (2001) 1

_4 1 1 1 1 1

of hadron physics at low scales. 05 1 15 5 25

r/r0

The Born approximation of QCD maintains

— : :
confinement and chiral symmetry breaking.
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Two consequences of i — 0 in QCD

1. In the absence of loops, Ol =~ ().43 Gribov hep-ph/9902279
Ols Stops running —k
aS(Q) v T decays (N3LO) o
. Lattice QCD (NNLO)
Gribov and others have { » DIS jets (NLO)
03} o Heiiyy Quarkonia (NLO) |
argued that o,,(0)/mr=0.14 \ o &' jets & shapes (res. NNLO)
® 7 pole fit (N3LO)
v pp—> jets (NLO)
. . 02+
This makes PQCD corrections
to proto-hadrons relevant. Q
01}

= QCD 04(My) =0.1185 + 0.0006

10 Q [GeV] 100 1000

2. In the absence of loops, the
QCD scale Apcp cannot arise
from loop renormalization.

Aocp must come from a boundary condition to the classical field equations.
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Advantages of the Born approximation

Systematic: Lowest term of first principles expansion in /1

Simplicity: Enables analytic approach to bound states

Relevance: Loop expansion works for scattering amplitudes and Positronium
Symmetries: Hold at each order of /i (Poincaré, gauge invariance,...)

Unitarity: Valid at each order of 7 (hadron level!)

Implemenm’rion: 1. Positronium
2. Dirac states
3. Hadrons
Find unexpected features, including duality. _
arXiv:1612.09463
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Positronium: Classical photon field

Non-relativistic dynamics: A/AY = O(a):  Transverse photons freeze

0SQED
§AO(t, x)

=0 = ~V2A(t, ) = e (t, ) (t, )

The eigenvalue of the A° field operator for }6_ (1) e” ($2)>

is the classical field: ;{K

84 84

O/ = _
eA (w,wlan) o |ZB_$1‘ ‘CU_:L'2| & ////
7

Note: A%1s determined instantaneously for all x
It depends on x1, x>
No gauge fixing 1s necessary at this level

—> Only the electron field operator appears at J(/1)
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Positronium state at rest

In terms of the Schrédinger wave function @,(k):

P = 0) = [ S k) (k) d (=) [0

= /da:l dao ) (t, x1)a ¢g5($1 —x2) Y(t, x2)s |0)
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Bound state condition
Hoep [n; P =0) = (2m.+ E}) |n; P =0)
Hopp(t) = [ dovi(t@) [~ ia- ¥ +m’ + Led@)] v(t.2)

84

— y]

where o« =~% and eA’(x) :/dy e It y)v(t, y)

The factor 7 is due to the field energy,
/d:l: LE, F* = %/da} A vPA = -1 /da: Y(x)eAY(x)

and neglecting e+e- pair

: t _ S(p —
Using 1¥a(t,@),¥5(t,9)} =005 0°(@ —¥) 10 quction/annihilation

\ve Q

the Schrodinger equation follows: ( —
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Positronium in motion
The (M) contribution is not limited to non-relativistic dynamics.

Positronium states with CM momentum P = (0, 0, P) are obtained by
boosts U(&) along the z-axis, which transforms the (¢ = 0) fields as

U()v(0,2)UT(€) = e~ **3/?¢)(z sinh &, x)

Note: The transformed time depends on z.
States of any momentum P are defined at equal time.
Boost covariance emerges via the QED dynamics.

An infinitesimal boost U (d¢) = 1 — idé K generated by

K(t=0)= —/dw W10, ) [2(—ic - v +my’ + 37%ed) — Sias] ¥ (0, )

U(d€) |n; P = 0) = |n; P = Mdg)
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Positronium state with finite momentum P

In a finite boost to P = Msinhé& the rest frame state turns into:

n; P) = U(E) In; P =0) =

N /d:m day (0, @) P (#1722)/2 =802 @0 (31 — @5) €53/ 1(0, 22) |0)

yvhere the wave function (I)f,(f) (2,9, 2/ cosh &) = <I>7(10) (2,9, 2)
1s Lorentz contracted:

In; P) is an eigenstate of the momentum P and energy ‘H operators,
with the appropriate (boosted) eigenvalues.
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The A° field in QCD

The A, gluon field is instantaneous: No ﬁtAg termin Locop.

Loophole in the Positronium treatment:

Gauss’ law for A has also homogeneous solutions.

A non-vanishing boundary condition for A; at lx | = o0 introduces Agcp
and makes A, of O (a?), thus dominating A’ , which is of O (g).

AJ/AY = ()(g) holds even for relativistic dynamics: Transverse gluons freeze.

At O () the non-abelian contributions vanish: fasc AV AY =0

and Gauss’ law allows to express A\ in terms of only the quark fields:

_VQAg (t7 CE) — g wjrél(ta m)chLABQpB (ta m)

Homogeneous solutions: VZA’(t,x) = 0



|7

A confining gluon field for QCD

Translation invariance requires E = VAQ to be x-independent:

Kk # Kk(x)

0 o T AB .
Aa(t, CE) — /f/dy wA(ta y)Ta wB(tv y) Ly V2A2(t,w) =0

The gg states are expressed as for Positronium:

\n,P — O> — /dwl dibz QLA(ZBl) (I),,?B(ml — mg) wB(ZBQ) ‘O>

with a (globally) color singlet wave function: @7 (x) = Nich P, ()

Color singlet states do not generate a color field: Ag (.CB) ]n, P > =0

The color field is invisible to an external observer (unlike in QED!)

Nevertheless, each gg color component 1s bound by a linear potential:

V(z) = 5V Cr g\*|z]



Relativistic dynamics: consider Dirac states

(—iV-v+m+ed)o,(x) = E.ANon(x)  E,>0 Dirac eq. in a
B o fixed external
(—=iV - y+m+ed)gn() = —Eny'dn(®) E, >0 field Ar(x)

What states do the Dirac wave functions ¢, ¢ describe?

Need to diagonalize the Dirac Hamiltonian, J -P. Blaizot, PH (2015)
H = /d?’:vw(a’:) =iV -y +m+ed(x)|y(x)

H |n) = E, |n) n) = / 02 1, (@) b o (@) |9) = |

H|n) = B, n) ) = / iz &, (@)bal(z) Q) = 2, |)

The “valence” ¢~ and e* determine the single particle quantum numbers.
The vacuum |€2) is a superposition of e~e* pairs.
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The Dirac ground state [(2? k

The state operators are Bogoliubov transforms of the free operators:

Cn = Z &}, (p) [u(p)bp + U(_p)dT—p] = Bnpbp + and;ro

— Z bJr "(p) 4+ d_pvT (— p)]@n(p) = Bupb), + Dyypd,

They diagonalize the Dirac Hamiltonian: H — Z [En C,}L,L Cyp, + En ELEn]

n

The ground state  [(2) = N exp [ — b;; (B_l)pm

1S a superposition of e*e~ pairs which satisfies
e, |Q) =2, Q) = H|Q) =0
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Dirac states for a linear potential in D=1+1 dimensions

The linear potential confines e-, repels e*: V(e™) = —V (e ) = —%62 x|
Positrons with kinetic energies 1" ~ %62 || are allowed at large Ixl.

The accelerating/decelerating positrons have a continuous energy spectrum.

The Dirac states have a continuous energy spectrum.
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The Dirac Electron in Simple Fields*

By MiLTON S. PLESSET
Sloane Physics Laboratory, Yale University

(Received June 6, 1932)

The relativity wave equations for the Dirac electron are transformed in a
simple manner into a symmetric canonical form. This canonical form makes readily
‘possible the investigation of the characteristics of the solutions of these relativity
equations for simple potential fields. If the potential is a polvnomial of any degree
in x, a continuous energy spectrum characterizes the solutions. If the potential is a
polynomial of any degree in 1/x, the solutions possess a continuous energy spectrum
when the energy is numerically greater than the rest-energy of the electron: values
of the energv numerically less than the rest-energv are barred. When the potential
i1s a polynomial of any degree in #, all values of the energy are allowed. For poten-
tials which are polynomials in 1/7 of degree higher than the first, the energy spec-
trum is again continuous. The quantization arising for the Coulomb potential is an
exceptional case.

E. C. Titchmarsh, Proc. London Math. Soc. (3) 11 (1961) 159 and 169; Quart.

J. Math. Oxford (2), 12 (1961), 227.
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Example of Dirac wave functions: V(z) = 2e°|z| in D=1+1 2

/zsz/dx bT ul (p)e™" + o' (pe W} [ S;Eg ] £2)

Wt /NR region: b'
11

| mmm  Dirac @(x)
'. d
0'75; = = Schrodinger p(x) (pairs)
0.5 /
0.25|
0.25}
-0.51

V=2m

The “single particle” Dirac wave function contains pair contributions (duality)
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qq bound states

Analogously to Positronium, take

lqq; P = 0) = /Clw1 dxaa(t, 1) 4P (21 — x2)hp(t, x2) |0)

5AB

with (I)AB X1 — L) = P Xr1 — 2132)
(@1 = 2) = S
and Ad(t,x) = %/dwa(t,y)TwaB(t,y)w-y

The bound state condition Hocp |qq) = M |qq) requires
iV - {77, ®(x)} +m 7", ®(x)] = [M - V(x)|D(x)

with  V(z) = 1/Cp gA\?*|z]
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qq wave functions

The separation of angular and radial coordinates in the BSE

iV - Ay, ®(x)} +m [y, ()] = [E—V(r)|®(x)

for any radial potential V = V(r) and
equal fermion masses m; = mz = m 1S 1n; Geffen and Suura, PRD 16 (1977) 3305

The solutions of given spin j and J are classified according to their
charge conjugation C and parity P quantum numbers:

pion trajectory: P = (_1)j+1 C — (_1)j
a trajectory: P = (_1)j‘|‘1 C = (_1)j+1
rho trajectory: P = (—1)j O = (_1)3'

There are no “quark model exotics” with P = (—1)? and C = (-1)’"
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T, a1 and p spectra

The 7, a1 and @ trajectories are nearly linear

There are parallel daughter trajectories ° pi
Mass from dynamics! °

. Mq = 0) * rtho
Spectrum similar to ]4 c © © © © o o o o o
dual models

3~ ® e e o ® L e e e ®
Chiral symmetry > © © © © o © o o o o

1s unbroken.

There are also M = 0 states.
The massless 0+* (o) state has vacuum quantum numbers.
Its mixing with the chirally symmetric vacuum would cause

chiral symmetry breaking.
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Promising prospects

* Phenomenological observations

The approach 1s guided by: e QCD framework: h expansion

Open 1ssues, not yet sufficiently studied:

e Boost covariance for relativistic dynamics

e Phenomenology, e.g., DIS (done in D=1+1)
e Chiral symmetry breaking

e String breaking (determined by gg states)

A
e Hadron loops, unitarity

o1

02
* Quark-hadron duality (seen in D=1+1) \>—/
e Hadron scattering amplitudes /;\
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