### Bound states in perturbation theory

Proton Mass: ECT\* April 3-7, 2017

Paul Hoyer

University of Helsinki

Aim: Address striking features of hadron data within QCD:

- qq and qqq quantum numbers, even for relativistic states  $(\pi, \varrho, N,...)$
- Freezing of gluon degrees of freedom at low scales (hybrids, glueballs)
- OZI rule:  $\phi(1020) \rightarrow K\bar{K} \gg \phi(1020) \rightarrow \pi \pi \pi$
- Quark  $\Leftrightarrow$  hadron duality (DIS,  $e^+e^-, hh, ...$ )

At face value: These phenomena indicate a weak coupling dynamics.

How is this consistent with relativistic binding and confinement?

How to proceed?

# "The $J/\psi$ is the Hydrogen atom of QCD"





$$V(r) = -rac{lpha}{r}$$

### QCD



$$V(r) = c \, r - \frac{4}{3} \frac{\alpha_s}{r}$$

### PQED works for atoms

Example: Hyperfine splitting in Positronium

$$\Delta\nu_{QED} \ = \ m_e \alpha^4 \left\{ \frac{7}{12} - \frac{\alpha}{\pi} \left( \frac{8}{9} + \frac{\ln 2}{2} \right) \right.$$
 M. Baker et al, 1402.0876 
$$\left. + \frac{\alpha^2}{\pi^2} \left[ -\frac{5}{24} \pi^2 \ln \alpha + \frac{1367}{648} - \frac{5197}{3456} \pi^2 + \left( \frac{221}{144} \pi^2 + \frac{1}{2} \right) \ln 2 - \frac{53}{32} \zeta(3) \right] \right.$$
 
$$\left. - \frac{7\alpha^3}{8\pi} \ln^2 \alpha + \frac{\alpha^3}{\pi} \ln \alpha \left( \frac{17}{3} \ln 2 - \frac{217}{90} \right) + \mathcal{O} \left( \alpha^3 \right) \right\} = 203.39169(41) \ \mathrm{GHz}$$

A. Ishida et al, 1310.6923:  $\Delta v_{EXP} = 203.3941 \pm .003 \text{ GHz}$ 

- Binding energy is perturbative in  $\alpha$  and  $\log(\alpha)$
- Wave function  $\psi(r) \propto \exp(-m\alpha r)$  is of  $\mathcal{O}(\alpha^{\infty})$

How can all powers of  $\alpha$  arise in a perturbative expansion?

### Master formula for perturbative S-matrix

$$S_{fi} = {}_{out}\langle f| \left\{ \operatorname{T} \exp \left[ -i \int_{-\infty}^{\infty} dt \, H_I(t) \right] \right\} |i\rangle_{in}$$

Generates Feynman diagrams to arbitrary order for any scattering process

The free *in*- and *out*-states at  $t = \pm \infty$  must overlap the physical *i*, *f* states.

Bound states have no overlap with free *in*- and *out*-states at  $t = \pm \infty$ 

No finite order Feynman diagram for  $e^+e^- \rightarrow e^+e^-$  has a positronium pole.

We need to perturbatively expand around a proto-bound state:

The first approximation is already of  $\mathcal{O}(\alpha^{\infty})$ 

- How do we choose the proto-atom in QED?
- Can we find a proto-hadron in QCD, with perturbative,  $\mathcal{O}(\alpha_s)$  corrections?

Brief history of the proto-atom

1951: Salpeter & Bethe



Perturbatively expand propagators *S* and kernel *K* Explicit Lorentz covariance ensured

1975: Caswell & Lepage: Not unique:  $\infty$  # of equivalent equations,  $S \leftrightarrow K$ 

1986: Caswell & Lepage NRQED: Effective NR field theory Relativistic electrons are rare in atomic wave functions

Today: Accurate calculations of atomic properties use NRQED

Explicit Lorentz covariance is traded for physical arguments. QED ensures validity of a rest frame calculation in any frame

The proto-atom (starting point of the expansion) is taken to be:

The solution of the Schrödinger equation with  $V(r) = -\alpha/r$ 

Why choose the classical potential?

### The $\hbar$ expansion

Recall functional integral formulation of QFT:

$$G(x_1, \dots, x_n) = \int [d\varphi] \exp \left(iS[\varphi]/\hbar\right) \varphi(x_1) \dots \varphi(x_n)$$

The limit  $\hbar \to 0$  gives classical field eqs:  $\frac{\delta S[\varphi]}{\delta \varphi} = 0$ 

Higher orders in  $\hbar$  correspond to loop corrections in Feynman diagrams.

The S-atom with a classical potential is the Born term of the physical state:

$$\mathcal{O}(\hbar^0)$$
 No photon loop corrections  
No fermion loop corrections (NR)

The Born approximation applies also to relativistic dynamics. QCD?

### Lattice QCD: Quenched approximation (1)

Light hadron spectrum in quenched approximation

Neglecting quark loops gives the light hadron spectrum at 10% accuracy

| Expt.             | $m_K$ Mass (GeV) | input<br>Deviation   |
|-------------------|------------------|----------------------|
| K 0.4977          | • • •            | • • •                |
| $K^* 0.8961$      | 0.858(09)        | $-4.2\%~4.3\sigma$   |
| $\phi$ 1.0194     | 0.957(13)        | $-6.1\%~4.8\sigma$   |
| <i>N</i> 0.9396   | 0.878(25)        | $-6.6\%\ 2.5\sigma$  |
| $\Lambda$ 1.1157  | 1.019(20)        | $-8.6\%$ $4.7\sigma$ |
| $\Sigma$ 1.1926   | 1.117(19)        | $-6.4\% \ 4.1\sigma$ |
| $\Xi$ 1.3149      | 1.201(17)        | $-8.7\%~6.8\sigma$   |
| $\Delta$ 1.2320   | 1.257(35)        | $2.0\%~0.7\sigma$    |
| $\Sigma^*$ 1.3837 | 1.359(29)        | $-1.8\% \ 0.9\sigma$ |
| $\Xi^*$ 1.5318    | 1.459(26)        | $-4.7\%~2.8\sigma$   |
| $\Omega$ 1.6725   | 1.561(24)        | $-6.7\% \ 4.7\sigma$ |

## Lattice QCD: Quenched approximation (2)

#### What about gluon loops?

The static (heavy quark) potential agrees with the Cornell potential used in the Schrödinger equation.  $[V(r)-V(r_0)] r_0$ 

Consistent with dominance of a classical gluon field

Neglecting quark and gluon loops gives a reasonable approximation of hadron physics at low scales.





The Born approximation of QCD maintains confinement and chiral symmetry breaking.

### Two consequences of $\hbar \rightarrow 0$ in QCD

1. In the absence of loops,  $\alpha_s$  stops running

Gribov and others have argued that  $\alpha_s(0)/\pi \approx 0.14$ 

This makes PQCD corrections to proto-hadrons relevant.

2. In the absence of loops, the QCD scale  $\Lambda_{QCD}$  cannot arise from loop renormalization.



 $\Lambda_{QCD}$  must come from a boundary condition to the classical field equations.

# Advantages of the Born approximation

Systematic: Lowest term of first principles expansion in  $\hbar$ 

Simplicity: Enables analytic approach to bound states

Relevance: Loop expansion works for scattering amplitudes and Positronium

Symmetries: Hold at each order of  $\hbar$  (Poincaré, gauge invariance,...)

Unitarity: Valid at each order of  $\hbar$  (hadron level!)

Implementation: 1. Positronium

2. Dirac states

3. Hadrons

Find unexpected features, including duality.

arXiv:1612.09463 arXiv:1605.01532

## Positronium: Classical photon field

Non-relativistic dynamics:  $A^{j}/A^{0} = \mathcal{O}(\alpha)$ : Transverse photons freeze

$$\frac{\delta \mathcal{S}_{QED}}{\delta \hat{A}^0(t, \boldsymbol{x})} = 0 \qquad \Rightarrow \qquad -\boldsymbol{\nabla}^2 \hat{A}^0(t, \boldsymbol{x}) = e\psi^{\dagger}(t, \boldsymbol{x})\psi(t, \boldsymbol{x})$$

The eigenvalue of the  $\hat{A}^0$  field operator for  $|e^-(x_1)e^+(x_2)\rangle$  is the classical field:

$$eA^{0}(x; x_{1}, x_{2}) = \frac{\alpha}{|x - x_{1}|} - \frac{\alpha}{|x - x_{2}|}$$

Note:  $A^0$  is determined instantaneously for all xIt depends on  $x_1, x_2$ No gauge fixing is necessary at this level



#### Positronium state at rest

In terms of the Schrödinger wave function  $\varphi_n(\mathbf{k})$ :

$$|n; \mathbf{P} = 0\rangle = \int \frac{d\mathbf{k}}{(2\pi)^3} \,\varphi_n(\mathbf{k}) \, b_{\lambda}^{\dagger}(\mathbf{k}) \, d_{\bar{\lambda}}^{\dagger}(-\mathbf{k}) \, |0\rangle$$

$$= \int d\mathbf{x}_1 \, d\mathbf{x}_2 \, \bar{\psi}(t, \mathbf{x}_1)_{\alpha} \, \Phi_n^{\alpha\beta}(\mathbf{x}_1 - \mathbf{x}_2) \, \psi(t, \mathbf{x}_2)_{\beta} \, |0\rangle$$

where

$$\Phi_n^{\alpha\beta}(\mathbf{k}) \equiv \left[\gamma^0 u(\mathbf{k}, \lambda)\right]_{\alpha} v_{\beta}^{\dagger}(-\mathbf{k}, \bar{\lambda}) \varphi_n(\mathbf{k})$$

#### Bound state condition

$$\mathcal{H}_{QED} |n; \mathbf{P} = 0\rangle = (2m_e + E_b) |n; \mathbf{P} = 0\rangle$$

$$\mathcal{H}_{QED}(t) = \int d\boldsymbol{x} \, \psi^{\dagger}(t, \boldsymbol{x}) \left[ -i\boldsymbol{\alpha} \cdot \overset{\rightarrow}{\nabla} + m\gamma^{0} + \frac{1}{2}e\mathcal{A}^{0}(\boldsymbol{x}) \right] \psi(t, \boldsymbol{x})$$

where 
$$\alpha = \gamma^0 \gamma$$
 and  $eA^0(x) = \int dy \frac{\alpha}{|x-y|} \psi^{\dagger}(t,y)\psi(t,y)$ 

The factor  $\frac{1}{2}$  is due to the field energy,

$$\int d\boldsymbol{x} \, \frac{1}{4} F_{\mu\nu} F^{\mu\nu} = \frac{1}{2} \int d\boldsymbol{x} \, \mathcal{A}^0 \cdot \boldsymbol{\nabla}^2 \mathcal{A}^0 = -\frac{1}{2} \int d\boldsymbol{x} \, \bar{\psi}(\boldsymbol{x}) e \mathcal{A}^0 \psi(\boldsymbol{x})$$

Using  $\{\psi_{\alpha}^{\dagger}(t, \boldsymbol{x}), \psi_{\beta}(t, \boldsymbol{y})\} = \delta_{\alpha,\beta} \, \delta^{3}(\boldsymbol{x} - \boldsymbol{y})$  and neglecting  $e^{+}e^{-}$  pair production/annihilation

the Schrödinger equation follows: 
$$\left(-\frac{\nabla^2}{m_e} - \frac{\alpha}{|\boldsymbol{x}|}\right)\varphi_n(\boldsymbol{x}) = E_b\,\varphi_n(\boldsymbol{x})$$

#### Positronium in motion

The  $\mathcal{O}(\hbar^0)$  contribution is not limited to non-relativistic dynamics.

Positronium states with CM momentum P = (0, 0, P) are obtained by boosts  $U(\xi)$  along the z-axis, which transforms the (t = 0) fields as

$$U(\xi)\psi(0,\boldsymbol{x})U^{\dagger}(\xi) = e^{-\xi\alpha_3/2}\psi(z\sinh\xi,\boldsymbol{x})$$

Note: The transformed time depends on z.

States of any momentum P are defined at equal time.

Boost covariance emerges via the QED dynamics.

An infinitesimal boost  $U(d\xi) = 1 - id\xi \mathcal{K}$  generated by

$$\mathcal{K}(t=0) = -\int d\boldsymbol{x} \, \psi^{\dagger}(0,\boldsymbol{x}) \left[ z(-i\boldsymbol{\alpha} \cdot \overset{\rightarrow}{\boldsymbol{\nabla}} + m\gamma^0 + \frac{1}{2}\gamma^0 e A) - \frac{1}{2}i\alpha_3 \right] \psi(0,\boldsymbol{x})$$

$$U(d\xi)|n;P=0\rangle = |n;P=Md\xi\rangle$$

#### Positronium state with finite momentum P

In a finite boost to  $P = M \sinh \xi$  the rest frame state turns into:

$$|n; P\rangle \equiv U(\xi) |n; P = 0\rangle =$$

$$= \int d\boldsymbol{x}_1 d\boldsymbol{x}_2 \, \bar{\psi}(0, \boldsymbol{x}_1) \, e^{i\boldsymbol{P}\cdot(\boldsymbol{x}_1+\boldsymbol{x}_2)/2} \, e^{-\xi\alpha_3/2} \, \Phi_n^{(\xi)}(\boldsymbol{x}_1-\boldsymbol{x}_2) \, e^{\xi\alpha_3/2} \, \psi(0, \boldsymbol{x}_2) \, |0\rangle$$

where the wave function is Lorentz contracted:

$$\Phi_n^{(\xi)}(x, y, z/\cosh \xi) = \Phi_n^{(0)}(x, y, z)$$

 $|n;P\rangle$  is an eigenstate of the momentum  $\mathcal{P}$  and energy  $\mathcal{H}$  operators, with the appropriate (boosted) eigenvalues.

### The A<sup>0</sup> field in QCD

The  $\mathcal{A}_a^0$  gluon field is instantaneous: No  $\partial_t \mathcal{A}_a^0$  term in  $\mathcal{L}_{QCD}$ .

Loophole in the Positronium treatment:

Gauss' law for  $A_a^0$  has also homogeneous solutions.

A non-vanishing boundary condition for  $\mathcal{A}_a^0$  at  $|x| = \infty$  introduces  $\Lambda_{QCD}$  and makes  $\mathcal{A}_a^0$  of  $\mathcal{O}(\alpha_s^0)$ , thus dominating  $\mathcal{A}_a^j$ , which is of  $\mathcal{O}(g)$ .

 $A^{j}/A^{0} = \mathcal{O}(g)$  holds even for relativistic dynamics: Transverse gluons freeze.

At  $\mathcal{O}\left(\alpha_s^0\right)$  the non-abelian contributions vanish:  $f_{abc} \mathcal{A}_a^0 \mathcal{A}_b^0 = 0$ 

and Gauss' law allows to express  $\mathcal{A}_a^0$  in terms of only the quark fields:

$$-\nabla^2 \mathcal{A}_a^0(t, \boldsymbol{x}) = g \,\psi_A^{\dagger}(t, \boldsymbol{x}) T_a^{AB} \psi_B(t, \boldsymbol{x})$$

Homogeneous solutions:  $\nabla^2 A_a^0(t, \boldsymbol{x}) = 0$ 

# A confining gluon field for QCD

Translation invariance requires  $E = \nabla A^0$  to be *x*-independent:

$$A_a^0(t, \boldsymbol{x}) = \kappa \int d\boldsymbol{y} \, \psi_A^{\dagger}(t, \boldsymbol{y}) T_a^{AB} \psi_B(t, \boldsymbol{y}) \, \boldsymbol{x} \cdot \boldsymbol{y} \qquad \qquad \frac{\kappa \neq \kappa(\boldsymbol{x})}{\boldsymbol{\nabla}^2 \mathcal{A}_a^0(t, \boldsymbol{x}) = 0}$$

The  $q\bar{q}$  states are expressed as for Positronium:

$$|n, P=0\rangle = \int d\boldsymbol{x}_1 d\boldsymbol{x}_2 \, \bar{\psi}_A(\boldsymbol{x}_1) \, \Phi_n^{AB}(\boldsymbol{x}_1 - \boldsymbol{x}_2) \, \psi_B(\boldsymbol{x}_2) \, |0\rangle$$

with a (globally) color singlet wave function:  $\Phi_n^{AB}(\boldsymbol{x}) = \frac{\delta^{AB}}{\sqrt{N_c}} \Phi_n(\boldsymbol{x})$ 

Color singlet states do not generate a color field:  $\mathcal{A}_a^0(\boldsymbol{x}) | n, P \rangle = 0$ 

The color field is invisible to an external observer (unlike in QED!)

Nevertheless, each  $q\bar{q}$  color component is bound by a linear potential:

$$V(\boldsymbol{x}) = \frac{1}{2} \sqrt{C_F} g \Lambda^2 |\boldsymbol{x}|$$

### Relativistic dynamics: consider Dirac states

$$\left( -i \nabla \cdot \gamma + m + e A \right) \phi_n(\boldsymbol{x}) = E_n \gamma^0 \phi_n(\boldsymbol{x}) \qquad E_n > 0 \qquad \text{Dirac eq. in a}$$
 
$$\left( -i \nabla \cdot \gamma + m + e A \right) \bar{\phi}_n(\boldsymbol{x}) = -\bar{E}_n \gamma^0 \bar{\phi}_n(\boldsymbol{x}) \qquad \bar{E}_n > 0 \qquad \text{field } A^{\mu}(\boldsymbol{x})$$
 field  $A^{\mu}(\boldsymbol{x})$ 

What states do the Dirac wave functions  $\phi$ ,  $\bar{\phi}$  describe?

Need to diagonalize the Dirac Hamiltonian,

J.-P. Blaizot, PH (2015)

$$H = \int d^3 oldsymbol{x} ar{\psi}(oldsymbol{x}) ig[ -i oldsymbol{
abla} \cdot oldsymbol{\gamma} + m + e oldsymbol{A}(oldsymbol{x}) ig] \psi(oldsymbol{x})$$
 $H \ket{n} = E_n \ket{n} ig| n ig
angle = \int doldsymbol{x} \, \psi_{lpha}^\dagger(oldsymbol{x}) \phi_{n\,lpha}(oldsymbol{x}) \ket{\Omega} \equiv c_n^\dagger \ket{\Omega} ig
angle$ 
 $H \ket{ar{n}} = ar{E}_n \ket{ar{n}} ig
angle = \int doldsymbol{x} \, ar{\phi}_{n\,lpha}^\dagger(oldsymbol{x}) \psi_{lpha}(oldsymbol{x}) \ket{\Omega} \equiv ar{c}_n^\dagger \ket{\Omega} ig
angle$ 

The "valence"  $e^-$  and  $e^+$  determine the single particle quantum numbers. The vacuum  $|\Omega\rangle$  is a superposition of  $e^-e^+$  pairs.

### The Dirac ground state $|\Omega\rangle$

The state operators are Bogoliubov transforms of the free operators:

$$c_n = \sum_{\boldsymbol{p}} \phi_n^{\dagger}(\boldsymbol{p}) \left[ u(\boldsymbol{p}) b_{\boldsymbol{p}} + v(-\boldsymbol{p}) d_{-\boldsymbol{p}}^{\dagger} \right] \equiv B_{np} b_p + D_{np} d_p^{\dagger}$$

$$\bar{c}_n = \sum_{\boldsymbol{p}} \left[ b_{\boldsymbol{p}}^{\dagger} u^{\dagger}(\boldsymbol{p}) + d_{-\boldsymbol{p}} v^{\dagger}(-\boldsymbol{p}) \right] \bar{\phi}_n(\boldsymbol{p}) \equiv \bar{B}_{np} b_p^{\dagger} + \bar{D}_{np} d_p$$

They diagonalize the Dirac Hamiltonian:  $H=\sum_n \left[E_n c_n^\dagger c_n + \bar{E}_n \bar{c}_n^\dagger \bar{c}_n\right]$ 

The ground state 
$$|\Omega\rangle = N_0 \exp\left[-b_p^{\dagger} (B^{-1})_{pm} D_{mq} d_q^{\dagger}\right] |0\rangle$$

is a superposition of  $e^+e^-$  pairs which satisfies

$$c_n |\Omega\rangle = \bar{c}_n |\Omega\rangle = H |\Omega\rangle = 0$$

## Dirac states for a linear potential in D=1+1 dimensions

The linear potential confines  $e^-$ , repels  $e^+$ :  $V(e^+) = -V(e^-) = -\frac{1}{2}e^2|x|$ Positrons with kinetic energies  $T \sim \frac{1}{2}e^2|x|$  are allowed at large |x|.

The accelerating/decelerating positrons have a continuous energy spectrum.

The Dirac states have a continuous energy spectrum.

### The Dirac Electron in Simple Fields\*

By MILTON S. PLESSET

Sloane Physics Laboratory, Yale University

(Received June 6, 1932)

The relativity wave equations for the Dirac electron are transformed in a simple manner into a symmetric canonical form. This canonical form makes readily possible the investigation of the characteristics of the solutions of these relativity equations for simple potential fields. If the potential is a polynomial of any degree in x, a continuous energy spectrum characterizes the solutions. If the potential is a polynomial of any degree in 1/x, the solutions possess a continuous energy spectrum when the energy is numerically greater than the rest-energy of the electron: values of the energy numerically less than the rest-energy are barred. When the potential is a polynomial of any degree in r, all values of the energy are allowed. For potentials which are polynomials in 1/r of degree higher than the first, the energy spectrum is again continuous. The quantization arising for the Coulomb potential is an exceptional case.

See also: E. C. Titchmarsh, Proc. London Math. Soc. (3) 11 (1961) 159 and 169; Quart. J. Math. Oxford (2), 12 (1961), 227.

$$|M \ge 0\rangle = \int \frac{dp}{2\pi 2E} \int dx \left[ b_p^{\dagger} u^{\dagger}(p) e^{-ipx} + d_p v^{\dagger}(p) e^{ipx} \right] \left[ \begin{array}{c} \varphi(x) \\ \chi(x) \end{array} \right] |\Omega\rangle$$



The "single particle" Dirac wave function contains pair contributions (duality)

# $q\overline{q}$ bound states

Analogously to Positronium, take

$$|qar{q};m{P}=0
angle = \int dm{x}_1\,dm{x}_2\,ar{\psi}_A(t,m{x}_1)\,\Phi^{AB}(m{x}_1-m{x}_2)\psi_B(t,m{x}_2)\,|0
angle$$
 with  $\Phi^{AB}(m{x}_1-m{x}_2) = rac{\delta^{AB}}{\sqrt{N_C}}\Phi(m{x}_1-m{x}_2)$  and  $A_a^0(t,m{x}) = \kappa\,\int dm{y}\,\psi_A^\dagger(t,m{y})T_a^{AB}\psi_B(t,m{y})\,m{x}\cdotm{y}$ 

The bound state condition  $\mathcal{H}_{QCD} |q\bar{q}\rangle = M |q\bar{q}\rangle$  requires

$$i\nabla \cdot \{\gamma^0 \gamma, \Phi(x)\} + m [\gamma^0, \Phi(x)] = [M - V(x)]\Phi(x)$$

with 
$$V(\boldsymbol{x}) = \frac{1}{2} \sqrt{C_F} g \Lambda^2 |\boldsymbol{x}|$$

# qq wave functions

The separation of angular and radial coordinates in the BSE

$$i\nabla \cdot \{\gamma^0 \gamma, \Phi(x)\} + m [\gamma^0, \Phi(x)] = [E - V(r)]\Phi(x)$$

for any radial potential V = V(r) and equal fermion masses  $m_1 = m_2 = m$  is in: Geffen and Suura, PRD 16 (1977) 3305

The solutions of given spin j and  $j_z$  are classified according to their charge conjugation C and parity P quantum numbers:

pion trajectory: 
$$P = (-1)^{j+1}$$
  $C = (-1)^{j}$ 

a<sub>1</sub> trajectory: 
$$P = (-1)^{j+1}$$
  $C = (-1)^{j+1}$ 

rho trajectory: 
$$P = (-1)^j$$
  $C = (-1)^j$ 

There are no "quark model exotics" with  $P = (-1)^j$  and  $C = (-1)^{j+1}$ 

### $\pi$ , $a_1$ and $\rho$ spectra

The  $\pi$ ,  $a_1$  and  $\varrho$  trajectories are nearly linear

There are parallel daughter trajectories

Mass from dynamics!

 $m_q = 0$ 

• a<sub>1</sub>

Spectrum similar to dual models

Chiral symmetry is unbroken.



There are also M = 0 states.

The massless  $0^{++}$  ( $\sigma$ ) state has vacuum quantum numbers.

Its mixing with the chirally symmetric vacuum would cause chiral symmetry breaking.

# Promising prospects

The approach is guided by:

- Phenomenological observations
- QCD framework:  $\hbar$  expansion

Open issues, not yet sufficiently studied:

- Boost covariance for relativistic dynamics
- Phenomenology, e.g., DIS (done in D=1+1)
- Chiral symmetry breaking
- String breaking (determined by  $q\bar{q}$  states)
- Hadron loops, unitarity

- Quark-hadron duality (seen in D=1+1)
- Hadron scattering amplitudes

