New Experiments with Tensor Polarized Targets

The Proton Mass: At the heart of most visible matter

> Trento, Italy 4/4/2017

University of New Hampshire

This Talk

Brief Review of Tensor Polarization

JLab Tensor Structure Program E12-13-011: "The b₁ experiment" E12-15-005: "A_{zz} for x>1" LOI-12-16-006: "Nuclear Gluometry"

Latest Technical Developments

Future

thank you to the organizers for accommodating a talk slightly off-topic!

Spin-1/2

Spin-1/2 system in B-field leads to 2 sublevels due to Zeeman interaction

$$P_z = \frac{N_+ - N_-}{N_+ + N_-}$$

 $-1 < P_z < +1$

$$P_{z} = \frac{N_{+} - N_{-}}{N_{+} + N_{-}}$$

$$P_{zz} = \frac{(N_{+} - N_{0}) - (N_{0} - N_{-})}{N_{+} + N_{0} + N_{-}} = \frac{(N_{+} + N_{-}) - 2N_{0}}{N_{+} + N_{0} + N_{-}}$$

$$P_{zz} = \frac{(N_{+} - N_{0}) - (N_{0} - N_{-})}{N_{+} + N_{0} + N_{-}} = \frac{(N_{+} + N_{-}) - 2N_{0}}{N_{+} + N_{0} + N_{-}} - 2 < P_{zz} < +1$$

Spin-1

$$P_{zz} = \frac{(N_{+} - N_{0}) - (N_{0} - N_{-})}{N_{+} + N_{0} + N_{-}} = \frac{(N_{+} + N_{-}) - 2N_{0}}{N_{+} + N_{0} + N_{-}}$$

$$-2 < P_{zz} < +1$$

Inclusive Scattering

Construct the most general Tensor W consistent with Lorentz and gauge invariance

Frankfurt & Strikman (1983) Hoodbhoy, Jaffe, Manohar (1989)

$$\begin{split} W_{\mu\nu} &= -F_1 g_{\mu\nu} + F_2 \frac{P_{\mu} P_{\nu}}{\nu} & \text{Unpolarized Scattering} \\ &+ i \frac{g_1}{\nu} \epsilon_{\mu\nu\lambda\sigma} q^{\lambda} s^{\sigma} + i \frac{g_2}{\nu^2} \epsilon_{\mu\nu\lambda\sigma} q^{\lambda} (p \cdot q s^{\sigma} - s \cdot q p^{\sigma}) & \text{Vector Polarization} \end{split}$$

Tensor Structure Functions

Construct the most general Tensor W consistent with Lorentz and gauge invariance

Frankfurt & Strikman (1983) Hoodbhoy, Jaffe, Manohar (1989)

$$\begin{split} W_{\mu\nu} &= -F_1 g_{\mu\nu} + F_2 \frac{P_{\mu} P_{\nu}}{\nu} \\ &+ i \frac{g_1}{\nu} \epsilon_{\mu\nu\lambda\sigma} q^{\lambda} s^{\sigma} + i \frac{g_2}{\nu^2} \epsilon_{\mu\nu\lambda\sigma} q^{\lambda} (p \cdot q s^{\sigma} - s \cdot q p^{\sigma}) \\ &- b_1 r_{\mu\nu} + \frac{1}{6} b_2 (s_{\mu\nu} + t_{\mu\nu} + u_{\mu\nu}) \\ &+ \frac{1}{2} b_3 (s_{\mu\nu} - u_{\mu\nu}) + \frac{1}{2} b_4 (s_{\mu\nu} - t_{\mu\nu}) \end{split}$$

Caution : There is an alternate similar formulation by Edelmann, Piller, Weise

Tensor Structure Functions

 b_2 : related to b_1 by A Callan-Gross relation

b₄: Also Leading Twist, but kinematically suppressed for a longitudinally polarized target.

 b_3 : higher twist, like g_2

Parton Distributions

 $q^m_{\uparrow\downarrow}$ Probability to scatter from a quark with spin up/down carrying momentum fraction x while the Deuteron is in state m

Parton distributions

 $q^m_{\uparrow\downarrow}$ Probability to scatter from a quark with spin up/down carrying momentum fraction x while the Deuteron is in state m

$$q_1(x) = q_{\uparrow}^1(x) + q_{\downarrow}^1(x)$$

 $q^0(x) = q_{\uparrow}^0(x) + q_{\downarrow}^0(x)$ spin averaged parton distributions

Parton distributions

 $q^m_{\uparrow\downarrow}$ Probability to scatter from a quark with spin up/down carrying momentum fraction x while the Deuteron is in state m

$$q_1(x) = q_{\uparrow}^1(x) + q_{\downarrow}^1(x)$$

 $q^0(x) = q_{\uparrow}^0(x) + q_{\downarrow}^0(x)$ spin averaged parton distributions

. .

- q⁰ : Probability to scatter from a quark (any flavor) carrying momentum fraction x while the *Deuteron* is in state m=0
- q^1 : Probability to scatter from a quark (any flavor) carrying momentum fraction x while the *Deuteron* is in state |m| = 1

b₁ Structure Function

$$b_1(x) = \frac{q^0(x) - q^1(x)}{2}$$

measured in DIS (so probing quarks), but depends solely on the deuteron spin state

Investigate nuclear effects at the level of partons!

q⁰ : Probability to scatter from a quark (any flavor) carrying momentum fraction x while the *Deuteron* is in state m=0

q¹ : Probability to scatter from a quark (any flavor) carrying momentum fraction x while the *Deuteron* is in state |m| = 1

b₁ Structure Function

Hoodbhoy, Jaffe and Manohar (1989)

Even accounting for D-State admixture \underline{b}_1 expected to be vanishingly small

Khan & Hoodbhoy, PRC 44 ,1219 (1991) : $b_1 \approx O(10^{-4})$ Relativistic convolution model with binding

Umnikov, PLB 391, 177 (1997) : $b_1 \approx O(10^{-3})$ Relativistic convolution with Bethe-Salpeter formalism

Data from HERMES

C. Reidl PRL 95, 242001 (2005)

Data from HERMES

C. Reidl PRL 95, 242001 (2005)

Tensor polarization of the sea

S Kumano, PRD 82 017501 (2010)

Fit improves when tensor polarization of the antiquark distributions is included

$$\int b_1(x)dx = \frac{1}{9}\Theta Q_s$$
$$\int b_1(x)dx = 0$$

if the sea quark tensor polarization vanishes

$$\int b_1(x)dx = \frac{1}{9}\Theta Q_s$$
$$\int b_1(x)dx = 0$$

if the sea quark tensor polarization vanishes

<u>Hermes result</u>

$$\int_{0.0002}^{0.85} b_1(x)dx = 0.0105 \pm 0.0034 \pm 0.0035$$

2.2 σ difference from zero

6-quark, Hidden Color

G. Miller PRC89 (2014) 045203

"Pionic and Hidden-Color, Six-Quark Contributions to the Deuteron **b**1 Structure Function"

6-quark, Hidden Color

G. Miller PRC89 (2014) 045203

"Pionic and Hidden-Color, Six-Quark Contributions to the Deuteron **b**1 Structure Function"

Unique Signal of Hidden Color

no conventional nuclear mechanism can reproduce the Hermes data,

but that the 6-quark probability needed to do so ($P_{6Q} = 0.0015$) is small enough that it does not violate conventional nuclear physics.

Gluon Contribution to Tensor Structure

$$\int b_1(x)dx = 0$$
$$\int xb_1(x)dx = 0$$

Efremov and Teryaev (1982, 1999)

Gluons (spin 1) contribute to both moments

Quarks satisfy the first moment, but

Gluons may have a non-zero first moment!

Efremov, Teryaev, JINR PreprintR2-81-857(1981), Yad. Phys. 36, 950 (1982) A.V. Efremov, O. V. Teryaev JINR-E2-94-95 (1999) Jaffe, Manohar Phys.Lett. B223 (1989) 218

Gluon Contribution to Tensor Structure

$$\int b_1(x)dx = 0$$
$$\int xb_1(x)dx = 0$$

Efremov and Teryaev (1982, 1999)

Gluons (spin 1) contribute to both moments

Quarks satisfy the first moment, but

Gluons may have a non-zero first moment!

2nd moment more likely to be satisfied experimentally since the collective glue is suppessed compared to the sea

Study of b_1 allows to discriminate between deuteron components with different spins (quarks vs gluons)

Efremov, Teryaev, JINR PreprintR2-81-857(1981), Yad. Phys. 36, 950 (1982) A.V. Efremov, O. V. Teryaev JINR-E2-94-95 (1999) Jaffe, Manohar Phys.Lett. B223 (1989) 218

Tensor Program

E12-13-011: "The b, experiment"

30 Days in Jlab Hall C A⁻ Physics Rating Conditional Approval (Target Performance)

Contact : K. Slifer

E12-15-005: "A_{zz} for x>1"

44 Days in Jlab Hall C A⁻ Physics Rating Conditional Approval (Target Performance)

Contact : E. Long

The Deuteron Polarized Tensor Structure Function b₁

JLAB E12-14-011

A⁻ rating by PAC40

(C1: conditional on target performance)

Spokespersons Slifer, Solvignon, Long, Chen, Rondon, Kalantarians

Experimental Method

$$A_{zz} = \frac{2}{fP_{zz}} \frac{\sigma_{\dagger} - \sigma_{0}}{\sigma_{0}}$$
$$= \frac{2}{fP_{zz}} \left(\frac{N_{\dagger}}{N_{0}} - 1\right)$$

Observable is the Normalized XS Difference

B-Field, density, temp, etc. held same in both states

$$b_1=-rac{3}{2}F_1^dA_{zz}$$

- σ_{\dagger} : Tensor Polarized cross-section
- σ_0 : Unpolarized cross-section
- P_{zz} : Tensor Polarizzation

dilution factor

$$f \approx \frac{6}{20}$$
 $\begin{pmatrix} D_{n} & D_{n} \\ & I_{n} \\ & D_{n} \end{pmatrix}$

J

Jlab Hall C

Unpolarized Beam UVa/JLab Polarized Target

Magnetic Field Held Along Beam Line at all times

 $\mathcal{L}=10^{35}$

30 Days in Jlab Hall C

30 Days in Jlab Hall C

verification of zero crossing essential for satisfaction of CK Sum

E12-15-005

 A_{zz} in the x>1 Region

Ellie Long, Slifer, Solvignon, Day, Higinbothan, Keller

Very Large Tensor Asymmetries predicted

E12-15-005

 A_{zz} in the x>1 Region

Ellie Long, Slifer, Solvignon, Day, Higinbothan, Keller

Very Large Tensor Asymmetries predicted

Sensitive to the S/D-wave ratio in the deuteron wave function

 4σ discrim between hard/soft wave functions 6σ discrim between relativistic models

E12-15-005

 A_{zz} in the x>1 Region

Ellie Long, Slifer, Solvignon, Day, Higinbothan, Keller

Very Large Tensor Asymmetries predicted

Sensitive to the S/D-wave ratio in the deuteron wave function

 4σ discrim between hard/soft wave functions 6σ discrim between relativistic models

"further explores the nature of short-range pn correlations, the discovery of which was one of the most important results of the 6 GeV nuclear program."

PAC44 Theory Report

A_{zz} experiment

We simultaneously measure nuclear elastic

-> T₂₀ over huge Q² range
 -> measure T₂₀ at largest Q² yet
 -> will use to cross-check Pzz

Tensor Spin Observables

Tensor Spin Observables

Tensor Spin Observables

LOI-12-16-006

"Nuclear Gluonometry"

Look for novel gluonic components in nuclei that are not present in nucleons

Non-zero value would be a clear signature of exotic gluon states in the nucleus

 1^{+} 1^{-} 1^{-} 1^{-} 1^{-} 1^{-} 1^{-} 1^{-} 1^{-} 1^{-} 1^{-} 1^{+} 1^{-} 1^{+}

 $\Delta(x,Q^2)$ double helicity flip structure function

LOI-12-16-006

James Maxwell (contact)

"Nuclear Gluonometry"

Look for novel gluonic components in nuclei that are not present in nucleons

Non-zero value would be a clear signature of exotic gluon states in the nucleus

Deep inelastic scattering experiment: Unpolarized electrons Polarized ¹⁴NH₃ Target Target spin aligned transverse to beam

 $\Delta(x,Q^2)$ double helicity flip structure function

Encouraged for full submission by PAC44

LOI-12-16-006

See R. Milner @ Spin2016 "State and Future of Spin Physics"

James Maxwell (contact)

"Nuclear Gluonometry"

Look for novel gluonic components in nuclei that are not present in nucleons

Non-zero value would be a clear signature of exotic gluon states in the nucleus

Deep inelastic scattering experiment: Unpolarized electrons Polarized ¹⁴NH₃ Target Target spin aligned transverse to beam

 $\Delta(x,Q^2)$ double helicity flip structure function

Encouraged for full submission by PAC44

Technical Developments

Tensor Polarized Target

Promising, but need to confirm in ND_3

 T_{20} measurement at Higs to verify NMR analysis

Tensor Polarization progress

Tensor Polarization progress

UNH Polarized Target Lab

Very complicated / difficult system!

hats off to Uva for making this look easy for 30 years!

UNH Polarized Target Lab

Reached 1K/7T Have Working NMR system Developing high vacuum expertise Just Began Construction of new fridge Still need to finish the microwave subsystem

UNH Polarized Target Lab

Reached 1K/7T Have Working NMR system Developing high vacuum expertise Just Began Construction of new fridge Still need to finish the microwave subsystem

New Faculty hire (Elena Long)

University made a significant investment in infrastructure We should be fully operational by end of year

Summary

Tensor Program

E12-13-001: Tensor Polarized Structure function b1 of the Deuteron E12-14-002: Tensor Asymmetry A_{zz} for x>1 LOI12-14-001: Tensor Structure Function Δ

Significant progress

High tensor polarizations demonstrated at Uva

Next step is to remove the Conditional status

UNH target lab goal to be fully operational by end of year.

Seeking Theory input to:

Make sure there is a clear interpretation of the observables we can measure Brainstorm ideas for new physics to investigate with this target.

Splitting

