### The nucleon quark content from lattice QCD

### **Christian Hoelbling**

Bergische Universität Wuppertal

### Proton mass workshop, ECT\*, Apr. 5th, 2017



(Science 322:1224 (2008))

(Science 347: 1452 (2015))

(Phys.Rev.Lett. 116 (2016) no.17, 172001)



### Budapest-Marseille-Wuppertal connaboration

Christian Hoelbling (Wuppertal)

## How to compute the quark content of the nucleon?

Problem:

- QCD fundamental degrees of freedom: quarks and gluons
- QCD observed objects: protons, neutrons ( $\pi$ , K, ...)

Basic recipie:

• Solve QCD for various quark masses and lattice spacings

$$\mathcal{L} = -rac{1}{4} F_{\mu
u} F^{\mu
u} + ar{\Psi} (\mathsf{i} D_{\mu} \gamma^{\mu} - m) \Psi$$

- Define physical point by dimensionless experimental ratios (between e.g.  $m_{\pi}/M_{\Omega}, m_{K}/m_{\Omega}$ )
- Extrapolate to the physical point and read off result
- Everywhere else, results are ambiguous!

Christian Hoelbling (Wuppertal)

### Lattice

### Lattice QCD=QCD when

• Cutoff removed (continuum limit)



Infinite volume limit taken



- At physical hadron masses (Especially  $\pi$ )
  - Numerically challenging to reach light quark masses
- Statistical error from stochastic estimate of the path integral

## Extracting a physical prediction

- Compute target observable
- Identify physical point
- Extrapolate to physical point





Christian Hoelbling (Wuppertal)

### How to solve QCD?

- Wick-rotation:  $t \rightarrow it$
- UV cutoff: space-time lattice
- Hypercubic, lattice spacing a
- Momentum cutoff  $p_{\mu} < 2\pi/a$
- Continuum theory:  $a \rightarrow 0$
- Works b/c asymptotic freedom





reference on Gluon fields  $U_{\mu}(x) = U(x, x + e_{\mu})$  on links

$$U(x,y) = \exp{(ig\int_x^y dz_\mu A_\mu(z))} \in SU(3)$$

### Path integral

Action of euclidean lattice QCD:

 $S = S_G + S_F$ 

where the fermionic part is bilinear in the Grassmann-variables

 $S_{\mathsf{F}} = \bar{\Psi} M \Psi$ 

Results from stochastic integration of the path integral:

$$\begin{split} \mathcal{Z} &= \int \prod_{x,\mu} [dU_{\mu}(x)] [d\bar{\Psi}(x)] [d\Psi(x)] e^{-S_{\mathrm{G}} - S_{\mathrm{F}}} \\ &= \int \prod_{x,\mu} [dU_{\mu}(x)] \mathrm{det}(M[U]) e^{-S_{\mathrm{G}}} \end{split}$$

### $\it M$ is a matrix $\sim 10^9 imes 10^9$

**Christian Hoelbling (Wuppertal)** 



Quark propagators from:

$$\int \prod_{z,\mu} [dU_{\mu}(z)] [d\bar{\Psi}(z)] [d\Psi(z)] \Psi_{\alpha}(x) \bar{\Psi}_{\beta}(y) e^{-S_{\rm G}-S_{\rm F}} = \\\int \prod_{z,\mu} [dU_{\mu}(z)] M_{x,\alpha;y,\beta}^{-1} [U] \det(M[U]) e^{-S_{\rm G}}$$

Hadron propagators:

### Mass plateaus and fits



### Chiral continuum fit



## The light hadron spectrum



#### Hadron masses

## Extracting reliable results

How to obtain useful, reliable results:

- Fundamentally correct, efficient lattice discretization
  - Smeared clover" action (Capitani, Dürr, C.H., 2006)
  - ✓ Dynamical fermions:  $2 \times m_{ud} = \frac{m_u + m_d}{2}$  and  $m_s$  (2+1) More recent:  $m_u$ ,  $m_d$ ,  $m_s$  and  $m_c$  (4 × 1)
  - Excellent chiral properties

### Full control over systematic errors

- Continuum limit
- ✓ Infinite volume
- ✓ Physical point, ...

### Balance all sources of error

- Minimize total error
- No single error should dominate



### Isospin splitting





• Two sources of isospin breaking:

- QCD:  $\sim \frac{m_d m_u}{\Lambda_{\text{OCD}}} \sim 1\%$
- QED:  $\sim \alpha (Q_u Q_d)^2 \sim 1\%$
- On the lattice:
  - Include nondegenerate light quarks  $m_u \neq m_d$
  - Include QED

### Challenges of QED simulations

- Effective theory only (UV completion unclear)
- $\pi^+$ , *p*, etc. no more gauge invariant
- QED (additive) mass renormalization
- Power law FV effects (soft photons)

Zero mode of gauge potential unconstrained by action

|   | ÷ | ÷ | ÷ | ÷ | ÷ |   | ÷ | Ŵ | A. | ÷ | ÷ | ÷ | ÷ | ÷ | ÷ |   |   |
|---|---|---|---|---|---|---|---|---|----|---|---|---|---|---|---|---|---|
|   | ÷ | ÷ | ÷ | ÷ | ÷ |   | ÷ | Ŵ | A. | ÷ | ÷ | ÷ | ÷ | ÷ | ÷ |   |   |
|   | ÷ | ÷ | ÷ | ÷ | ÷ |   | ÷ | Ŵ | A. | ÷ | ÷ | ÷ | ÷ | ÷ | ÷ |   |   |
|   | ÷ | ÷ | ÷ | ÷ | ÷ |   | ÷ | Ŵ | A. | ÷ | ÷ | ÷ | ÷ | ÷ | ÷ |   | - |
|   | ÷ | ÷ | ÷ | ÷ | ÷ |   | ÷ | Ŵ | A. | ÷ | ÷ | ÷ | ÷ | ÷ | ÷ |   | - |
|   | ÷ | ÷ | ÷ | ÷ | ÷ | ÷ | ÷ | Ŵ | A. | ÷ | ÷ | ÷ | ÷ | ÷ | ÷ |   | - |
|   | ÷ | ÷ | ÷ | ÷ | ÷ | ÷ | ÷ | Ŵ | A. | ÷ | ÷ | ÷ | ÷ | ÷ |   |   | - |
|   | ÷ | ÷ | ÷ | ÷ | ÷ |   | ÷ | Ŵ | A. | ÷ | ÷ | ÷ | ÷ | ÷ | ÷ |   | - |
| ÷ | ÷ | ÷ | ÷ | ÷ | ÷ | ÷ | ÷ | ķ |    | ÷ | ÷ | ÷ | ÷ | ÷ | ÷ | ÷ |   |
|   | ÷ | ÷ | ÷ | ÷ | ÷ |   | ÷ | Ą | ÷. | ÷ |   | ÷ | ÷ | ÷ | ÷ | ÷ | - |
|   | ÷ | ÷ | ÷ | ÷ | ÷ |   | ÷ | Ą | ÷. | ÷ |   | ÷ | ÷ | ÷ | ÷ | ÷ | - |
|   | ÷ | ÷ | ÷ | ÷ | ÷ |   | ÷ | Ą | ÷. | ÷ |   | ÷ | ÷ | ÷ | ÷ | ÷ | - |
|   | ÷ | ÷ | ÷ | ÷ | ÷ | 1 | ÷ | Ą | ÷. | ÷ |   | ÷ | ÷ | ÷ | ÷ | ÷ | - |
| ÷ | ÷ | ÷ | ÷ | ÷ | ÷ | ÷ | ÷ | ķ |    | ÷ | ÷ | ÷ | ÷ | ÷ | ÷ | ÷ |   |
|   | ÷ | ÷ | ÷ | ÷ | ÷ | 1 | ÷ | Ą | ÷. | ÷ |   | ÷ | ÷ | ÷ | ÷ |   |   |
|   | ÷ | ÷ | ÷ | ÷ | ÷ | 1 | ÷ | Ą | ÷. | ÷ |   | ÷ | ÷ | ÷ | ÷ | ÷ |   |
|   | ÷ | ÷ | ÷ | ÷ | ÷ | 1 | ÷ | Ą | ÷. | ÷ |   | ÷ | ÷ | ÷ | ÷ | ÷ |   |
|   | ÷ | ÷ | ÷ | ÷ | ÷ | 1 | ÷ | Ą | ÷. | ÷ |   | ÷ | ÷ | ÷ | ÷ | ÷ |   |
|   | ÷ | ÷ | ÷ | ÷ | ÷ |   | ÷ | Ą | ÷. | ÷ |   | ÷ | ÷ | ÷ | ÷ |   |   |
|   |   |   |   |   |   |   |   | A |    |   |   |   |   |   |   |   |   |

Remove  $\vec{p} = 0$  modes in fixed gauge(Hayakawa, Uno, 2008)



Christian Hoelbling (Wuppertal)

### Isospin splitting



#### (BMWc 2014)

### Isospin splittings numerical values

|                                                           | splitting [MeV] | QCD [MeV]     | QED [MeV]     |
|-----------------------------------------------------------|-----------------|---------------|---------------|
| ∆N=n-p                                                    | 1.51(16)(23)    | 2.52(17)(24)  | -1.00(07)(14) |
| $\Delta \Sigma = \Sigma^{-} - \Sigma^{+}$                 | 8.09(16)(11)    | 8.09(16)(11)  | 0             |
| $\Delta \Xi = \Xi^{-} - \Xi^{0}$                          | 6.66(11)(09)    | 5.53(17)(17)  | 1.14(16)(09)  |
| $\Delta D = D^{\pm} - D^{0}$                              | 4.68(10)(13)    | 2.54(08)(10)  | 2.14(11)(07)  |
| $\Delta \Xi_{cc} = \Xi_{cc}^{++} - \Xi_{cc}^{+}$          | 2.16(11)(17)    | -2.53(11)(06) | 4.69(10)(17)  |
| $\Delta_{\rm CG} = \Delta N - \Delta \Sigma + \Delta \Xi$ | 0.00(11)(06)    | -0.00(13)(05) | 0.00(06)(02)  |

• Quark model relation predicts  $\Delta_{CG}$  to be small

(Coleman, Glashow, 1961; Zweig 1964)

 $\Delta_{\rm CG} = M(udd) + M(uus) + M(dss) - M(uud) - M(dds) - M(uss)$ 

 $\Delta_{\mathrm{CG}} \propto ((m_d - m_u)(m_s - m_u)(m_s - m_d), \alpha(m_s - m_d))$ 

Christian Hoelbling (Wuppertal)

### **Disentangling contributions**

Problem:

### • Disentangle QCD and QED contributions

- Not unique,  $O(\alpha^2)$  ambiguities
- Flavor singlet (e.g.  $\pi^0$ ) difficult (disconnected diagrams)



Method:

- Use baryonic splitting  $\Sigma^+$ - $\Sigma^-$  purely QCD
  - Only physical particles
  - Exactly correct for pointlike particle
  - Corrections below the statistical error

### Nucleon splitting QCD and QED parts



### Nucleon quark content



Or via Feynman-Hellman theorem

$$\langle N|\bar{q}q|N\rangle = \left. \frac{\partial M_N}{\partial m_q} \right|_{m_q^{\text{phys}}}$$

**Christian Hoelbling (Wuppertal)** 

#### Strategy

## FH method



- ✓ Simple 2-pt function
- No disconnected diagrams
- Easier 1 renormalization
- Needs accurate slope at physical point

## Elimination of excited states



### Plateaux range





### Analysis strategy

Problem:

• Determine  $m_q = m_{ud}$ ,  $m_s$  dependence of  $M_N$  at physical point Method:

• Determine physical value of m<sub>ud</sub>, m<sub>s</sub>

• Fit  $m_q(M_{\pi}, M_K, M_{\Omega/N})$  to physical  $M_{\pi}, M_K$  and  $M_{\Omega/N}$ 

- Determine physical value of  $m_q \frac{\partial M_N}{\partial m_q}$ 
  - Fit  $M_N(m_{ud}, m_s)$  to previously determined physical  $m_{ud}$  and  $m_s$
- Perform infinite volume and continuum extrapolation
- One global, fully correlated fit
- Estimate systematic error

### Quark mass dependence

Problem:

• To define physical quark masses, we need a renormalization scheme

Method:

- Simplest choice on the lattice:  $m_s^{\text{phys}} = 1$ 
  - Equivalent to parameterization

$$c_q \left(rac{am_q}{aZ_s(eta)} - m_q^{\mathsf{phys}}
ight) o ilde{c}_q \left(rac{am_q}{a ilde{m}_q^{\mathsf{phys}}(eta)} - 1
ight)$$

- Renormalization constants can be computed on the fly
- Crosscheck with Z<sub>s</sub> where available

### Quark mass dependence



### Nucleon fit



- Various Polynomial, Padé and χPT ansätze
- Spread into systematic error

### Nucleon fit



- Various Polynomial, Padé and χPT ansätze
- Spread into systematic error

## Finite volume effects from virtual pions

Goal:

- Eliminate virtual pion finite V effects
  - Hadrons see mirror charges
  - Exponential in lightest particle (pion) mass

Method:

0

- Best practice: use large V
  - Rule of thumb:  $M_{\pi}L \gtrsim 4$

• Leading effects 
$$\frac{M_X(L)-M_X}{M_X} = c M_\pi^{1/2} L^{-3/2} e^{M_\pi L}$$

(Colangelo et. al., 2005)



**Christian Hoelbling (Wuppertal)** 

### Landscape L vs. $M_{\pi}$



## Continuum limit



## Systematic error treatment

One conservative strategy for systematics:

- Identify all higher order effects you have to neglect
- For each of them:
  - Repeat the entire analysis treating this one effect differently
  - Add the spread of results to systematics
- Important:
  - Do not do suboptimal analyses
  - Do not double-count analyses
- Error sources considered:
  - Plateaux range (Excited states)
  - $M_{\pi}$ ,  $M_{K}$  interpolations
  - Renormalization: NP running mass and matching scale
  - Higher order FV effects
  - Continuum extrapolation



**Christian Hoelbling (Wuppertal)** 

Proton neutron mass difference

Apr. 5<sup>th</sup>, 2017 31 / 35

### Systematic error



**Christian Hoelbling (Wuppertal)** 

Proton neutron mass difference

Apr. 5<sup>th</sup>, 2017 31 / 35

### Systematic error



**Christian Hoelbling (Wuppertal)** 

### From the effective Hamiltonean

$$H = H_{\rm iso} + \frac{\delta m}{2} \int d^3 x (\bar{d}d - \bar{u}u)$$

we obtain (with  $\delta m = m_d - m_u$ )

$$\Delta_{QCD}M_N = \frac{\delta m}{2M_p} \langle p | \bar{u}u - \bar{d}d | p \rangle$$

which, together with

$$f^{p}_{u/d} = \left(\frac{1}{2} \mp \frac{\delta m}{4m_{ud}}\right) f^{p}_{u}d + \left(\frac{1}{4} \mp \frac{m_{ud}}{2\delta m}\right) \frac{\delta m}{2M^{2}_{p}} \langle p|\bar{d}d - \bar{u}u|p\rangle$$

gives  $(r = m_u/m_d)$ 

$$f_{u}^{p/n} = \left(\frac{r}{1+r}\right) f_{ud}^{N} \pm \frac{1}{2} \left(\frac{r}{1-r}\right) \frac{\Delta_{QCD}M_{N}}{M_{N}} + O(\delta m^{2}, m_{ud}\delta m)$$
  
$$f_{d}^{p/n} = \left(\frac{1}{1+r}\right) f_{ud}^{N} \mp \frac{1}{2} \left(\frac{1}{1-r}\right) \frac{\Delta_{QCD}M_{N}}{M_{N}} + O(\delta m^{2}, m_{ud}\delta m)$$

Christian Hoelbling (Wuppertal)

### Results(BMWc, 2015)

### Direct results:

$$\begin{aligned} f_{ud}^N &= 0.0405(40)(35) & \sigma_{ud}^N &= 38(3)(3) \text{MeV} \\ f_s^N &= 0.113(45)(40) & \sigma_s^N &= 105(41)(37) \text{MeV} \end{aligned}$$

With  $\Delta_{QCD}M_N = 2.52(17)(24)$  MeV from (BMWc 2014)

$$\begin{aligned} f^p_u &= 0.0139(13)(12) & f^p_d &= 0.0253(28)(24) \\ f^n_u &= 0.0116(13)(11) & f^n_d &= 0.0302(28)(25) \end{aligned}$$

### PRELIMINARY result on new dataset



 $f_{ud}^N = 0.0421(19)(20)$   $f_s^N = 0.0592(89)(43)$ 

### PRELIMINARY result on new dataset

$$M_N = 937(12)(4) \text{MeV}$$

$$M_N|_{m_{ud}=0,m_s \text{ const.}} = 896(13)(5) \text{MeV}$$
  $\sigma_{ud}^N = 39.5(1.4)(1.8) \text{MeV}$   
 $M_N|_{m_s=0,m_{ud} \text{ const.}} = 881(13)(4) \text{MeV}$   $\sigma_s^N = 55.5(5.5)(4.1) \text{MeV}$ 

Christian Hoelbling (Wuppertal)

# BACKUP

Christian Hoelbling (Wuppertal)



 Proton, neutron: 3 quarks

- Proton: uud
- Neutron: udd

- *m<sub>u</sub>*<*m<sub>d</sub>*:*M<sub>p</sub>* < *M<sub>n</sub> m<sub>u</sub>*=*m<sub>d</sub>*:*M<sub>p</sub>* > *M<sub>n</sub>* Proton decays
   *M<sub>p</sub>* + *M<sub>e<sup>-</sup>*</sub> ≥ *M<sub>n</sub>*
  - No hydrogen



 Proton, neutron: 3 quarks

- Proton: uud
- Neutron: udd

- $m_u < m_d : M_p < M_n$
- $m_u = m_d : M_p > M_n$ Proton decays

•  $M_p + M_{e^-} \gtrsim M_n$ No hydrogen



- Proton, neutron: 3 quarks
- Proton: uud
- Neutron: udd

- $m_u < m_d : M_p < M_n$
- $m_u = m_d : M_p > M_n$ Proton decays

*M<sub>p</sub>* + *M<sub>e<sup>−</sup>* ≳ *M<sub>n</sub>* No hydrogen
</sub>



 Proton, neutron: 3 quarks

- Proton: uud
- Neutron: udd

- *m<sub>u</sub>*<*m<sub>d</sub>*:*M<sub>p</sub>* < *M<sub>n</sub> m<sub>u</sub>*=*m<sub>d</sub>*:*M<sub>p</sub>* > *M<sub>n</sub>* Proton decays
- $M_p + M_{e^-} \gtrsim M_n$ No hydrogen

## ANTHROPIC PUZZLE? THE LIGHT UP QUARK



3/27

### Big bang nucleosynthesis



Christian Hoelbling (Wuppertal)

### Hydrogen abundance



### Resulting initial hydrogen abundance



6/27

### Finite volume gauge symmetry

• Periodicity requirement from gauge field

$$A_{\mu}(x) \rightarrow A_{\mu}(x) + rac{1}{e} \partial_{\mu} \Lambda(x) \implies \partial_{\mu} \Lambda(x) = \partial_{\mu} \Lambda(x+L)$$

• is loser than from fermion field

$$\psi(x) \to e^{-i\Lambda(x)}\psi(x), \quad \bar{\psi}(x) \to \psi(x)e^{i\Lambda(x)} \implies \Lambda(x) = \Lambda(x+L)$$

• Fermionic action not invariant under GT

$$\Lambda(\mathbf{x}) = \mathbf{c}_{\mu} \mathbf{x}^{\mu} \implies \delta \mathcal{L} = i \bar{\psi} (\gamma^{\mu} \partial_{\mu} \Lambda) \psi = i \mathbf{c}_{\mu} \bar{\psi} \gamma^{\mu} \psi$$

Add source term to action to restore gauge invariance

$$\mathcal{L}_{ ext{src}} = oldsymbol{J}_{\mu} ar{\psi} \gamma^{\mu} \psi \qquad oldsymbol{J}_{\mu} o oldsymbol{J}_{\mu} - oldsymbol{i} oldsymbol{C}_{\mu}$$

Christian Hoelbling (Wuppertal)

### QED in finite volume

• Gauge invariant definition of no external source:

$$\frac{e}{V_4}\int d^4x A_\mu(x) + i J_\mu = 0$$

with partial gauge fixing  $J_{\mu} = 0 \rightarrow \mathsf{QED}_{\mathsf{TL}}$ 

• Imposing electric flux neutrality per timeslice:

$$\frac{e}{V_3}\int d^3x A_i(t,\vec{x})=0$$

with partial gauge fixing  $A_0(t, \vec{p} = 0) = 0 \rightarrow \text{QED}_L$ 

### Momentum subtraction

- Removing momentum modes with measure 0 as  $V \to \infty$  allowed
- Remove k = 0 from momentum sum (*QED<sub>TL</sub>*)
  - Realised by a constraint term in the action

$$\lim_{\xi\to 0}\frac{1}{\xi}\left(\int d^4x A_{\mu}(x)\right)^2$$

- Couples all times → no transfer matrix!
- Remove  $\vec{k} = 0$  from momentum sum (*QED<sub>L</sub>*)
  - Realised by a constraint term in the action

$$\lim_{\xi(t)\to 0} \int dt \frac{1}{\xi(t)} \left( \int d^3 x A_{\mu}(x) \right)^2$$

- Transfer matrix exists
- Gauge fields unaffected in QED<sub>TL</sub>, only Polyakov loops

### Momentum subtraction

- Removing momentum modes with measure 0 as  $V \to \infty$  allowed
- Remove k = 0 from momentum sum (*QED<sub>TL</sub>*)
  - Realised by a constraint term in the action

$$\lim_{\xi\to 0}\frac{1}{\xi}\left(\int d^4x A_{\mu}(x)\right)^2$$

- Couples all times → no transfer matrix!
- Remove  $\vec{k} = 0$  from momentum sum (*QED<sub>L</sub>*)
  - Realised by a constraint term in the action

$$\lim_{\xi(t)\to 0}\int dt \frac{1}{\xi(t)} \left(\int d^3 x A_{\mu}(x)\right)^2$$

- Transfer matrix exists
- Gauge fields unaffected in QED<sub>TL</sub>, only Polyakov loops

### Momentum subtraction

- Removing momentum modes with measure 0 as  $V \to \infty$  allowed
- Remove k = 0 from momentum sum (*QED<sub>TL</sub>*)
  - Realised by a constraint term in the action

$$\lim_{\xi\to 0}\frac{1}{\xi}\left(\int d^4x A_{\mu}(x)\right)^2$$

- Couples all times → no transfer matrix!
- Remove  $\vec{k} = 0$  from momentum sum (*QED<sub>L</sub>*)
  - Realised by a constraint term in the action

$$\lim_{\xi(t)\to 0}\int dt \frac{1}{\xi(t)} \left(\int d^3 x A_{\mu}(x)\right)^2$$

- Transfer matrix exists
- Gauge fields unaffected in QED<sub>TL</sub>, only Polyakov loops

### Quenched QED FV effects



### Universal FV effects



(BMWc, 2014)

Christian Hoelbling (Wuppertal)

Baryon FV in QCD+QED



**Christian Hoelbling (Wuppertal)** 

## Identifying the physical point

We need to fix 6 parameters:  $m_u$ ,  $m_d$ ,  $m_s$ ,  $m_c$ ,  $\alpha_s$  and  $\alpha$ 

- Requires fixing 5 dimensionless ratios from 6 lattice observables
- 4 "canonical" lattice observables:  $M_{\pi^{\pm}}$ ,  $M_{K^+}$ ,  $M_{\Omega}$ ,  $M_D$
- Strong isospin splitting from  $M_{K^{\pm}} M_{K^{0}}$

### • what about $\alpha$ ?

- ★ From  $M_{\pi^{\pm}} M_{\pi^0}$  → disconnected diagrams, very noisy
- X From  $e^- e^-$  scattering  $\rightarrow$  far too low energy
- **X** From  $M_{Σ^+} M_{Σ^-}$  → baryon has inferior precision
- ✓ Take renormalized  $\alpha$  as input directly
- Use the QED gradient flow Analytic tree level correction

$$\langle F_{\mu\nu}F_{\mu\nu}\rangle = rac{6}{V_4}\sum_k e^{-2|\hat{k}|^2 t}$$

### Slightly more complicated for clover plaquette



Christian Hoelbling (Wuppertal)

### Chiral interpolation

• Simultaneous fit to NLO  $SU(2) \chi PT_{(Gasser, Leutwyler, 1984)}$ 

• Consistent for  $M_{\pi} \lesssim 400 \text{ MeV}$ 



→ We use 2 safe chiral interpolation ranges: M<sub>π</sub> < 340,380 MeV</li>
 → We use SU(2) χPT and Taylor interpolation forms

### Finite volume effects in resonances

### Goal:

• Eliminate spectrum distortions from resonances mixing with scattering states

Method:

- Stay in region where resonance is ground state
  - Otherwise no sensitivity to resonance mass in ground state



Treatment as scattering problem

(Lüscher, 1985-1991)

- Parameters: mass and coupling (width)
- Alternative approaches suggested

### No exceptional configurations



### Finite volume subtraction

- Universal to  $O(1/L^2)$
- Compositmess at 1/L<sup>3</sup>
- Fit  $O(1/L^3)$
- Divergent T dependence for p = 0 mode subtraction
- No *T* dependence for  $\vec{p} = 0$  mode subtraction



$$\delta m = q^2 \alpha \left( \frac{\kappa}{2mL} \left( 1 + \frac{2}{mL} - \frac{3\pi}{(mL)^3} \right) \right)$$

(BMWc, 2014)

## Renormalization

- Quark masses logarithmically divergent (a → 0) → renormalization
- Usual scheme MS: perturbatively defined



### Quark mass definitions

• Lagrangian mass  $m^{\text{bare}}$ •  $m^{\text{ren}} = \frac{1}{Z_s} (m^{\text{bare}} - m^{\text{bare}}_{\text{crit}})$ •  $m^{\text{ren}} = \frac{Z_A}{Z_P} m^{\text{PCAC}}$ Better use •  $d = m^{\text{bare}}_s - m^{\text{bare}}_{ud}$ •  $r = m^{\text{PCAC}}_s / m^{\text{PCAC}}_{ud}$ •  $r = m^{\text{PCAC}}_s / m^{\text{PCAC}}_{ud}$ •  $r^{\text{ren}} = r$ and reconstruct •  $m^{\text{ren}}_s = \frac{1}{Z_s} \frac{rd}{r-1}$ •  $m^{\text{ren}}_u = \frac{1}{Z_s} \frac{d}{r-1}$ 

No additive mass renormalization and ambiguity in *m*<sub>crit</sub>
 Only *Z*<sub>S</sub> multiplicative renormalization (no pion poles)
 Works with *O*(*a*) improvement (we use this)

### Final result

|                                 | RI @ 4 GeV     | RGI                          | <u>MS</u> @ 2 GeV |
|---------------------------------|----------------|------------------------------|-------------------|
| ms                              | 96.4(1.1)(1.5) | 127.3(1.5)(1.9)              | 95.5(1.1)(1.5)    |
| m <sub>ud</sub>                 | 3.503(48)(49)  | 4.624(63)(64)                | 3.469(47)(48)     |
|                                 |                | 07 = 0(00)(0)                |                   |
| m <sub>s</sub> /m <sub>ud</sub> |                | 27.53(20)(8)                 |                   |
| $\frac{m_s/m_{ud}}{m_u}$        | 2.17(04)(10)   | 27.53(20)(8)<br>2.86(05)(13) | 2.15(03)(10)      |

### Relative contribution to total error:

|                      | stat. | plateau | scale | mass  | renorm. | cont. |
|----------------------|-------|---------|-------|-------|---------|-------|
| ms                   | 0.702 | 0.148   | 0.004 | 0.064 | 0.061   | 0.691 |
| m <sub>ud</sub>      | 0.620 | 0.259   | 0.027 | 0.125 | 0.063   | 0.727 |
| $m_{ m s}/m_{ m ud}$ | 0.921 | 0.200   | 0.078 | 0.125 | —       | 0.301 |

(JHEP 1108:148,2011; PLB 701:265,2011)

### Comparison

|                        | 6/;<br>ia_tion_ | Ntin Status | tie with extra | olume polation | nin ialization | 20                         |                     |
|------------------------|-----------------|-------------|----------------|----------------|----------------|----------------------------|---------------------|
| Collaboration          | 17 K            | <i>ò</i>    | ţi,            | je,            | Ţ,             | m <sub>ud</sub>            | m <sub>s</sub>      |
| PACS-CS 10<br>MILC 10A | P ★<br>C ●      | •           | •              | *              | a              | 2.78(27)<br>3.19(4)(5)(16) | 86.7(2.3)           |
| HPQCD 10               | A 🗕             | *           | *              | $\star$        | _              | 3.39(6)*                   | 92.2(1.3)           |
| BMW 10AB               | Р ★             | *           | *              | *              | b              | 3.469(47)(48)              | 95.5(1.1)(1.5)      |
| RBC/UKQCD              | P 🗕             | •           | $\star$        | $\star$        | с              | 3.59(13)(14)(8)            | 96.2(1.6)(0.2)(2.1) |
| Blum et al. 10         | P 🔸             |             | •              | $\star$        | _              | 3.44(12)(22)               | 97.6(2.9)(5.5)      |

#### (FLAG, 2011)

## Masses of the *u* and *d* quarks



• Parameterize  $\delta m = m_u - m_d$  via  $\Delta M^2 = M_{uu}^2 - M_{dd}^2$ 

 $\Delta M^{2} = 2B_{2}\delta m + O(m_{ud}\alpha, m_{ud}\delta m, \alpha^{2}, \alpha\delta m, \delta m^{2})$ 

• Power counting:  $O(\delta m) = O(m_{ud})$ 

• Condensate parameter  $B_2^{\overline{MS}}(2\text{GeV}) = 2.85(7)(2)\text{GeV}_{(BMWc 2013)}$ 

### Our dataset



Christian Hoelbling (Wuppertal)

Extracting physical  $\Delta M^2$ 



Christian Hoelbling (Wuppertal)

### Finite volume



## Chiral interpolation



Christian Hoelbling (Wuppertal)

- $\delta m^{\overline{MS}}(2\text{GeV}) = -2.39(7)(6)(9)\text{MeV}$
- $m_u^{\overline{MS}}(2\text{GeV}) = 2.27(6)(6)(4)\text{MeV}$
- $m_d^{\overline{MS}}(2\text{GeV}) = 4.67(6)(6)(4)\text{MeV}$
- $m_u/m_d = 0.49(1)(1)(1)$

• 
$$\epsilon := \frac{\Delta_{\text{QED}} M_K^2 - \Delta_{\text{QED}} M_{\pi}^2}{\Delta M_{\pi}^2} = 0.78(3)(7)(17)(2)$$
  
•  $R := \frac{m_s - m_{ud}}{m_d - m_u} = 38.5(1.3)(1.0)(1.4)$   
•  $R := \sqrt{\frac{m_s^2 - m_{ud}^2}{m_d^2 - m_u^2}} = 23.4(0.4)(0.3)(0.4)$