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Introduction and basic questions 

  Standard model  🙂  & ☹  
  QCD & Confinement? Chiral symmetry; left-right (a)symmetry 
  Family structure 
  Space time: E(1,3) 
  Mass ranges in standard model? 
  Naturalness? Supersymmetry? 
  B-L? dark matter, gravity 
  But also, e.g. collinearity in QCD (jets)? 

  Look for solution in vanishing dimensions 
Stojkovic – 1406.2696 
Calcagni – 0912.3142 
  PJM – 1601.0300 
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  Translations: 

  Lorentz transformations  

    
  Hilbert space 

 
  Supercharges 

  Extension to ‘aligned’ excitations (cf 3D harmonic oscillator)  

  Conformal embedding! 
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[Pµ, P ⌫ ] = 0

M2 = gµ⌫P
µP ⌫

{Mµ⌫} : {M0i = K,M ij = J} [J, P ] = P, [K,P ] = P,

[J,K] = K, [J, J ] = J, [K,K] = J

[a, a†] = 1, {b, b†} = 1{(a†)n|0i, b†|0i}

|0i = |0iB ⌦ |0iF

|0i = |0, 0, 0iB ⌦ |0, 0, 0iF

P = a†a+ 1
2 + b†b� 1

2

Q = a†b� b†a

{Q,Q†} = 2P

Basic symmetries 

{Pµ} : {P+, P�, . . .} or {H,P}

P (1, 3) = P (1, 1) ./ SO(3)

Q†
ik = bi a

†
k and Qik = b†iak

a†k
Qik�! b†i a†k

Q†
ik � b†i



Space-time and internal degrees of freedom 

  Harmonic oscillator levels (SO(3) ßà internal symmetry & more symmetry) 

 
  Quark model: SU(6) x O(3) 

 
  Problematic at a fundamental level 
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level degeneracy (n
x

, n
y

, n
z

) SO(3) (`) SU(3) (n)
0 1 (0,0,0) 0 1
1 3 (1,0,0), . . . 1 3
2 6 (2,0,0), (1,1,0), . . . 0 � 2 6
3 10 (3,0,0), (2,1,0), (1,1,1), . . . 1 � 3 10
4 15 . . . 0 � 2 � 4 15

s

N configuration SU(6)⇥ O(3) multiplets
0 (0s)3 [56, 0+]
1 (0s)2(1p) (56, 1�) [70, 1�]
2 (0s)2(2s) (56, 0+) [70, 0+]

(0s)2(2d) (56, 2+) [70, 2+]
(0s)(1p)2 [56, 0+] [56, 2+] (70, 0+) (70, 1+) (70, 2+) [20, 1+]
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We prove a new theorem on the impossibility of combining space-time and internal symmetries in any
but a trivial way. The theorem is an improvement on known results in that it is applicable to infinite-param-
eter groups, instead of just to Lie groups. This improvement is gained by using information about the S
matrix; previous investigations used only information about the single-particle spectrum. We define a sym-
metry group of the Smatrix as a group of unitary operators which turn one-particle states into one-particle
states, transform many-particle states as if they were tensor products, and commute with the S matrix. Let
G be a connected symmetry group of the Smatrix, and let the following five conditions hold: (1) G contains
a subgroup locally isomorphic to the Poincare group. (2) For any M&0, there are only a finite number of
one-particle states with mass less than M. (3) Elastic scattering amplitudes are analytic functions of s and t,
in some neighborhood of the physical region. (4) The S matrix is nontrivial in the sense that any two one-
particle momentum eigenstates scatter (into something), except perhaps at isolated values of s. (5) The gen-
erators of G, written as integral operators in momentum space, have distributions for their kernels. Then,
we show that G is necessarily locally isomorphic to the direct product of an internal symmetry group and
the Poincard group.

I. INTRODUCTION
lNT&L a few years ago, most physicists believed
that the exact or approximate symmetry groups

of the world were (locally) isomorphic to direct products
of the Poincare group and compact Lie groups. This
world-view changed drastically with the publication of
the first papers on SU(6)'; these raised. the dazzling
possibility of a relativistic symmetry group which was
not simply such a direct product. Unfortunately, all
attempts to And such a group came to disastrous ends,
and the situation was finally settled by the discovery of
a set of theorems' which showed that, for a wide class
of Lie groups, any group which contained the Poincare
group and admitted supermultiplets containing finite
numbers of particles was necessarily a direct product.
However, although these theorems served their

polemic purposes, they are in many ways displeasing:
Their statements involve many unnatural and artificial
assumptions, typically concerning the normality of the
translation subgroup. Even worse, they are restricted
to Lie groups —this despite the fact that in6nite-
parameter groups have been proposed in the literature.
The theories based on these groups were destroyed not
by general theorems but by particular arguments.
Typically, these arguments showed that these groups
do not allow scattering except in the forward and back-
ward directions. ' Thus, if one accepts the usual dogma
on the analyticity of scattering amplitudes, they allow
no scattering at all.
The purpose of this paper is to tie up these loose ends.

We prove the following theorem: Let G be a connected
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symmetry group of the S matrix, which contains the
Poincare group and which puts a finite number of
particles in a supermultiplet. Let the S matrix be non-
trivial and let elastic scattering amplitudes be analytic
functions of s and t in some neighborhood of the physical
region. Finally, let the generators of G be representable
as integral operators in momentum space, with kernels
that are distributions. Then 0 is locally isomorphic to
the direct product of the Poincare group and an in-
ternal symmetry group. (This is a loose statement of
the theorem; a more precise one follows below. )
We believe that all of the assumptions in this theorem

are physical, except for the last one, which, although
weak, is ugly. We hope that it can be eliminated with
suKciently careful analysis; to date we have been
unable to do so.
We emphasize that our theorem has application only

to groups which are symmetries of the S matrix. There-
fore it has nothing to say about symmetry groups arising
from the saturation of current commutators; these
groups generate symmetries of form factors only.
The remainder of this section contains a precise state-

ment of the theorem and some remarks about its impli-
cations. Section II contains the proof. Although at
times this attains mathematical levels of obscurity, we
make no claim for corresponding standards of rigor.

A. Statement of the Theorem

We begin by briefly reviewing some of the funda-
mental definitions of scattering theory. The Hilbert
space of scattering theory, K, is an infinite direct sum
of subspaces,

X=K"'Q+BC&'&Q+

X&"' is called the n-particle subspace. It is a subspace
(determined by the generalized exclusion principle) of
the direct product of e Hilbert spaces, each isomorphic
to R&'&. The S matrix S is a unitary operator on K.
A unitary operator U on X is said to be a symmetry
125i
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  Symmetries of the vacuum 
Poincaré symmetry P(1,3) with 3 aligned excitations (# space dimensions) 
P(1,3) = [P(1,1), SO(3)] 

  Hilbert space transformations: [P(1,1), SU(3)] with SU(3) = [SO(3), SU(2) x U(1)] 
  How to evade Coleman-Mandula when moving SO(3) into P(1,3)? 
  A guiding example could be supersymmetry (Haag-Luposzanski-Sohnius) 

  Proposed way of proceeding 
  Adding internal symmetries as central charges (Y) to the algebra 

 
  Internal symmetries that are moved into space-time symmetries need also to 
become visible in field space 
  0D à 1D: use boost (fermionic + scalar and pseudoscalar bosonic fields) 
  1D à 3D: use rotations (fermionic + scalar and vector bosonic fields) 
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Vacuum symmetries 

{Qi, Q
†
j} = 2�ij P + Yij



Procedure (illustrated in 0D) 

  Supercharges and Hamiltonian(s) 
 
 
 
  Look at the boson and fermion fields: 

  For free fields: 

  Adding additional degrees of freedom via auxiliary field(s) 

 
    ... and a nontrivial vacuum such that  

  For example in 0D: 
     (This is not conformal!) 7 

[H,H] = [H,Q] = 0, {Q,Q†} = 2H [a,H] = {Q, [Q, a]} =
p
! {Q, b} = ! a

[b,H] = [Q, {Q, b}] =
p
! [Q, a] = ! b

' =
1p
2!

�
a+ a†

�
and ⇠ =

1p
2

�
b+ b†

�

[Q,'] = ⇠ {Q, ⇠} = F = [', H] = i'̇

[Q,F ] = [⇠, H] = i⇠̇

F = M'

[Q,'] = ⇠ {Q, ⇠} = F = iD0'

[Q,F ] = iD0⇠

iD0 = i@0 + gA0

h0|'|0i = v0 and ' = v0(�� 1)

iD0 = H = gA0 and �(t) = U(t)� = exp(�ig
t
s
0
d⌧A0)�



Symmetries in 1D 

  In 0D a mass M breaks conformal invariance. 
  For two fields in 0D (right and left)                                                             

mass provides the coupling, cf 
 

  Gateway to 1D: P as 0D-Hamiltonian with H as central charge 
  Achieved via 

P(1,1) = {H,P,K} with M2 as Casimir operator 
Supersymmetric algebra with QR/L and 

  Group fields as: 
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H =


P M
M �P

�
= �0( /P +M)

�µ =


0 nµ

�
nµ
+ 0

�

�5 =


1 0
0 �1

�

[K,P ] = iH or [K,P±
] = ±i P±

[QR/L,�R/L] = ⇠R/L {QR/L, Q
†
R/L} = 2P±

{QR/L, ⇠R/L} = FR/L = iD⌥�R/L {QR/L, FR/L} = iD⌥⇠R/L

[K,QR/L] = ± 1
2 iQR/L

 
p
2 =


⇠R

�i⇠L

�
�
p
2 = ei⇡/4�R + e�i⇡/4�L = �S + i�P

h�Si = 1 h�P i = 0

[P�, ⇠R] = �iM⇠L

h�i = h�Ri = h�Li = 1p
2



Wess-Zumino (1974) in d=2:  
    Interactions: M (couples right-left), g0 (Yukawa coupling), dim[M] = dim[g0] = 1 
 
 
 
 
 
  Constraint: 

     corresponds to a boost invariance in field space 
 
  This enables 0D à 1D extension starting from 

 
     with                             being a pure gauge in field space  
  
   
 
 
 

The supersymmetric 1D starting point 
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V = 1
2 (M + g0'S)

2('2
S + '2

P ) +
1
2g

2
0'

2
P ('

2
S + '2

P ) +  (M + g0'S + g0'P �0�5) 

L = 1
2@�'R @+'R + 1

2@+'L @�'L + i
2 ⇠R@+⇠R + i

2⇠L@�⇠L � V

= 1
2@

µ'S @µ'S + 1
2@

µ'P @µ'P +  i �µ@µ  � V

('R

p
2 + v0)('L

p
2 + v0)� v20 = ('S + v0)

2 � '2
P � v20 = 0

v0 = M/2g0

iD� = i@� ± i@�⌘

�R/L(t, z) = e±⌘ �R/L(⌧, 0) and i@��R/L(t, z) = e±⌘ iD��R/L(⌧, 0)

�R/L(⌧, 0) =
1p
2
�(⌧, 0)



The resulting 1D supersymmetric lagrangian 
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  Fields: identification  

 
 
 

Lagrangian: 

  Expanded around minimum (                                ) this gives MA = MH = M    
(in 1D massive A-field has one d.o.f., massless field just instantaneous potential) 

  Also allowed is  
  Lagrange multiplier λ might be connected to space-time curvature. 

 

�(t, z) = P exp

✓
�ig

Z
x

0
ds�A

�

(s)

◆
�(⌧, 0)]

 (t, z) = P exp

✓
�ig

Z
x

0
ds�A

�

(s)�5

◆
 (⌧, 0)]

gF⌧� = �W [C]/��⌧�

�
p
2 = � = 1 + 'H/v0

L =� g2

4g20
Fµ⌫Fµ⌫ + v20 D

µ�⇤Dµ�� 1
8Mv20(�

2 + �⇤2 � 1)2 � 1

2
�Mv0(�

2 + �⇤2 � 1)

+ 1
2  

⇣
i
$
/D �M

�
1 +

�⇤p
2
+

�p
2

�⌘
 

� = exp (i�⇡/f⇡)

M + gA� = (M + g0'S)n
�
0 + 'P n�

3 )

=
⇣
( Mp

2
+ g0'R)n

�
+ + ( Mp

2
+ 'L)n

�
�)

⌘
/
p
2

� = � ei✓

gA� = �@�✓



Multiple bosonic and fermionic excitations 

  Many advantages of 1D such as convergence properties, d[M] = d[g0] = 1 (e.g. 
take v0 = M/2g0 =1, thus g0 = M/2), d[φ] = 0, d[ψ] = ½, naturalness, one-loop 
mass correction Σ = M/16π, ...  

  Extend to three real fields with SO(3) field symmetry (N = 3) and permutation 
symmetry, including complex phases embedded in an SU(3) symmetry (cf HO). 

  Symmetry  

  A(4) governs embedding:  
  Ground state:  

 
  Symmetry of ground state: SO(3) , but also P and T, Z(3) 
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-1/2 1/2 

1 

Y 

I3 

-1/2 1/2 
I3 

1 

Y 

φL
3

φL
1 φL

2

φR
1φR

2

φR
3

-1/2 1/2 
I3 

1 

Y 

ξL
3

ξL
1 ξL

2

-1/2 1/2 

1 

Y 

I3 

ξR
1ξR

2

ξR
3

h�Si = 1 h�P i = 0h�i = h�Ri = h�Li = 1p
2

|0i = |0R, 0Li = |(0, 0, 0)R, (0, 0, 0)Li

n0
� ! n0

µ and n̂3
� ! n̂i

µ

G � P (1, 1) ./ A(4) ./ SU(3)



Bosonic and fermionic excitations 

Bosonic fluctuations: 
  Real SO(3) symmetric fluctuations identify space-time  
  Includes also P and T symmetry 
  P(1,1) x SO(3) => P(1,3): d = 4 Poincaré symmetry (3D) 

  SO(3) part (                 ) used to lift fields into 3D:  

 

 
  ... or       

  ... other gauge fields also lifted to 3D         

 
 
     
 

  Additional phases: SU(3) = [SO(3), SU(2)xU(1)] 
  Embedding (threefold, Z(3) symmetry) required for internal symmetries 

(Mandula-Goldstone). This fixes for each embedding the SU(2) x U(1) 
generators T1, T2, T3 (isospin plane) and Y. It also fixes the charge operator Q = 
T3 + Y/2. 
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Dµ� = @µ�+ gA� with A = Aa
µFa

Aµ ! e�i✓Aµe
i✓ + e�i✓ i@µe

i✓

� ! ei✓ � with ✓ = ✓aFa

{~L} ⇢ {Fa} ~r = R(~✓ )r

�(~r) = R(r̂)�(r)

@r�(~r) = R(r̂)@r�(r)
�i~r ⇥ ~@| {z }

~̀

�(~r) = R(r̂)~L�(r)

R�1(r̂)~̀R(r̂) = ~L

R�1(r̂) i~@R(r̂) = r̂ i@r +
1
r2 (r̂ ⇥ ~L)

R�1(r̂) ~A(~r )R(r̂) = A(r)

pure  gauge that can also be used 
to rotate away some 1D fields: 
  g

p
2/3 ~A� = �@�~✓ () g0~'Pn

3
�



Bosonic and fermionic excitations: gauge bosons 

  The additional gauge fields to account for ‘complex’ phases by realizing that the 
algebra SU(3) = [SO(3), SU(2)xU(1)] 

  Incorporating SO(3) in 3D field space still requires accounting for the Z(3) 
symmetry in field space, coupling the embeddings to family structure. This fixes 
for each embedding the SU(2) x U(1) generators T1, T2, T3 (isospin plane) and 
Y. It also fixes the charge operator Q = T3 + Y/2. 

  Bosons become SU(3) rotated versions of scalar field (cf standard Higgs) 
  Real rotations make fields 3D but  

    limit them to isospin plane 
  For ‘imaginary’ rotations we       

    use the SU(2) x U(1) part 
 

  Covariant derivatives involve electroweak gauge bosons  that eat three of the 
boson modes (as in standard model). 

D.o.f = 2 x 6 = 1 + 3 x 3 + 2 x 1 
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�R =

1p
2

exp

�
+

i
2

X

a=1,2,3,8

✓a�a

�
2

4
1 + 'H

0

0

3

5

�L =

1p
2

exp

�
� i

2

X

a=1,2,3,8

✓a�a

�
2

4
0

1 + 'H

0

3

5

iDµ� = i@µ�+
g

2

✓ 3X

i=1

W i
µ�i +Bµ�8

◆
�



Bosonic and fermionic excitations: electroweak symmetry breaking 

  Incorporating the electroweak symmetry: 

 
  Symmetry breaking: 

 
  SU(3) embedding gives embarrasingly good ‘zeroth order’ results: 

  gives ΜΗ
2 = M2/2, e = g/2 = (3/2)1/2 g0/2M = (3/32)1/2                Note: 128π/3=134 

  gives weak mixing angle sin2 θ W = ¼ (Weinberg 1972) 
  gives MW

2 = 3M2/16, MZ
2 = M2/4 
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P (1, 1)⌦ SU(3) � P (1, 1)⇥ SO(3)| {z }
P (1,3)

./ Z(3) ./ [SU(2)I ⌦ U(1)Y ]| {z }
U(1)Q

iDµ� = i@µ�+
g

2

✓ 3X

i=1

W i
µ�i +Bµ�8

◆
�

= i@µ�+
gp
2

�
W+

µ I� +W�
µ I+

�
�+

�
gW 0

µI3 +
g

2
p
3
BµY

�
�



Bosonic and fermionic excitations: lepton families 

  3D embedding fermions is straightforward:  

 
  Families linked to three singlets of Z(3): 

  Lepton masses? Just note: M/8π2 = 2 GeV (factor from SO(3) group measure) 
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�5 =


1 0
0 �1

�
�µ =


0 �µ

�µ 0

�

-1/2 1/2 
I3 

1 

Y 

ξL
+

ξL
− ξL

0

-1/2 1/2 

1 

Y 

I3 

ξR
+ξR

0

ξR
−

hb� ifam =

2

64

1p
3
1p
3
1p
3

3

75 , hb� iew =

2

4
0
1
0

3

5

Qmass = U†
Q Qew UQ U †

Q =

2

4
1p
2

0 1p
2

0 1 0
ip
2

0 �ip
2

3

5 W =
1p
3

2

4
1 1 1
!2 1 !
! 1 !2

3

5

Qew =

2

4
1 0 0
0 0 0
0 0 �1

3

5 Qmass =

2

4
0 0 �i
0 0 0
i 0 0

3

5
hb� ifam = W hb� iew

Qfam = WQewW
† = WUQ Qmass U

†
QW

† UHPS = WUQ =

2

4

p
2/3

p
1/3 0

�
p
1/6

p
1/3 �

p
1/2

�
p
1/6

p
1/3

p
1/2

3

5



Bosonic/fermionic modes in E(1,1): 
 
  Scalar fields turn into gauge fields, leaving d=2 QCD with a massless scalar field 

(cf Kaplan 2013) 
 
 
  8 gluon fields 
  Dynamics in Wilson loop 

  A-fields dynamical if d > 2 
  Used in TMD physics (ongoing work with a.o. Cotogno, van Daal, …) 

  New basis for: 
  CFT approaches (Brodsky, de Téramond, Dosch, Lorcé) 
  Color-kinematic duality 
  Soft Collinear Effective Theory 
  …   

 

                                                                           
 

Bosonic and fermionic excitations: strong sector 
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iDµ�
i = i@µ�

i + g
X

a2G

Aa
µ(Fa)

i
j�

j

L = 1
2D

µ'HDµ'H � 1

4
Fµ⌫Fµ⌫ +  (i /D �M � g0 'H) 

W [C] = exp

✓
�ig

I

C
dsµAµ(s)

◆



  Asymptotic structure? 
Manifestation of ‘color’ vacuum: 

  Frozen color: 
  Just constraints for colored     

excitations (I-U-V spin) 

 
 
 

                                                                           
 

Bosonic and fermionic excitations: valence quarks 
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222 

223 

213 

233 

123 

222 

333 

333 

221 

211 111 

231 

111 

311 

331 

333 

312 

333 

133 

111 

222 

332 

113 

123 

132 

322 

111 

112 

122 

222 

I3 

U3 V3 

I3=1/2 I3=�1/2 

V3=�1/2 

U3=1/2 

U3=�1/2 

V3=1/2 |0i = |(0, 0, 0)R, (0, 0, 0)Lileptons
= |(0R, 0R, 0L), (0L, 0L, 0R)iquarks



Electroweak quantum numbers of colored excitations 
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eL

eR

uR

uR

uR

dR

dR

dRdL dL

dLuL

uL

uL

uL

uL

uL

dL

dL

dLuR

uRuR

dR

dR

dR

⌫R

⌫LeL

eR

Y r

Y g

Y b

Ib3

Ig3

Ir3

Qg

Qb

Qr

  Asymptotic structure? 
Manifestation of ‘color’ vacuum: 

  Constraints for colored     
excitations (I-U-V spin) 

 
 
 

                                                                           
 

|0i = |(0, 0, 0)R, (0, 0, 0)Lileptons
= |(0R, 0R, 0L), (0L, 0L, 0R)iquarks



Fermionic excitations in the standard model 

  Quarks live in E(1,1), coming in 3 families and 3 colors. Confinement! 
  Go back to leptons:  

  In d = 1: ξ0, ξ+, or ξ- charge/momentum eigenstates 
  In d = 2: (ξ0 ξ0), (ξ+ ξ+) and (ξ- ξ-) charge/helicity eigenstates 
  In d = 3: ξL

0 (ξL
0 ξL

0) is acceptable SU(3) root [I3 quantum numbers] 
  ξL

0 (ξL
+ ξL

+) and ξL
0 (ξL

- ξL
-) are not acceptable! 

  E(1,3): gluons dynamical and ‘electroweak properties’ of quarks (= QCD) 
     Freeze color, e.g. R = red (in triplet 3), L = anti-red (in anti-triplet 3*) 

  For ξL
0 only ξL

0 (ξR
+ ξR

+) and ξL
0 (ξL

- ξR
-) are acceptable giving the quarks uL 

(red) and uL* (anti-red), the latter being an iso-singlet 
  ξL

0 (ξR
+ ξR

+) and ξL
- (ξR

0 ξR
0) form a red iso-doublet uL and dL   

  Construction of quarks and leptons resembles rishon model without problem of 
compositeness (Harari & Seiberg 1982) 

  In zeroth order one family takes all mass: top-quark, t ~ ξ0 (ξ+ ξ+), CKM trivial, 
quark masses starting with mass proportional to Σ = M/16π = 3.5 GeV (b-mass?) 

19 



Particle content of standard model 
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particle space isospin hypercharge charge color

L T1 T2 I I3 Y Q c
⌫L ⇠0L ⇠0L ⇠0L 1/2 +1/2 �1 0 1

e�L ⇠�L ⇠�L ⇠�L 1/2 �1/2 �1 �1 1

e+L ⇠+L ⇠+L ⇠+L 0 0 +2 +1 1

⌫R ⇠0R ⇠0R ⇠0R 1/2 �1/2 +1 0 1

e+R ⇠+R ⇠+R ⇠+R 1/2 +1/2 +1 +1 1

e�R ⇠�R ⇠�R ⇠�R 0 0 �2 �1 1

uL ⇠0L (⇠+R ⇠+R) 1/2 +1/2 +1/3 +2/3 3

dL ⇠�L (⇠0R ⇠0R) 1/2 �1/2 +1/3 �1/3 3

uL ⇠0L (⇠�L ⇠�R ) 0 0 �4/3 �2/3 3

⇤

dL ⇠+L (⇠0L ⇠0R) 0 0 +2/3 +1/3 3

⇤

uR ⇠0R (⇠�L ⇠�L ) 1/2 �1/2 �1/3 �2/3 3

⇤

dR ⇠+R (⇠0L ⇠0L) 1/2 +1/2 �1/3 +1/3 3

⇤

uR ⇠0R (⇠+L ⇠+R) 0 0 +4/3 +2/3 3

dR ⇠�R (⇠0L ⇠0R) 0 0 �2/3 �1/3 3
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Y 

+1 

-1 

I3 

uR

eR
−

eL
+

dL

νR eR
+

dL

uR

eL
−

dR

uL

dR

uL

ν L

-1/2 +1/2 W +
γZ 0W −

H 0



Conclusions: emergent symmetries in Standard Model 

  Basic supersymmetric starting point, solves hierarchy and naturalness problems 
  Links # space dimensions, # colors, # families 
  Provides spectrum of bosons and fermions in standard model 
  Allows for family mixing (M and g can become complex symmetric) 
  Left-right symmetric starting point and custodial symmetry 
  Provides a new view for many phenomena in QCD (Confinement, Bloom-Gilman 

duality, importance of SCET for PDFs, FFs including TMDs, multitude of effective 
models for QCD) 

  B-L symmetry 
  Proton involves all excitations in lowest family. Family-breaking effects when 

different families meet, e.g. proton radius puzzle 

  However, there are still many open ends! 
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