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Introduction and basic questions
o

Standard model & & &

QCD & Confinement? Chiral symmetry; left-right (a)symmetry
Family structure

Space time: E(1,3)

Mass ranges in standard model?

Naturalness? Supersymmetry?

B-L? dark matter, gravity

But also, e.g. collinearity in QCD (jets)?

m Look for solution in vanishing dimensions
m Stojkovic — 1406.2696
m Calcagni — 0912.3142
= PJM-1601.0300



\‘ J Basic symmetries

m Translations:

(Pt} . {P* P, ...} or {H, P} Pt PY] =0
m Lorentz transformations
(M} MY = K, MY = J} J,P|=P, [K,P] =P,
M? = g, P*P" J K=K, [J,J=J [K,K=J

B P(1,3) =P(1,1) = SO(3)
m Hilbert space

{(a)"]0),57]0)} a,a’] =1, {b,b'} =1
m Supercharges
0) =100 ®[0)r Q=a'b—bla
Q;;rk:bia}; anink:bjak P:CLTCL—F%—FbTb—%
. QT
a,z % b;.f aJ{C TRAL b;.f {Q,Q"} =2P

m Extension to ‘aligned’ excitations (cf 3D harmonic oscillator)
|O> — |07 07 O>B ® |07 07 O>F
m Conformal embedding!



W/

Space-time and internal degrees of freedom

m Harmonic oscillator levels (SO(3) €< - internal symmetry & more symmetry)

level | degeneracy (ng, Ny, ny) SO(3) (¢) SU(3) (n)
0 1 (0,0,0) 0 1
1 3 (1,0,0), ... 1 3
2 6 (2,0,0), (1,1,0), ... 0@ 2 6
3 10 (3,0,0), (2,1,0), (1,1,1), ... 1@ 3 10
4 15 0@2a4 15,

m Quark model: SU(6) x O(3)

N | configuration | SU(6)x O(3) multiplets
0 (0s)° [56,07]
L | (0s)*(1p) | (56,17) [70,17]
2 (0s)%(2s) (56,0%) [70,07]
(0s)%(2d) (56,27) [70,27]
(0s)(Ip)* | [56,0"] [56,2*] (70,0%) (70,1F) (70,2%) [20,1%]

m Problematic at a fundamental level



All Possible Symmetries of the S Matrix™
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We prove a new theorem on the impossibility of combining space-time and internal symmetries in any

but a trivial way. The theorem is an improvement on known results in that it is applicable to infinite-param-
eter groups, instead of just to Lie groups. This improvement is gained by using information about the S
matrix; previous investigations used only information about the single-particle spectrum. We define a sym-
metry group of the S matrix as a group of unitary operators which turn one-particle states into one-particle
states, transform many-particle states as if they were tensor products, and commute with the S matrix. Let
G be a connected symmetry group of the .S matrix, and let the following five conditions hold: (1) G contains
a subgroup locally isomorphic to the Poincaré group. (2) For any M >0, there are only a finite number of
one-particle states with mass less than M. (3) Elastic scattering amplitudes are analytic functions of s and ¢,
in some neighborhood of the physical region. (4) The S matrix is nontrivial in the sense that any two one-
particle momentum eigenstates scatter (into something), except perhaps at isolated values of s. (5) The gen-
erators of G, written as integral operators in momentum space, have distributions for their kernels. Then,
we show that G is necessarily locally isomorphic to the direct product of an internal symmetry group and
the Poincaré group.

I. INTRODUCTION symmetry group of the .S matrix, which contains the
Poincaré group and which puts a finite number of
particles in a supermultiplet. Let the .S matrix be non-
trivial and let elastic scattering amplitudes be analytic
functions of s and ¢ in some neighborhood of the physical
region. Finally, let the generators of G be representable
as integral operators in momentum space, with kernels
that are distributions. Then G is locally isomorphic to

NTIL a few years ago, most physicists believed
that the exact or approximate symmetry groups

of the world were (locally) isomorphic to direct products
of the Poincaré group and compact Lie groups. This
world-view changed drastically with the publication of
the first papers on SU(6)!; these raised the dazzling
possibility of a relativistic symmetry group which was

not simply such a direct product. Unfortunately, all the direct product of the Poincaré group and an in-

ternal symmetry group. (I'his 1S a loose statement ol
the theorem; a more precise one follows below.)

attempts to find such a group came to disastrous ends,
and the situation was finallv settled hv the discoverv nf



Vacuum symmetries

-/

m Symmetries of the vacuum
Poincaré symmetry P(1,3) with 3 aligned excitations (# space dimensions)
P(1,3) = [P(1,1), SO(3)]
m Hilbert space transformations: [P(1,1), SU(3)] with SU(3) = [SO(3), SU(2) x U(1)]
m How to evade Coleman-Mandula when moving SO(3) into P(1,3)?
m A guiding example could be supersymmetry (Haag-Luposzanski-Sohnius)

m Proposed way of proceeding
Adding internal symmetries as central charges (Y) to the algebra
{Qi, Q) =26, P+ Yy,
Internal symmetries that are moved into space-time symmetries need also to
become visible in field space
0D - 1D: use boost (fermionic + scalar and pseudoscalar bosonic fields)
1D - 3D: use rotations (fermionic + scalar and vector bosonic fields)



. Procedure (illustrated in OD)
o

m Supercharges and Hamiltonian(s)
|H,H|] = [H,Q| =0, {QaQT} =20 [CL, H] — {Q7 [Qa CL]} — \/E{Qv b} = Wa
b, H] = [Q,{Q,b}] = Vw[Q,a] =wb

1 1
m Look at the boson and fermion fields: ¥ o (a + a ) and ¢ NG ( )

m Forfree fields: [Q,0]=¢ {Q,{} =F =[p, H| =iy F =My
Q,F) = [¢, H] =i

m Adding additional degrees of freedom via auxiliary field(s)
Q,p] =¢ {Q,8} = F =1iDgyp iDg = 10y + gAg

... and a nontrivial vacuum such that (0|¢|0) = vg and ¢ = vo(¢ — 1)

t
m For example in OD: iDy = H = gAg and ¢(t) = U(t)¢p = exp(—ig [ dTAg)¢
(This is not conformal!) 0
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Symmetries in 1D

4
In OD a mass M breaks conformal invariance. n
For two fields in OD (right and left) =
mass provides the coupling, cf [P™,&r] = —iM¢EL

P M V5 =
H=| a2 [ = [

Gateway to 1D: P as OD-Hamiltonian with H as central charge
Achieved via [K,P] =i H or [K,P*¥] = +i P*

P(1,1) = {H,P,K} with M2 as Casimir operator
Supersymmetric algebra with Qg and [K, Qr/L] = +2iQr/ 1

|

[QR/La ¢R/L] =¢R/L {Qr/L; QE/L} =2 P+
{Qr/1,¢r/1} = Fr/L = iDx¢R/1 {Qr/L, Fr/L} = iDx&R/L
Group fields as: ¢
W2 =" op + e G = o5 +idp YV2= [ s

(6) = (0n) = (6) = &5 (ds)=1  (¢p) =0

|



4 The supersymmetric 1D starting point
o

m Wess-Zumino (1974) in d=2:
Interactions: M (couples right-left), g, (Yukawa coupling), dim[M] = dim[g,] = 1

4 . .
L=30_¢r0+¢r+ 3504901 0_¢1 + 5 ERO+&r + 5£10-E — V
= 10" ps Oups + 50" pp Ouop + iy, —V

N

.
P

W,
N

V = 2(M+ gops)*(¢s + ¢7p) + 39500 (05 + 05) + V(M + gops + gopryo7vs)Y

-

J

m Constraint: (SOR\/_+ 0) (L V24 vo) — vg = (ps +10)° — b — 15 =0
- M/290

corresponds to a boost invariance in field space

m This enables 0D = 1D extension starting from ¢R/L(T 0) = —5x(7,0)
¢R/L(t7 Z) =€ 0 ¢R/L(Ta O) and ZaJ¢R/L(t7 Z) = € 0 ZDJ¢R/L(T O)
with:D, = 10, + 10,m being a pure gauge in field space



\ J The resulting 1D supersymmetric lagrangian
m Fields: identification M + gA? = (M + gops) ng + ¢png)
= (5 + g0pr) . + (35 +¢r)n?)) V2
o(t,) = Pexp (—ig [ ds*A4s(5)) 6(7,0)
0, ¢ =xe
0(t.2) = Pexp (~ig | ds?Ao(s)s ) wir.o) oAy = — 8,0

gF.. = W|C]/d07°
m Lagrangian:

2
L=— E F*™ F,, +vi D*¢* D¢ — : Mui(¢° 4+ ¢*° — 1) — %)\M’Uo(qbQ + ¢*% — 1)
0
s o* | ¢
+3 ¢(Z lD B ( \/’ \/’))
m Expanded around minimum (qb\f = x = 1+ ¢u/vo) this gives M, = M, = M

(in 1D massive A-field has one d.o.f,, massless field just instantaneous potential)

m Also allowed is @ = exp (i¢rx/ fr)
m Lagrange multiplier A might be connected to space-time curvature.

10



\ Y Multiple bosonic and fermionic excitations

m Many advantages of 1D such as convergence properties, d[M] = d[g,] = 1 (e.g.
take v, = M/2g, =1, thus g, = M/2), d[¢] = 0, d[wy] = /2, naturalness, one-loop
mass correction = = M/16w, ...

m Extend to three real fields with SO(3) field symmetry (N = 3) and permutation
symmetry, including complex phases embedded in an SU(3) symmetry (cf HO).

m Symmetry G D P(1,1) =< A(4) = SU(3)

Y Y Y Y
L L B A N 13
" rai 3
(0, T (9, 2 (& —1+H& (&
: — I 41 . — 1 1
-1/2 1/2 -1/2 1/2 : -1/2 1/2 -1./2 1./2 X
- } > 13 T 1 >
(¢, @ 1+ (o E @1 &
| |

m A(4) governs embedding: ng S nz and ﬁi — ﬁz
1
m Ground state: (¢) = (¢r) = (¢r) = 5 (¢s)=1  (¢p)=0
|O> — |ORv OL> — ‘(07 0, O)R7 (07 0, O)L>
m Symmetry of ground state: SO(3) butalso Pand T, Z(3)

11



Bosonic and fermionic excitations

-/

m Bosonic fluctuations:
Real SO(3) symmetric fluctuations identify space-time
Includes also P and T symmetry
P(1,1) x SO(3) => P(1,3): d = 4 Poincaré symmetry (3D)
m SO(3) part ({L} C {F,}) used to lift fields into 3D: ¥ = R(9 )T

¢(7) = R(7)op(r)
0r¢(T) = R(7)0r¢(r),
7 x 0 (1) = R(F)Lo(r)

—i7 X 0
— pure gauge that can also be used
¢ to rotate away some 1D fields:

g\/2/3ffa = —805 = gogﬁpni

R™(F)i0OR(F) = 70, + = L (7 x L) |
m ... other gauge fields also iftedto3D ¢ — €€ ¢ with § = 0°F,

r
R™H(7) A(F) R(7) = A(r) D¢ = 0u¢ + gA¢ with A = AYF,

—i0 i6 —i0 .o 0
A, — e FA e +e Fi0e

12
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) Bosonic and fermionic excitations: gauge bosons

The additional gauge fields to account for ‘complex’ phases by realizing that the
algebra SU(3) = [SO(3), SU(2)xU(1)]

Incorporating SO(3) in 3D field space still requires accounting for the Z(3)
symmetry in field space, coupling the embeddings to family structure. This fixes
for each embedding the SU(2) x U(1) generators T,, T,, T; (isospin plane) and
Y. It also fixes the charge operator Q = T5 + Y/2.

Bosons become SU(3) rotated versions of scalar field (cf standard Higgs)

Real rotations make fields 3D but 1 | 1+ on
limit them to isospin plane Or = NG exp(+3 _;3 86 Aa) 8
For ‘imaginary’ rotations we T -,
1 .
use the SU(2) x U(1) part b = % exp(—1 Z 0°0) | 1+ ¢n
2 a=1,2,3,8 0 |

Covariant derivatives involve electroweak gauge bosons that eat three of the
boson modes (as in standard model).

3
. - g Z -~
Dof=2x6=1+3x3+2x1

13



\ Y Bosonic and fermionic excitations: electroweak symmetry breaking
b
m Incorporating the electroweak symmetry:
P(1,1)® SU(3) D P(1,1) x SO(3) > Z(3) > [SU(2); @ U(1)y]

P(1,3) U)q

m Symmetry breaking:

~ °L
iD,¢ =1i0,¢ + % (Z Wi + Bu)\s) ¢

1=1

— 0,6+ % (WH_ + W, I+ (Wil + —1-B,Y)¢

~

N V2 2v/3 )
m SU(3) embedding gives embarrasingly good ‘zeroth order’ results:
m gives M = M2/2, e = g/2 = (3/2)1/2 go/2M = (3/32)1/2 Note: 128x/3=134

m gives weak mixing angle sin?6,, = ¥4 (Weinberg 1972)
m gives M2 = 3M?/16, M2 = M?/4

14



Bosonic and fermionic excitations: lepton families

2D embeddina fermiong i straiahtforw . _
m cVC PR PRHEVS A5 St Gighi ward: L 0 g~
B t N 1 T =l er 0
& —1+—4¢; (& -
1 0
t — I3 +1 75 —
-1/2 1 1/2 -1I/2 1I/2> L O _1
T + L
(1N G 1 & 1
| . V3 R 0
m Families linked to three singlets of Z(3): (¢ )tam = i@ (@)ew =] 1
— 0
1 0 0 0 0 —i V3
Qew - 0 0 0 Qmass — 0 O 0 ~ ~
0 0 -1 1 0 O <§b>fam — W<¢>ew
1 1 1 1 1
V2 V2 1
Qmass = Ugg Qew UQ Ug? = 0 1 0 W = ﬁ w? 1 w
L0 = w 1 w?
V2 V2

273 J1/3 0
—J/1/6 /1/3 —/1/2

SNV RNV BN Vi

m Lepton masses? Just note: M/8xn? = 2 GeV (factor from SO(3) group measure) 1

Qtam = W Qe W' = WUQ Quiass UsW! Unips = WU =

5



\ y Bosonic and fermionic excitations: strong sector
b

Bosonic/fermionic modes in E(1,1): iDu¢' =id,¢' +g >  AL(F,)!¢
acG

Scalar fields turn into gauge fields, leaving d=2 QCD with a massless scalar field
(cf Kaplan 2013)

1 — .

8 gluon fields
Dynamics in Wilson loop W[C] = exp (—z‘gj{ dS“AM(s))
m A-fields dynamical if d > 2 ¢
m Used in TMD physics (ongoing work with a.o. Cotogno, van Daal, ...)

New basis for:
m CFT approaches (Brodsky, de Téramond, Dosch, Lorcé)
m Color-kinematic duality
m Soft Collinear Effective Theory
|

16



Bosonic and fermionic excitations: valence quarks

W

m Asymptotic structure?
Manifestation of ‘color’ vacuum:

|0> — |(07 07 O)R7 (07 07 O)L>leptons
— ‘(ORa OR7 0L)7 (OL7 0L7 OR)>quarks

I3=_1/2
m Frozen color: .~
m Just constraints for colored >
excitations (I-U-V spin) e
V3=_1/5 “ S

17
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m Asymptotic structure?

Manifestation of ‘color’ vacuum:

|0> — |(07 07 O)R7 (07 07 O)L>leptons

— ‘(ORa OR7 0L)7 (OL7 0L7 OR)>quarks

m Constraints for colored
excitations (I-U-V spin)

Electroweak quantum numbers of colored excitations

Yy’
b T
13 er'
g, CL /
dR ﬂR/’
UL uR /' dL
VR // ER
fik s -
ury, dr, /' Uy,
Qb dr, dr 4 dpR Uy,
Y e ’uuu———(: —
UR dL \\ dL dR
UR dr N\ UR
,  EL \ vr
= S \
V dpr ur \\uR \



Fermionic excitations in the standard model

W/

Quarks live in E(1,1), coming in 3 families and 3 colors. Confinement!
Go back to leptons:
Ind = 1: €9, €+, or & charge/momentum eigenstates
Ind = 2: (€289, (¢*&*) and (€ &) charge/helicity eigenstates
Ind = 3: 0°(g0g0) is acceptable SU(3) root [I; quantum numbers]
ELO(E T g ) and gV (g g ) are not acceptable!
E(1,3): gluons dynamical and ‘electroweak properties’ of quarks (= QCD)
Freeze color, e.g. R = red (in triplet 3), L = anti-red (in anti-triplet 3*)

For €0 only €0 (Ex* &*) and €0 (§,~ &) are acceptable giving the quarks u,
(red) and u * (anti-red), the latter being an iso-singlet

g0 (ExT Ext) and g~ (ER? &%) form a red iso-doublet u, and d,

Construction of quarks and leptons resembles rishon model without problem of
compositeness (Harari & Seiberg 1982)

In zeroth order one family takes all mass: top-quark, t ~ €0 (g* €*), CKM ftrivial,
quark masses starting with mass proportional to = = M/16x = 3.5 GeV (b-mass?)

19



4 Particle content of standard model
o

particle space 1S0spin hypercharge charge color

L Th 15 I I3 Y Q c
vy, % % % 1/2 +1/2 —1 0 1
er 33 33 §r 1/2 —1/2 —1 —1 1
e z ) z 0 0 +2 +1 1
VR B 9 O 1 172 —1/2 +1 0 1
et I I = /2 +1/2 +1 +1 1
€p §r §r Er 0 0 —2 —1 1
ur, ? & &) | 172 +1/2 +1/3 +2/3 3
dr 33 Ex &R | /2 —1/2 +1/3 ~1/3 3
o T & )| o0 0 —4/3 ~2/3 3"
dr o & & | o 0 +2/3 +1/3 3*
Ur R & &) | 2 -1/2 ~1/3 -2/3 3
dn @y 2 w2 | 13 +1/3 3"
uR € )| 0 0 +4/3 +2/3 3
dr GG 0 ~2/3 ~1/3 3




Standard model particle content

21
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Conclusions: emergent symmetries in Standard Model

Basic supersymmetric starting point, solves hierarchy and naturalness problems
Links # space dimensions, # colors, # families

Provides spectrum of bosons and fermions in standard model

Allows for family mixing (M and g can become complex symmetric)

Left-right symmetric starting point and custodial symmetry

Provides a new view for many phenomena in QCD (Confinement, Bloom-Gilman
duality, importance of SCET for PDFs, FFs including TMDs, multitude of effective
models for QCD)

B-L symmetry

Proton involves all excitations in lowest family. Family-breaking effects when
different families meet, e.g. proton radius puzzle

However, there are still many open ends!

22
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