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Isospin symmetry breaking
❖ Isospin symmetric world: up and down quarks are 

particles with identical physical properties.

❖ Isospin symmetry is explicitly broken by:
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• the up and down electric charge difference  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Figure B.1: Contribution to the nucleon self-energy with photon loop.
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in terms of the lab-frame photon energy ⌫ and the photon virtuality Q2. Assuming un-
subtracted dispersion relations for the spin-independent Compton scattering amplitudes:
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In the following, we Wick rotate, replace the integration over q4 by hyperspherical coordi-
nates and substitute ⌫ 0 by the Mandelstam variable s. Our final expression reads:
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Proton charge radius (historical perspective & the puzzle)3. The Proton Charge Radius Puzzle
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Figure I.4.: Collection of various proton charge radius determinations. A) ep scattering exper-
iments in red: Lehmann ’62 [115], Hand ’63 [116], Frerejacque ’66 [117], Akimov
’72 [118], Borkowski ’74 [119], Murphy ’74 [120], Simon ’80 [121], McCord ’91
[122], Eschrich ’01 [123], Bernauer ’10 [124], Zhan ’11 [125] (recoil polarimetry);
B) re-analyses of ep scattering data in dark red: Wong ’94 [126], Rosenfelder ’00
[127] (Coulomb corrections), Sick ’03 [128], Blunden ’05 [129] (TPE corrections),
Borisyuk ’10 [130], Hill ’10 [131] (z expansion), Sick ’12 [132], Gri�oen ’15 [133],
Lee ’15 [134], Horbatsch ’16 [135] (fit with ChPT input for higher moments); C) ep
fits within a dispersive framework in blue: Mergell ’96 [136], Belushkin ’07 [137],
Adamuscin ’12 [138], Lorenz ’14 [139]; D) hydrogen and deuterium spectroscopy
in orange: Bourzeix ’96 [140], Schwob ’99 [141], Melnikov ’00 [142], Arnoult ’10
[143]; E) µH spectroscopy in green: Pohl ’10 [66], Antognini ’13 [98]; F) CODATA
recommended charge radii in black: ’02 [103], ’06 [104], ’10 [105], ’14 [97]. The
green line is the prediction from the latest µH Lamb shift measurement [98] and
the grey line is the CODATA 2016 recommended charge radius [97].
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The proton radius puzzle

Measure the 2S − 2P splitting in µp

↓

determine the proton rms radius rp
(10× better )

But large discrepancy observed:
• 4σ from H spectroscopy value
• 6σ from e-proton scattering value
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MPQ, Garching, Germany
ETH, Zurich, Switzerland

A. Antognini, PANIC11, MIT, Cambridge, USA 25.07.2011 – p.1
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V. Two-Photon Exchange in Hydrogen-Like Atoms

(a) (b)

Figure V.2.: Two-photon-exchange diagrams in forward kinematics: the horizontal lines correspond to the
lepton and the nucleus (bold). (a) Elastic contribution to the two-photon-exchange diagram. (b) Inelastic
contribution to the two-photon-exchange diagram, where the “blob” represents all possible excitations.
The crossed diagrams are not drawn.

elastic FFs as:

f el
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1

2
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where the elastic Dirac and Pauli FFs are related to the e.m. Sachs FFs in the following way:
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see also Eq. (II.18). Substituting the elastic structure functions into the above expressions for
the S-level shift and the HFS, the nucleon-pole contribution is found as:
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where v =
p

1 + ⌧�1. Equivalently, one can plug the nucleon-pole part of the VVCS amplitudes
[322],
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IV. Forward Doubly-Virtual Compton Scattering

Figure IV.1.: Compton scattering in forward kinematics.

The amplitudes T1 and T2 are spin-independent, whereas the amplitudes S1 and S2 are spin-
dependent. Recall that the forward RCS, obtained from VVCS in the limit Q2 ! 0, is described
by two scalar amplitudes, see Eq. III.7. The relation of the RCS and VVCS amplitudes at
Q2 = 0 is as follows:

f(⌫) =
1

4⇡
T1(⌫, 0), g(⌫) =

⌫

4⇡M
S1(⌫, 0). (IV.3)

Omitting terms which vanish upon contraction with the photon polarization vectors, i.e. the
ones containing qµ or q⌫ , the symmetric and antisymmetric parts of the second-rank Compton
tensor,

Tµ⌫(q, p) =
⇥

Tµ⌫
S + Tµ⌫

A

⇤

(q, p), (IV.4)

read:

Tµ⌫
S (q, p) = �gµ⌫ T1(⌫, Q2) +
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M2
T2(⌫, Q2), (IV.5a)
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M
�µ⌫↵q↵ S1(⌫, Q2) +

Q2

M2
�µ⌫S2(⌫, Q2). (IV.5b)

As we will see in Chapter V, the symmetric, nucleon-spin independent part of the Compton
amplitude contributes to the LS, and the antisymmetric, nucleon-spin dependent part of the
amplitude contributes to the HFS.

Explicit expressions for the leading tree-level VVCS amplitudes, cf. Fig. III.3, and the corre-
sponding contributions to the structure functions are presented in Chapter V, where we connect
the forward TPE e↵ect in hydrogen-like atoms to the forward VVCS. The elastic nucleon-pole
part is discussed in Section V.1.3.1 and the Born part is given Section V.1.4. In the following,
we will introduce the GPs probed with virtual photons.

1.2. Low-Energy Expansion

The LEX of the relativistic amplitudes goes as, up to O(⌫4, ⌫2Q2, Q4) [322, 352, 353]:
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CHAPTER IV

FORWARD DOUBLY-VIRTUAL COMPTON SCATTERING

In the previous Chapter we introduced the CS process and polarizabilities and focused on the
RCS and static polarizabilities. In this Chapter we consider the case of forward VVCS, which
is relevant the subsequent calculations of the TPE e↵ects in hydrogen-like atoms.

The theory of forward VVCS is summarized in Section IV.1. The LEX of the Compton
amplitudes and the sum rules for GPs will be of particular interest (Section IV.1.3). We will
then introduce the framework of ChPT as the low-energy e↵ective field theory of our choice
(Section IV.2). In view of the �LT puzzle, we will put special attention on the inclusion of the
spin-3/2 �(1232)-isobar and the two prominent power-counting schemes: the �- and ✏-expansion.
In the following, we will calculate the tree-level �-exchange contribution to VVCS (Section IV.3)
and the (N�⇤ ! ⇡�) photoabsorption cross sections for pion-delta production (Section IV.4) in
BChPT with �-expansion. We will determine the contribution of the �-resonance to the nucleon
polarizabilities and review the status of the �LT puzzle.

1. Generalities

1.1. Lorentz Structure

Figure IV.1 shows the process of CS in forward kinematics, i.e., with equal initial and final
photon (target) momenta. In the lab frame,

p = (M,0), q = (⌫, q), (IV.1)

forward CS depends on two variables: the photon lab-frame energy ⌫ and the photon virtuality
Q2 = �q2 > 0.

The forward VVCS amplitude allows for the tensor decomposition into four independent scalar
amplitudes:

Tµ⌫(q, p) =

✓

�gµ⌫ +
qµq⌫

q2

◆

T1(⌫, Q2) +
1

M2

✓

pµ � p · q

q2
qµ
◆✓

p⌫ � p · q

q2
q⌫
◆

T2(⌫, Q2)

� 1

M
�µ⌫↵q↵ S1(⌫, Q2) � 1

M2

⇣

�µ⌫q2 + qµ�⌫↵q↵ � q⌫�µ↵q↵
⌘

S2(⌫, Q2). (IV.2)

This form explicitly obeys the e.m. current conservation: qµTµ⌫ = 0 = q⌫Tµ⌫ .
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current conservation

IV. Forward Doubly-Virtual Compton Scattering

ḡTT (⌫, Q2) = 4⇡ �0(Q
2) ⌫3 + · · · , (IV.10c)

ḡLT (⌫, Q2) = 4⇡ �LT (Q2) ⌫2 Q + · · · , (IV.10d)

where the bar denotes the non-Born part. As one can see, the non-relativistic amplitudes are
very convenient for reading o↵ the polarizabilities.

1.3. Dispersion Relations, Unitarity and Sum Rules

All invariant CS amplitudes fulfil DRs:2

T1(⌫, Q2) =
2

⇡

ˆ 1

⌫el

d⌫ 0 ⌫ 0 Im T1(⌫ 0, Q2)

⌫ 0 2 � ⌫2 � i0+

=
8⇡Z2↵

M

ˆ 1

0

dx

x

f1(x, Q2)

1 � x2(⌫/⌫el)2 � i0+
, (IV.11a)
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2
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⌫el
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where in the last step we plugged in the optical theorem:
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which in the physical region (x 2 [0, 1], with x = ⌫el/⌫ being the Bjorken variable and ⌫el =
Q2/2M) relates the absorptive parts of the forward VVCS amplitudes to the nucleon structure
functions f1, f2, g1 and g2 (functions of x and Q2) or the photoabsorption cross sections �T , �L,
�TT and �LT (functions of ⌫ and Q2). The optical theorem for RCS was given in Eq. (III.10) with
a photon flux factor that corresponds to K(⌫) = ⌫ [322]. In the case of virtual CS, we modify the

2Since the Born part of S2, Eq. (V.16d), has a pole for the subsequent limits of Q2 ! 0 and ⌫ ! 0, it is advisable
to use a DR for ⌫S2 instead.
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3.2. Relation to Structure Functions
The optical theorem relates the absorptive parts of the forward VVCS amplitudes to the nucleon

structure functions, or equivalently, the cross sections of virtual-photon absorption �⇤N ! X: 7
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These unitarity relations hold in the physical region, where the Bjorken variable is confined to the
unit interval: x 2 [0, 1].

The structure functions describing the purely elastic scattering are given in terms of the elastic
FFs:eq:elstructure
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where ⌧ = Q2/4M2 and GE(Q2), GM(Q2) are the Sachs FFs,

GE = F1 + ⌧F2, GM = F1 + F2. (3.7)

Furthermore, � is the Dirac delta-function, such that

�(1 � x) = ⌫el �(⌫ � ⌫el), with ⌫el = Q2/2M = 2M⌧. (3.8)

In the asymptotic limit, Q2 ! 1, and fixed x, the structure functions are related to the parton
distribution functions. We are, however, interested in the limit where Q and ⌫ are small. In this case
the VVCS amplitudes can on one hand be expanded in terms of polarizabilities and electromagnetic
radii, and on the other in terms of moments of structure functions. This expansion and the resulting
relations between the static electromagnetic properties of the nucleon and the moments of structure
functions will be discussed further below. Before that, we need to establish the dispersion relations
for the forward VVCS amplitudes.

3.3. Analyticity and Dispersion Relations
Consider the analytic structure the VVCS amplitudes Ti and Si in the complex plane of ⌫. We

have already seen that the Born contribution contains the nucleon pole at the kinematics of elastic
scattering, ⌫el = Q2/2M . The inelastic particle-production processes are manifested in the branch
cuts, starting the at first threshold ⌫0 and extending to infinity. Neglecting the higher-order in ↵

7The definition of the flux factor for the virtual photons, which goes into the definitions of these cross sections, is
rather arbitrary. Our expressions correspond with a choice, and as the result these relations may differ in the literature
by an overall factor. The observable quantities will not be affected by this.
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which is effectively point to point, reflected by the
error scaling, and a part which behaves systematically
as a function of the angle. The latter is estimated to be
below 0.1%.

(vi) The background estimation. Depending on the size of
the background below the elastic hydrogen peak this
error is estimated to be between 0.1% and 0.5%.

While the first point can be tested directly by fitting data
with varied cut-off energy, the other uncertainties have to be
treated by hand. To this end the cross sections are grouped
by the energy and by the spectrometer with which they are
measured. For each group, we define a linear function c(θ ) =
a(θ − θmin) interpolating from 0 for the smallest scattering
angle to the full estimated uncertainty at the maximum angle of
the group. The cross sections are then multiplied by 1 + c(θ ).
The sign of a was kept constant for all energies. The so-
modified cross sections were then refitted with the form-factor
models. In order to determine an upper and a lower bound
the fits were repeated with negated a. The uncertainties found
in this way are added quadratically to the uncertainties from
the radiative tail cutoff. The choice of a linear function in θ is
certainly arbitrary, but we checked several different reasonable
functional dependencies on θ and Q2, e.g., imitating the effect
of a spectrometer angle offset or target position offset. They
all produced similar results. The so-determined uncertainties
are reflected by the experimental systematic confidence bands
presented in this paper.

A possible source of uncertainty not from data but from
theory are the radiative corrections. The absolute value of the
radiative corrections should already be correct to better than
1% and a constant error in the correction will be absorbed
in the normalization. Any slope introduced as a function of
θ or Q2 by the radiation correction will be contained in the
slope-uncertainty discussed above up to a negligible residual;
it is therefore not considered.

In order to evaluate the influence of the applied Coulomb
correction, the amplitude of the correction was varied by
±50%. The so-modified cross sections are refitted with the
different models. The differences of the extracted form factors
to the results for the data with the unmodified correction are
shown as a band in Fig. 10.

Except for the phenomenological TPE model included in
the fit to the full data set, we do not include any theoretical
correction of the hard two-photon exchange to the cross sec-
tions in our analysis but apply Feshbach’s Coulomb correction.
Published Rosenbluth data normally do not include a Coulomb
correction. This has to be considered for comparisons of our
fits with old Rosenbluth separations.

3. Model dependence

An important issue is the question of whether the form-
factor functions are sufficiently flexible to be a suitable
estimator for the unknown true curve or whether they introduce
any bias, especially in the extraction of the radius. We have
studied this problem in two ways.

First, we used a Monte Carlo technique similar to the
method described in Sec. V D 1. We analyzed Monte Carlo
data sets produced at the kinematics of the data of the
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FIG. 10. (Color) The form factors GE and GM , normalized to the
standard dipole, and GE/GM as a function of Q2. Black line: Best fit
to the new Mainz data; blue area: statistical 68% pointwise confidence
band; light blue area: experimental systematic error; green outer band:
variation of the Coulomb correction by ±50%. The different data
points depict the previous measurements [2,4,43–45,47,48,50,53,55–
57,60,67,68,87–91] as in Refs. [2,4] with the data points of
Refs. [16,64,92] added.
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Figure 6.1: (color online) Determination of the proton’s elec-
tric and magnetic radii. The shown values are given in the
text. The green lines display the Bernauer fit with TPE cor-
rections: TPE-a (solid), TPE-b (dashed). The different uncer-
tainties given in [209] are added in quadrature.

The current situation is illustrated in Fig. 6.1. The CO-
DATA 2010 recommended value, combining the H and ep
scattering results, is [214]:

RE(H + ep) = 0.8775(51) fm, (6.3)

which is in 7� disagreement with the µH result. The CO-
DATA value does not include the extraction based on the
dispersive approach [217]. For more details we refer to re-
cent reviews dedicated exclusively to the ‘proton-size puz-
zle’ [39, 40].

We, on the other hand, shall focus on the evalua-
tions of the proton structure effects beyond the lead-
ing order. These are required, together with the
QED corrections, as input in the spectroscopy de-
termination of the charge radius. In the follow-
ing, we mainly consider the µH since it is much
more sensitive, than H, to the proton structure ef-
fects.23

6.2. Charge and Zemach Radii from Muonic Hydrogen
The extraction from µH relies on the following theoretical description of the classic (2P -2S) Lamb shift and

the 2S hyperfine splitting (HFS) [2] (in units of meV):

�Eth
LS = 206.0336(15) � 5.2275(10) (RE/fm)2 +�ETPE

LS , with �ETPE
LS = 0.0332(20), (6.4a)

�Eth
HFS = 22.9763(15) � 0.1621(10) (RZ/fm) +�E(pol)

HFS , with �E(pol)
HFS = 0.0080(26), (6.4b)

where the first number includes the QED effects, as well as their interference with the LO finite-size effect, i.e.,
RE; �ETPE

LS stands for the proton structure effects beyond the LO24; RZ is the Zemach radius; �E(pol)
HFS is the

polarizability effect in the HFS.
The n = 2 energy-level scheme of µH is illustrated in Fig. 6.2, together with the measured transition

frequencies, ⌫s and ⌫t. The obtained experimental values for the Lamb shift and the HFS [215],

�Eexp
LS = 202.3706(23)meV, (6.5a)

�Eexp
HFS = 22.8089(51)meV, (6.5b)

rely not only on the transition frequencies, but also on predictions of the 2P fine and hyperfine structure
splittings [223] (cf. Fig. 6.2):

⇤ 2P fine structure: �EFS = 8.352082meV,

⇤ 2P3/2 hyperfine structure splitting: �E 2P3/2 HFS = 3.392588meV,

⇤ 2P (f = 1) level mixing: � = 0.14456meV.

Comparison of theory and experiment allows to extract both the proton charge radius and the Zemach radius:
RE = 0.84087(39) fm, RZ = 1.082(37) fm.25

23 The layman explanation of the bigger sensitivity is that the muon probes the proton from a much smaller distance (given the ratio
of the Bohr radii aH/aµH ⇡ 186), thus having a better view on the proton.

24As pointed out in [221, 222], the extraction of RE from the µH Lamb shift uses as input the 3rd Zemach moment from parametriza-
tions of ep data, despite the fact that the latter are inconsistent with resulting RE . This creates a consistency problem in the Lamb shift
description of Eq. (6.4a): in this manner, RE of Eq. (6.7a) and Eq. (6.9) are different!

25Note that the first µH measurement, reported in [1], only covered the transition frequency ⌫t. Accordingly, theory input was
needed also for the 2S HFS: �E2S HFS = 22.8148(78)meV [224] (using RZ = 1.022 fm [225]). In this way, solely the proton charge
radius could be predicted: RE = 0.84184(67) fm.
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Fig. 4.19. The differential cross-section of e+e� photoproduction off the proton as a function of the photon beam energy for forward-recoil kinematics.

Fig. 5.1. Forward Compton scattering: N(p) + � (q) ! N(p) + � (q), with either real or virtual photons.

Any substantial deviation from these predictions can be interpreted as the timelike momentum-transfer dependence of the
Compton process, and hence attributed to the aforementioned effects of the timelike e.m. structure of the nucleon.

5. Sum rules

The fundamental relation between light absorption and scattering, encompassed for example in the celebrated
Kramers–Kronig relation, is manifested in a variety of model-independent relations. They allow us to express certain
linear combinations of polarizabilities in terms of weighted energy integrals of total photoabsorption cross sections, or
equivalently, in terms of themoments of structure functions [2,61,63,184]. They all are derived from the analyticity, unitarity
and symmetry properties of the forward CS amplitude, depicted in Fig. 5.1. In general, the photons are virtual, with spacelike
virtuality q2 < 0. The corresponding amplitude is then referred to as the forward doubly-virtual Compton scattering (VVCS)
amplitude. In what follows we consider its properties, sketch the derivation of the sum rules, and discuss their empirical
consequences.

5.1. Forward doubly-virtual Compton scattering amplitude

In the forward kinematics (t = 0), the Lorentz structure of the VVCS amplitude is decomposed in four independent tensor
forms:

Tµ⌫(q, p) =
✓

�gµ⌫ + qµq⌫

q2

◆

T1(⌫,Q 2) + 1
M2

✓

pµ � p · q
q2

qµ

◆ ✓

p⌫ � p · q
q2

q⌫

◆

T2(⌫,Q 2)

� 1
M

� µ⌫↵q↵ S1(⌫,Q 2) � 1
M2

�

� µ⌫q2 + qµ� ⌫↵q↵ � q⌫� µ↵q↵

�

S2(⌫,Q 2), (5.1)

with T1,2 the spin-independent and S1,2 the spin-dependent invariant amplitudes, functions of ⌫ = (s � u)/4M and
Q 2 = �q2. This decomposition is explicitly gauge invariant and splits into symmetric and antisymmetric parts,

Tµ⌫ = Tµ⌫
S + Tµ⌫

A , (5.2)

which, respectively, do not and do depend on the nucleon spin. Given that the vector indices are to be contracted with either
the polarization vector, satisfying q · " = 0, or with another gauge-invariant tensor, the terms containing qµ or q⌫ can be

64 F. Hagelstein et al. / Progress in Particle and Nuclear Physics 88 (2016) 29–97

where 0+ is an infinitesimally small positive number. As emphasized in the derivation of these relations, they are only
valid provided the ‘‘good’’ behavior of these amplitudes for large ⌫. It turns out that for T1 the above unsubtracted DR is
not warranted and at least one subtraction is required. We postpone a detailed discussion of this issue till Section 5.4 and
Section 5.5 while continuing to deal here with the unsubtracted DR.

Substituting the unitarity relations, Eq. (5.6), into Eq. (5.10) we have13:

T1(⌫,Q 2) = 8⇡↵

M

Z 1

0

dx
x

f1(x,Q 2)

1 � x2(⌫/⌫el)2 � i0+ = 2
⇡

Z 1

⌫el

d⌫ 0 ⌫ 0 2�T (⌫
0,Q 2)

⌫ 0 2 � ⌫2 � i0+ , (5.12a)

T2(⌫,Q 2) = 16⇡↵M
Q 2

Z 1

0
dx

f2(x,Q 2)

1 � x2(⌫/⌫el)2 � i0+ = 2Q 2

⇡

Z 1

⌫el

d⌫ 0 ⌫ 0 2[�T + �L](⌫ 0,Q 2)

(⌫ 0 2 + Q 2)(⌫ 0 2 � ⌫2 � i0+)
, (5.12b)

S1(⌫,Q 2) = 16⇡↵M
Q 2

Z 1

0
dx

g1(x,Q 2)

1 � x2(⌫/⌫el)2 � i0+ = 2M
⇡

Z 1

⌫el

d⌫ 0 ⌫ 0 3⇥ Q
⌫0 �LT + �TT

⇤

(⌫ 0,Q 2)

(⌫ 0 2 + Q 2)(⌫ 0 2 � ⌫2 � i0+)
, (5.12c)

⌫S2(⌫,Q 2) = 16⇡↵M2

Q 2

Z 1

0
dx

g2(x,Q 2)

1 � x2(⌫/⌫el)2 � i0+ = 2M2

⇡

Z 1

⌫el

d⌫ 0 ⌫ 0 3⇥ ⌫0
Q �LT � �TT

⇤

(⌫ 0,Q 2)

(⌫ 0 2 + Q 2)(⌫ 0 2 � ⌫2 � i0+)
. (5.12d)

Substituting here the elastic structure functions, Eq. (5.7), we obtain the nucleon-pole contribution:

T pole
1 (⌫,Q 2) = 4⇡↵

M
⌫2
el G

2
M(Q 2)

⌫2
el � ⌫2 � i0+ , (5.13a)

T pole
2 (⌫,Q 2) = 8⇡↵ ⌫el

⌫2
el � ⌫2 � i0+

G2
E(Q

2) + ⌧G2
M(Q 2)

1 + ⌧
, (5.13b)

Spole1 (⌫,Q 2) = 4⇡↵ ⌫el

⌫2
el � ⌫2 � i0+ F1(Q 2)GM(Q 2), (5.13c)

[⌫S2]pole (⌫,Q 2) = � 2⇡↵ ⌫2
el

⌫2
el � ⌫2 � i0+ F2(Q 2)GM(Q 2). (5.13d)

These pole terms vanish in the limit Q 2 ! 0, then ⌫ ! 0, as required.
We are now in a position to derive the various sum rules arising from low-energy and/or low-momentum expansion of

the CS amplitudes. The above DRs clearly show that the expansion in energy ⌫ is an expansion in the moments of structure
functions. For example, the Burkhardt–Cottingham (BC) sum rule [185] arises from taking the low-energy limit, ⌫ ! 0, of
the relation (5.12d) for ⌫S2:

0 =
Z 1

0
dx g2(x, Q 2), (5.14)

valid for any Q 2 > 0. Note that, although the unitarity relations are valid in the physical region only, the DRs can be valid
outside of the physical region. The photon virtuality must nevertheless be spacelike, Q 2 > 0, in order to exclude the particle
production off the external photons.

Subtracting the DR (5.12d) at ⌫ = 0, and using the BC sum rule, we obtain:

S2(⌫,Q 2) = 64⇡↵M4⌫

Q 6

Z 1

0
dx

x2g2(x,Q 2)

1 � x2(⌫/⌫el)2 � i0+ = 2M2⌫

⇡

Z 1

⌫el

d⌫ 0 ⌫ 0⇥ ⌫0
Q �LT � �TT

⇤

(⌫ 0,Q 2)

(⌫ 0 2 + Q 2)(⌫ 0 2 � ⌫2 � i0+)
. (5.15)

This expression could be obtained immediately by writing the DR for S2, rather than ⌫S2, but then we would not have
established the BC sum rule. Substituting in here the elastic g2, we find that the pole and Born part of S2 coincide.

5.4. Sum rules for real photons

We start with considering the model-independent of (5.12) for the case of Q 2 = 0. The amplitudes T2 and S2 drop out,
and so do the cross sections containing longitudinal photons. We thus have:

T1(⌫, 0) = 2
⇡

Z 1

0
d⌫ 0 ⌫ 0 2�T (⌫

0)
⌫ 0 2 � ⌫2 � i0+ , (5.16a)

13 Using that, with x = ⌫el/⌫, ⌫el = Q 2/2M, the change of the integration variable from ⌫ to x goes as:
Z 1

⌫el

d⌫
⌫n f (⌫,Q 2) =

✓

2M
Q 2

◆n�1Z 1

0
dx xn�2f (x,Q 2). (5.11)

B(x) =

Z
dx

0
G(x� x

0)A(x0)

G(x� x

0) = 0, (x� x

0)2 < 0
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Fig. 4.19. The differential cross-section of e+e� photoproduction off the proton as a function of the photon beam energy for forward-recoil kinematics.

Fig. 5.1. Forward Compton scattering: N(p) + � (q) ! N(p) + � (q), with either real or virtual photons.

Any substantial deviation from these predictions can be interpreted as the timelike momentum-transfer dependence of the
Compton process, and hence attributed to the aforementioned effects of the timelike e.m. structure of the nucleon.

5. Sum rules

The fundamental relation between light absorption and scattering, encompassed for example in the celebrated
Kramers–Kronig relation, is manifested in a variety of model-independent relations. They allow us to express certain
linear combinations of polarizabilities in terms of weighted energy integrals of total photoabsorption cross sections, or
equivalently, in terms of themoments of structure functions [2,61,63,184]. They all are derived from the analyticity, unitarity
and symmetry properties of the forward CS amplitude, depicted in Fig. 5.1. In general, the photons are virtual, with spacelike
virtuality q2 < 0. The corresponding amplitude is then referred to as the forward doubly-virtual Compton scattering (VVCS)
amplitude. In what follows we consider its properties, sketch the derivation of the sum rules, and discuss their empirical
consequences.

5.1. Forward doubly-virtual Compton scattering amplitude

In the forward kinematics (t = 0), the Lorentz structure of the VVCS amplitude is decomposed in four independent tensor
forms:

Tµ⌫(q, p) =
✓

�gµ⌫ + qµq⌫

q2

◆

T1(⌫,Q 2) + 1
M2

✓

pµ � p · q
q2

qµ

◆ ✓

p⌫ � p · q
q2

q⌫

◆

T2(⌫,Q 2)

� 1
M

� µ⌫↵q↵ S1(⌫,Q 2) � 1
M2

�

� µ⌫q2 + qµ� ⌫↵q↵ � q⌫� µ↵q↵

�

S2(⌫,Q 2), (5.1)

with T1,2 the spin-independent and S1,2 the spin-dependent invariant amplitudes, functions of ⌫ = (s � u)/4M and
Q 2 = �q2. This decomposition is explicitly gauge invariant and splits into symmetric and antisymmetric parts,

Tµ⌫ = Tµ⌫
S + Tµ⌫

A , (5.2)

which, respectively, do not and do depend on the nucleon spin. Given that the vector indices are to be contracted with either
the polarization vector, satisfying q · " = 0, or with another gauge-invariant tensor, the terms containing qµ or q⌫ can be
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where 0+ is an infinitesimally small positive number. As emphasized in the derivation of these relations, they are only
valid provided the ‘‘good’’ behavior of these amplitudes for large ⌫. It turns out that for T1 the above unsubtracted DR is
not warranted and at least one subtraction is required. We postpone a detailed discussion of this issue till Section 5.4 and
Section 5.5 while continuing to deal here with the unsubtracted DR.

Substituting the unitarity relations, Eq. (5.6), into Eq. (5.10) we have13:

T1(⌫,Q 2) = 8⇡↵

M

Z 1

0

dx
x

f1(x,Q 2)

1 � x2(⌫/⌫el)2 � i0+ = 2
⇡

Z 1

⌫el

d⌫ 0 ⌫ 0 2�T (⌫
0,Q 2)

⌫ 0 2 � ⌫2 � i0+ , (5.12a)

T2(⌫,Q 2) = 16⇡↵M
Q 2

Z 1

0
dx

f2(x,Q 2)

1 � x2(⌫/⌫el)2 � i0+ = 2Q 2

⇡

Z 1

⌫el

d⌫ 0 ⌫ 0 2[�T + �L](⌫ 0,Q 2)

(⌫ 0 2 + Q 2)(⌫ 0 2 � ⌫2 � i0+)
, (5.12b)

S1(⌫,Q 2) = 16⇡↵M
Q 2

Z 1

0
dx

g1(x,Q 2)

1 � x2(⌫/⌫el)2 � i0+ = 2M
⇡

Z 1

⌫el

d⌫ 0 ⌫ 0 3⇥ Q
⌫0 �LT + �TT

⇤

(⌫ 0,Q 2)

(⌫ 0 2 + Q 2)(⌫ 0 2 � ⌫2 � i0+)
, (5.12c)

⌫S2(⌫,Q 2) = 16⇡↵M2

Q 2

Z 1

0
dx

g2(x,Q 2)

1 � x2(⌫/⌫el)2 � i0+ = 2M2

⇡

Z 1

⌫el

d⌫ 0 ⌫ 0 3⇥ ⌫0
Q �LT � �TT

⇤

(⌫ 0,Q 2)

(⌫ 0 2 + Q 2)(⌫ 0 2 � ⌫2 � i0+)
. (5.12d)

Substituting here the elastic structure functions, Eq. (5.7), we obtain the nucleon-pole contribution:
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M
⌫2
el G

2
M(Q 2)

⌫2
el � ⌫2 � i0+ , (5.13a)

T pole
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⌫2
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G2
E(Q

2) + ⌧G2
M(Q 2)

1 + ⌧
, (5.13b)
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⌫2
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[⌫S2]pole (⌫,Q 2) = � 2⇡↵ ⌫2
el

⌫2
el � ⌫2 � i0+ F2(Q 2)GM(Q 2). (5.13d)

These pole terms vanish in the limit Q 2 ! 0, then ⌫ ! 0, as required.
We are now in a position to derive the various sum rules arising from low-energy and/or low-momentum expansion of

the CS amplitudes. The above DRs clearly show that the expansion in energy ⌫ is an expansion in the moments of structure
functions. For example, the Burkhardt–Cottingham (BC) sum rule [185] arises from taking the low-energy limit, ⌫ ! 0, of
the relation (5.12d) for ⌫S2:

0 =
Z 1

0
dx g2(x, Q 2), (5.14)

valid for any Q 2 > 0. Note that, although the unitarity relations are valid in the physical region only, the DRs can be valid
outside of the physical region. The photon virtuality must nevertheless be spacelike, Q 2 > 0, in order to exclude the particle
production off the external photons.

Subtracting the DR (5.12d) at ⌫ = 0, and using the BC sum rule, we obtain:

S2(⌫,Q 2) = 64⇡↵M4⌫

Q 6

Z 1

0
dx

x2g2(x,Q 2)

1 � x2(⌫/⌫el)2 � i0+ = 2M2⌫

⇡

Z 1

⌫el

d⌫ 0 ⌫ 0⇥ ⌫0
Q �LT � �TT

⇤

(⌫ 0,Q 2)

(⌫ 0 2 + Q 2)(⌫ 0 2 � ⌫2 � i0+)
. (5.15)

This expression could be obtained immediately by writing the DR for S2, rather than ⌫S2, but then we would not have
established the BC sum rule. Substituting in here the elastic g2, we find that the pole and Born part of S2 coincide.

5.4. Sum rules for real photons

We start with considering the model-independent of (5.12) for the case of Q 2 = 0. The amplitudes T2 and S2 drop out,
and so do the cross sections containing longitudinal photons. We thus have:

T1(⌫, 0) = 2
⇡

Z 1

0
d⌫ 0 ⌫ 0 2�T (⌫

0)
⌫ 0 2 � ⌫2 � i0+ , (5.16a)

13 Using that, with x = ⌫el/⌫, ⌫el = Q 2/2M, the change of the integration variable from ⌫ to x goes as:
Z 1

⌫el

d⌫
⌫n f (⌫,Q 2) =

✓

2M
Q 2

◆n�1Z 1

0
dx xn�2f (x,Q 2). (5.11)

B(x) =

Z
dx

0
G(x� x

0)A(x0)

G(x� x

0) = 0, (x� x

0)2 < 0
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Substituting the unitarity relations, Eq. (5.6), into Eq. (5.10) we have:10

T1(⌫, Q2) =
8⇡↵

M

ˆ 1

0

dx

x

f1(x, Q2)

1 � x2(⌫/⌫el)2 � i0+
=

2

⇡

ˆ 1

⌫el

d⌫ 0 ⌫ 0 2�T (⌫ 0, Q2)

⌫ 0 2 � ⌫2 � i0+
, (5.12a)

T2(⌫, Q2) =
16⇡↵M

Q2

ˆ 1

0
dx

f2(x, Q2)

1 � x2(⌫/⌫el)2 � i0+
=

2Q2

⇡

ˆ 1

⌫el

d⌫ 0 ⌫ 0 2[�T + �L](⌫ 0, Q2)

(⌫ 0 2 + Q2)(⌫ 0 2 � ⌫2 � i0+)
, (5.12b)

S1(⌫, Q2) =
16⇡↵M

Q2

ˆ 1

0
dx

g1(x, Q2)

1 � x2(⌫/⌫el)2 � i0+
=

2M

⇡

ˆ 1

⌫el

d⌫ 0 ⌫ 0 3⇥Q
⌫0 �LT + �TT

⇤

(⌫ 0, Q2)

(⌫ 0 2 + Q2)(⌫ 0 2 � ⌫2 � i0+)
, (5.12c)

⌫S2(⌫, Q2) =
16⇡↵M2

Q2

ˆ 1

0
dx

g2(x, Q2)

1 � x2(⌫/⌫el)2 � i0+
=

2M2

⇡

ˆ 1

⌫el

d⌫ 0 ⌫ 0 3⇥⌫0

Q�LT � �TT
⇤

(⌫ 0, Q2)

(⌫ 0 2 + Q2)(⌫ 0 2 � ⌫2 � i0+)
. (5.12d)

Substituting here the elastic structure functions, Eq. (5.7), we obtain the nucleon-pole contribution:

T pole
1 (⌫, Q2) =

4⇡↵

M

⌫2
el G

2
M (Q2)

⌫2
el � ⌫2 � i0+

, (5.13a)

T pole
2 (⌫, Q2) =

8⇡↵ ⌫el

⌫2
el � ⌫2 � i0+

G2
E(Q2) + ⌧G2

M (Q2)

1 + ⌧
, (5.13b)

Spole
1 (⌫, Q2) =

4⇡↵ ⌫el

⌫2
el � ⌫2 � i0+

F1(Q
2) GM (Q2) , (5.13c)

[⌫S2]
pole (⌫, Q2) = � 2⇡↵ ⌫2

el

⌫2
el � ⌫2 � i0+

F2(Q
2) GM (Q2) . (5.13d)

These pole terms vanish in the limit Q2 ! 0, then ⌫ ! 0, as required.
We are now in a position to derive the various sum rules arising from low-energy and/or low-momentum

expansion of the CS amplitudes. The above DRs clearly show that the expansion in energy ⌫ is an expansion in
the moments of structure functions. For example, the Burkhardt-Cottingham (BC) sum rule [183] arises from
taking the low-energy limit, ⌫ ! 0, of the relation (5.12d) for ⌫S2:

0 =

ˆ 1

0
dx g2(x, Q2), (5.14)

valid for any Q2 > 0. Note that, although the unitarity relations are valid in the physical region only, the DRs
can be valid outside of the physical region. The photon virtuality must nevertheless be spacelike, Q2 > 0, in
order to exclude the particle production off the external photons.

Subtracting the DR (5.12d) at ⌫ = 0, and using the BC sum rule, we obtain:

S2(⌫, Q2) =
64⇡↵M4⌫

Q6

ˆ 1

0
dx

x2g2(x, Q2)

1 � x2(⌫/⌫el)2 � i0+
=

2M2⌫

⇡

ˆ 1

⌫el

d⌫ 0 ⌫ 0⇥⌫0

Q�LT � �TT
⇤

(⌫ 0, Q2)

(⌫ 0 2 + Q2)(⌫ 0 2 � ⌫2 � i0+)
. (5.15)

This expression could be obtained immediately by writing the DR for S2, rather than ⌫S2, but then we would
not have established the BC sum rule.

5.4. Sum Rules for Real Photons
We start with considering the model-independent of (5.12) for the case of Q2 = 0. The amplitudes T2 and

S2 drop out, and so do the cross sections containing longitudinal photons. We thus have:

T1(⌫, 0) =
2

⇡

ˆ 1

0
d⌫ 0 ⌫ 0 2�T (⌫ 0)

⌫ 0 2 � ⌫2 � i0+
, (5.16a)

S1(⌫, 0) =
2M

⇡

ˆ 1

0
d⌫ 0 ⌫ 0 �TT (⌫ 0)

⌫ 0 2 � ⌫2 � i0+
. (5.16b)

10Using that, with x = ⌫el/⌫, ⌫el = Q2
/2M, the change of the integration variable from ⌫ to x goes as:ˆ 1

⌫el

d⌫

⌫n
f(⌫, Q2) =

✓
2M

Q2

◆n�1ˆ 1

0

dx xn�2f(x, Q2). (5.11)

39
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Substituting the unitarity relations, Eq. (5.6), into Eq. (5.10) we have:10

T1(⌫, Q2) =
8⇡↵

M

ˆ 1

0

dx

x

f1(x, Q2)

1 � x2(⌫/⌫el)2 � i0+
=

2

⇡

ˆ 1

⌫el

d⌫ 0 ⌫ 0 2�T (⌫ 0, Q2)

⌫ 0 2 � ⌫2 � i0+
, (5.12a)

T2(⌫, Q2) =
16⇡↵M

Q2

ˆ 1

0
dx

f2(x, Q2)

1 � x2(⌫/⌫el)2 � i0+
=

2Q2

⇡

ˆ 1

⌫el

d⌫ 0 ⌫ 0 2[�T + �L](⌫ 0, Q2)

(⌫ 0 2 + Q2)(⌫ 0 2 � ⌫2 � i0+)
, (5.12b)

S1(⌫, Q2) =
16⇡↵M

Q2

ˆ 1

0
dx

g1(x, Q2)

1 � x2(⌫/⌫el)2 � i0+
=

2M

⇡

ˆ 1

⌫el

d⌫ 0 ⌫ 0 3⇥Q
⌫0 �LT + �TT

⇤

(⌫ 0, Q2)

(⌫ 0 2 + Q2)(⌫ 0 2 � ⌫2 � i0+)
, (5.12c)

⌫S2(⌫, Q2) =
16⇡↵M2

Q2

ˆ 1

0
dx

g2(x, Q2)

1 � x2(⌫/⌫el)2 � i0+
=

2M2

⇡

ˆ 1

⌫el

d⌫ 0 ⌫ 0 3⇥⌫0

Q�LT � �TT
⇤

(⌫ 0, Q2)

(⌫ 0 2 + Q2)(⌫ 0 2 � ⌫2 � i0+)
. (5.12d)

Substituting here the elastic structure functions, Eq. (5.7), we obtain the nucleon-pole contribution:

T pole
1 (⌫, Q2) =

4⇡↵

M

⌫2
el G

2
M (Q2)

⌫2
el � ⌫2 � i0+

, (5.13a)

T pole
2 (⌫, Q2) =

8⇡↵ ⌫el

⌫2
el � ⌫2 � i0+

G2
E(Q2) + ⌧G2

M (Q2)

1 + ⌧
, (5.13b)

Spole
1 (⌫, Q2) =

4⇡↵ ⌫el

⌫2
el � ⌫2 � i0+

F1(Q
2) GM (Q2) , (5.13c)

[⌫S2]
pole (⌫, Q2) = � 2⇡↵ ⌫2

el

⌫2
el � ⌫2 � i0+

F2(Q
2) GM (Q2) . (5.13d)

These pole terms vanish in the limit Q2 ! 0, then ⌫ ! 0, as required.
We are now in a position to derive the various sum rules arising from low-energy and/or low-momentum

expansion of the CS amplitudes. The above DRs clearly show that the expansion in energy ⌫ is an expansion in
the moments of structure functions. For example, the Burkhardt-Cottingham (BC) sum rule [183] arises from
taking the low-energy limit, ⌫ ! 0, of the relation (5.12d) for ⌫S2:

0 =

ˆ 1

0
dx g2(x, Q2), (5.14)

valid for any Q2 > 0. Note that, although the unitarity relations are valid in the physical region only, the DRs
can be valid outside of the physical region. The photon virtuality must nevertheless be spacelike, Q2 > 0, in
order to exclude the particle production off the external photons.

Subtracting the DR (5.12d) at ⌫ = 0, and using the BC sum rule, we obtain:

S2(⌫, Q2) =
64⇡↵M4⌫

Q6

ˆ 1

0
dx

x2g2(x, Q2)

1 � x2(⌫/⌫el)2 � i0+
=

2M2⌫

⇡

ˆ 1

⌫el

d⌫ 0 ⌫ 0⇥⌫0

Q�LT � �TT
⇤

(⌫ 0, Q2)

(⌫ 0 2 + Q2)(⌫ 0 2 � ⌫2 � i0+)
. (5.15)

This expression could be obtained immediately by writing the DR for S2, rather than ⌫S2, but then we would
not have established the BC sum rule.

5.4. Sum Rules for Real Photons
We start with considering the model-independent of (5.12) for the case of Q2 = 0. The amplitudes T2 and

S2 drop out, and so do the cross sections containing longitudinal photons. We thus have:

T1(⌫, 0) =
2

⇡

ˆ 1

0
d⌫ 0 ⌫ 0 2�T (⌫ 0)

⌫ 0 2 � ⌫2 � i0+
, (5.16a)

S1(⌫, 0) =
2M

⇡

ˆ 1

0
d⌫ 0 ⌫ 0 �TT (⌫ 0)

⌫ 0 2 � ⌫2 � i0+
. (5.16b)

10Using that, with x = ⌫el/⌫, ⌫el = Q2
/2M, the change of the integration variable from ⌫ to x goes as:ˆ 1

⌫el

d⌫

⌫n
f(⌫, Q2) =

✓
2M

Q2

◆n�1ˆ 1

0

dx xn�2f(x, Q2). (5.11)

39

The cross sections �T and �TT are, respectively, the unpolarized and helicity-difference photoabsorption cross
sections: 1/2 (�1/2 ± �3/2). The amplitudes T1(⌫, 0) and S1(⌫, 0) are (up to overall factors) identical to the RCS
amplitudes A1(⌫, 0) and A3(⌫, 0) introduced in Sect. 3, and hence the above DRs apply to the latter amplitudes
too.

The low-energy expansion of the amplitudes goes as:

1

4⇡
T1(⌫, 0) = �Z2↵

M
+ (↵E1 + �M1)⌫

2 +
⇥

↵E1⌫ + �M1⌫ + 1/12 (↵E2 + �M2)
⇤

⌫4 + O(⌫6), (5.17a)

1

4⇡
S1(⌫, 0) = �↵{2

2M
+ M�0⌫

2 + M �̄0⌫
4 + O(⌫6), (5.17b)

where the O(⌫0) terms represent the low-energy theorem (LET) [137, 138]; the scalar polarizabilities ↵E

and �M are introduced in Sect. 2; the forward spin polarizabilities �0, �̄0 are linear combinations of spin
polarizabilities, e.g.:

�0 = �(�E1E1 + �M1M1 + �E1M2 + �M1E2). (5.18)

The rhs of Eq. (5.16) can also be Taylor expanded in ⌫2 and each term matched to the low-energy expansion
of the amplitude on the left-hand side (lhs). We however run immediately into the following difficulty. At ⌫ = 0
(the 0th order in ⌫), the relation for T1 yields an apparently wrong result:

�Z2↵/M = (2/⇡)

ˆ 1

0
d⌫ �T (⌫). (5.19)

The lhs is negative definite whereas the rhs is positive definite. The empirical knowledge of the photoabsorption
cross section for the nucleon shows in addition that the integral on the rhs diverges. This invalidates the
unsubtracted DR for T1. A common choice is to make a subtraction at ⌫ = 0, and use the LET to obtain:

T1(⌫, 0) = �4⇡Z2↵

M
+

2⌫2

⇡

ˆ 1

0
d⌫ 0 �T (⌫ 0)

⌫ 0 2 � ⌫2 � i0+
. (5.20)

The integral now converges and its evaluation for the proton will be discussed in Sect. 5.6.
Matching the low-energy expansion of T1 at O(⌫2), one obtains the Baldin sum rule [2]:

↵E1 + �M1 =
1

2⇡2

ˆ 1

0
d⌫

�T (⌫)

⌫2
. (5.21)

At O(⌫4), we obtain a sum rule for a linear combination of the energy slope of the dipole polarizabilities (↵E1⌫ ,
�M1⌫) and the quadrupole polarizabilities (↵E2, �M2) [60]:

↵E1⌫ + �M1⌫ + 1/12 (↵E2 + �M2) =
1

2⇡2

ˆ 1

0
d⌫

�T (⌫)

⌫4
, (5.22)

referred to as the 4th-order Baldin sum rule.
Considering the low-energy expansion of S1, at the 0th order one obtains the celebrated Gerasimov-Drell-

Hearn (GDH) sum rule [184–186]:

↵

M2
{2 = � 1

⇡2

ˆ 1

0
d⌫

�TT (⌫)

⌫
, (5.23)

which expresses the anomalous magnetic moment { in terms of an energy-weighted integral of the helicity-
difference photoabsorption cross section. This is probably the best studied sum rule. It directly demonstrates
the idea of expressing a purely quantum effect, which is the anomalous magnetic moment, in terms of a
classical quantity, which is the cross section. The perturbative verifications of the GDH sum rule in QED and
other quantum field theories provide further insight into quantum dynamics, see e.g. [187–191].

At O(⌫2) one arrives at the forward spin polarizability (FSP) sum rule, also referred to as the Gell-Mann,
Goldberger and Thirring (GGT) sum rule [182]:

�0 =
1

2⇡2

ˆ 1

0
d⌫

�TT (⌫)

⌫3
, (5.24)

40

Low-energy expansion

of magnitude smaller than its volume. It is customary to use the units of 10�4 fm3 for the dipole polarizabilities
of the nucleon.

The critical electric field strength needed to induce any appreciable polarizability of the nucleon can be
estimated as the ratio of the average energy level spacing in the nucleon to the size of the nucleon, i.e.,
Ecrit. ⇡ 100 MeV/1 fm = 1023 Volt/m. Clearly, static electric field strengths of this intensity are not available in
a laboratory. However, the electric field strength of a 100 MeV photon Compton scattering from the nucleon is
approximately 1023 Volt/m. Given the absence of static e.m. fields of the required immensity, the CS process is
currently the best available tool for accessing the nucleon polarizabilities experimentally, cf. Sect. 4.

2.2. Defining Hamiltonian
The response in the energy of the system due to polarizability effects is described by an effective Hamilto-

nian, which usually is ordered according to the number of spacetime derivatives of the e.m. field Aµ(x) [79, 80],

H(2)
e↵ = �4⇡

�

1
2↵E1E

2 + 1
2�M1H

2
�

, (2.1a)

H(3)
e↵ = �4⇡

⇣

1
2�E1E1� · (E ⇥ Ė) + 1

2�M1M1� · (H ⇥ Ḣ) � �M1E2Eij�iHj + �E1M2Hij�iEj

⌘

, (2.1b)

H(4)
e↵ = �4⇡

⇣

1
2↵E1⌫Ė

2
+ 1

2�M1⌫Ḣ
2
⌘

� 4⇡
�

1
12↵E2E

2
ij + 1

12�M2H
2
ij

�

, (2.1c)

where the electric (E) and magnetic (H) field are expressed in terms of the e.m. field tensor, Fµ⌫ = @µA⌫ �
@⌫Aµ, as: Ei = F0i, Hi = ✏ijkFjk. Furthermore, the following shorthand notation is used:

Eij = 1
2(riEj + rjEi), Hij = 1

2(riHj + rjHi). (2.2)

The third-order terms is dependent on the nucleon spin �, and the corresponding polarizabilities are called
the spin polarizabilities [81]. They have no analog in classical electrodynamics, but evidently they describe the
coupling of the induced e.m. moments with the nucleon spin. Unlike the scalar polarizabilities, they are not
invoked by static e.m. fields.

Note that the above Hamiltonian is quadratic in the e.m. field. This mean that the polarizabilities can
directly be probed in the CS process. The expansion in derivatives of the e.m. field translates then into the
low-energy expansion. The polarizabilities thus appear as coefficients in the low-energy expansion of the CS
amplitudes, cf. Sect. 3.

As mentioned above, the scalar dipole polarizabilities are measured in units of 10�4 fm3. In general, the
nucleon polarizabilities are measured in units 10�4 fmn+1, where n is the order at which they appear.

2.3. Lattice QCD
Presently all of the lattice QCD calculations of nucleon polarizabilities use the background-field method [82,

83], which amounts to measuring the shift in the mass spectrum upon applying a classical background field.
On a given configuration, one multiplies the SU(3) gauge fields by a U(1) gauge field. The U(1) links are given
by

Uµ(x) = exp [ieq�Aµ(x)] , (2.3)

where eq is the quark charge and � is the lattice spacing.
The case of the constant magnetic field is the simplest to illustrate. For the field with a magnitude H pointing

in the +z-direction, the usual choice is Aµ(x, y, z, t) = �Hx �µy. The problem with this choice is that due to
the condition that the gauge links Uµ must be periodic, the field is continuous only if eq�2H = 2⇡n/L, with
integer n. The minimal value of H is thus severely limited by the size of the lattice, although an improvement
to H ⇠ 1/L2 behavior is easily achieved (see, e.g., [84]).

One can calculate a baryon two-point function which behaves for large time in the usual manner

C(t) ⇠ e�m(H) t + . . . , (2.4)

but with the exponential damping governed by a field-dependent mass [85]

m(H) = m0 � µzH � 1
2�M1H

2 + O(H3) , (2.5)

7

Polarizabilities:
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Substituting the unitarity relations, Eq. (5.6), into Eq. (5.10) we have:10

T1(⌫, Q2) =
8⇡↵

M

ˆ 1

0

dx

x

f1(x, Q2)

1 � x2(⌫/⌫el)2 � i0+
=

2

⇡

ˆ 1

⌫el

d⌫ 0 ⌫ 0 2�T (⌫ 0, Q2)

⌫ 0 2 � ⌫2 � i0+
, (5.12a)

T2(⌫, Q2) =
16⇡↵M

Q2

ˆ 1

0
dx

f2(x, Q2)

1 � x2(⌫/⌫el)2 � i0+
=

2Q2

⇡

ˆ 1

⌫el

d⌫ 0 ⌫ 0 2[�T + �L](⌫ 0, Q2)

(⌫ 0 2 + Q2)(⌫ 0 2 � ⌫2 � i0+)
, (5.12b)

S1(⌫, Q2) =
16⇡↵M

Q2

ˆ 1

0
dx

g1(x, Q2)

1 � x2(⌫/⌫el)2 � i0+
=

2M

⇡

ˆ 1

⌫el

d⌫ 0 ⌫ 0 3⇥Q
⌫0 �LT + �TT

⇤

(⌫ 0, Q2)

(⌫ 0 2 + Q2)(⌫ 0 2 � ⌫2 � i0+)
, (5.12c)

⌫S2(⌫, Q2) =
16⇡↵M2

Q2

ˆ 1

0
dx

g2(x, Q2)

1 � x2(⌫/⌫el)2 � i0+
=

2M2

⇡

ˆ 1

⌫el

d⌫ 0 ⌫ 0 3⇥⌫0

Q�LT � �TT
⇤

(⌫ 0, Q2)

(⌫ 0 2 + Q2)(⌫ 0 2 � ⌫2 � i0+)
. (5.12d)

Substituting here the elastic structure functions, Eq. (5.7), we obtain the nucleon-pole contribution:

T pole
1 (⌫, Q2) =

4⇡↵

M

⌫2
el G

2
M (Q2)

⌫2
el � ⌫2 � i0+

, (5.13a)

T pole
2 (⌫, Q2) =

8⇡↵ ⌫el

⌫2
el � ⌫2 � i0+

G2
E(Q2) + ⌧G2

M (Q2)

1 + ⌧
, (5.13b)

Spole
1 (⌫, Q2) =

4⇡↵ ⌫el

⌫2
el � ⌫2 � i0+

F1(Q
2) GM (Q2) , (5.13c)

[⌫S2]
pole (⌫, Q2) = � 2⇡↵ ⌫2

el

⌫2
el � ⌫2 � i0+

F2(Q
2) GM (Q2) . (5.13d)

These pole terms vanish in the limit Q2 ! 0, then ⌫ ! 0, as required.
We are now in a position to derive the various sum rules arising from low-energy and/or low-momentum

expansion of the CS amplitudes. The above DRs clearly show that the expansion in energy ⌫ is an expansion in
the moments of structure functions. For example, the Burkhardt-Cottingham (BC) sum rule [183] arises from
taking the low-energy limit, ⌫ ! 0, of the relation (5.12d) for ⌫S2:

0 =

ˆ 1

0
dx g2(x, Q2), (5.14)

valid for any Q2 > 0. Note that, although the unitarity relations are valid in the physical region only, the DRs
can be valid outside of the physical region. The photon virtuality must nevertheless be spacelike, Q2 > 0, in
order to exclude the particle production off the external photons.

Subtracting the DR (5.12d) at ⌫ = 0, and using the BC sum rule, we obtain:

S2(⌫, Q2) =
64⇡↵M4⌫

Q6

ˆ 1

0
dx

x2g2(x, Q2)

1 � x2(⌫/⌫el)2 � i0+
=

2M2⌫

⇡

ˆ 1

⌫el

d⌫ 0 ⌫ 0⇥⌫0

Q�LT � �TT
⇤

(⌫ 0, Q2)

(⌫ 0 2 + Q2)(⌫ 0 2 � ⌫2 � i0+)
. (5.15)

This expression could be obtained immediately by writing the DR for S2, rather than ⌫S2, but then we would
not have established the BC sum rule.

5.4. Sum Rules for Real Photons
We start with considering the model-independent of (5.12) for the case of Q2 = 0. The amplitudes T2 and

S2 drop out, and so do the cross sections containing longitudinal photons. We thus have:

T1(⌫, 0) =
2

⇡

ˆ 1

0
d⌫ 0 ⌫ 0 2�T (⌫ 0)

⌫ 0 2 � ⌫2 � i0+
, (5.16a)

S1(⌫, 0) =
2M

⇡

ˆ 1

0
d⌫ 0 ⌫ 0 �TT (⌫ 0)

⌫ 0 2 � ⌫2 � i0+
. (5.16b)

10Using that, with x = ⌫el/⌫, ⌫el = Q2
/2M, the change of the integration variable from ⌫ to x goes as:ˆ 1

⌫el

d⌫

⌫n
f(⌫, Q2) =

✓
2M

Q2

◆n�1ˆ 1

0

dx xn�2f(x, Q2). (5.11)
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The cross sections �T and �TT are, respectively, the unpolarized and helicity-difference photoabsorption cross
sections: 1/2 (�1/2 ± �3/2). The amplitudes T1(⌫, 0) and S1(⌫, 0) are (up to overall factors) identical to the RCS
amplitudes A1(⌫, 0) and A3(⌫, 0) introduced in Sect. 3, and hence the above DRs apply to the latter amplitudes
too.

The low-energy expansion of the amplitudes goes as:

1

4⇡
T1(⌫, 0) = �Z2↵

M
+ (↵E1 + �M1)⌫

2 +
⇥

↵E1⌫ + �M1⌫ + 1/12 (↵E2 + �M2)
⇤

⌫4 + O(⌫6), (5.17a)

1

4⇡
S1(⌫, 0) = �↵{2

2M
+ M�0⌫

2 + M �̄0⌫
4 + O(⌫6), (5.17b)

where the O(⌫0) terms represent the low-energy theorem (LET) [137, 138]; the scalar polarizabilities ↵E

and �M are introduced in Sect. 2; the forward spin polarizabilities �0, �̄0 are linear combinations of spin
polarizabilities, e.g.:

�0 = �(�E1E1 + �M1M1 + �E1M2 + �M1E2). (5.18)

The rhs of Eq. (5.16) can also be Taylor expanded in ⌫2 and each term matched to the low-energy expansion
of the amplitude on the left-hand side (lhs). We however run immediately into the following difficulty. At ⌫ = 0
(the 0th order in ⌫), the relation for T1 yields an apparently wrong result:

�Z2↵/M = (2/⇡)

ˆ 1

0
d⌫ �T (⌫). (5.19)

The lhs is negative definite whereas the rhs is positive definite. The empirical knowledge of the photoabsorption
cross section for the nucleon shows in addition that the integral on the rhs diverges. This invalidates the
unsubtracted DR for T1. A common choice is to make a subtraction at ⌫ = 0, and use the LET to obtain:

T1(⌫, 0) = �4⇡Z2↵

M
+

2⌫2

⇡

ˆ 1

0
d⌫ 0 �T (⌫ 0)

⌫ 0 2 � ⌫2 � i0+
. (5.20)

The integral now converges and its evaluation for the proton will be discussed in Sect. 5.6.
Matching the low-energy expansion of T1 at O(⌫2), one obtains the Baldin sum rule [2]:

↵E1 + �M1 =
1

2⇡2

ˆ 1

0
d⌫

�T (⌫)

⌫2
. (5.21)

At O(⌫4), we obtain a sum rule for a linear combination of the energy slope of the dipole polarizabilities (↵E1⌫ ,
�M1⌫) and the quadrupole polarizabilities (↵E2, �M2) [60]:

↵E1⌫ + �M1⌫ + 1/12 (↵E2 + �M2) =
1

2⇡2

ˆ 1

0
d⌫

�T (⌫)

⌫4
, (5.22)

referred to as the 4th-order Baldin sum rule.
Considering the low-energy expansion of S1, at the 0th order one obtains the celebrated Gerasimov-Drell-

Hearn (GDH) sum rule [184–186]:

↵

M2
{2 = � 1

⇡2

ˆ 1

0
d⌫

�TT (⌫)

⌫
, (5.23)

which expresses the anomalous magnetic moment { in terms of an energy-weighted integral of the helicity-
difference photoabsorption cross section. This is probably the best studied sum rule. It directly demonstrates
the idea of expressing a purely quantum effect, which is the anomalous magnetic moment, in terms of a
classical quantity, which is the cross section. The perturbative verifications of the GDH sum rule in QED and
other quantum field theories provide further insight into quantum dynamics, see e.g. [187–191].

At O(⌫2) one arrives at the forward spin polarizability (FSP) sum rule, also referred to as the Gell-Mann,
Goldberger and Thirring (GGT) sum rule [182]:

�0 =
1

2⇡2

ˆ 1

0
d⌫

�TT (⌫)

⌫3
, (5.24)
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Low-energy expansion

of magnitude smaller than its volume. It is customary to use the units of 10�4 fm3 for the dipole polarizabilities
of the nucleon.

The critical electric field strength needed to induce any appreciable polarizability of the nucleon can be
estimated as the ratio of the average energy level spacing in the nucleon to the size of the nucleon, i.e.,
Ecrit. ⇡ 100 MeV/1 fm = 1023 Volt/m. Clearly, static electric field strengths of this intensity are not available in
a laboratory. However, the electric field strength of a 100 MeV photon Compton scattering from the nucleon is
approximately 1023 Volt/m. Given the absence of static e.m. fields of the required immensity, the CS process is
currently the best available tool for accessing the nucleon polarizabilities experimentally, cf. Sect. 4.

2.2. Defining Hamiltonian
The response in the energy of the system due to polarizability effects is described by an effective Hamilto-

nian, which usually is ordered according to the number of spacetime derivatives of the e.m. field Aµ(x) [79, 80],

H(2)
e↵ = �4⇡

�

1
2↵E1E

2 + 1
2�M1H

2
�

, (2.1a)

H(3)
e↵ = �4⇡

⇣

1
2�E1E1� · (E ⇥ Ė) + 1

2�M1M1� · (H ⇥ Ḣ) � �M1E2Eij�iHj + �E1M2Hij�iEj

⌘

, (2.1b)

H(4)
e↵ = �4⇡

⇣

1
2↵E1⌫Ė

2
+ 1

2�M1⌫Ḣ
2
⌘

� 4⇡
�

1
12↵E2E

2
ij + 1

12�M2H
2
ij

�

, (2.1c)

where the electric (E) and magnetic (H) field are expressed in terms of the e.m. field tensor, Fµ⌫ = @µA⌫ �
@⌫Aµ, as: Ei = F0i, Hi = ✏ijkFjk. Furthermore, the following shorthand notation is used:

Eij = 1
2(riEj + rjEi), Hij = 1

2(riHj + rjHi). (2.2)

The third-order terms is dependent on the nucleon spin �, and the corresponding polarizabilities are called
the spin polarizabilities [81]. They have no analog in classical electrodynamics, but evidently they describe the
coupling of the induced e.m. moments with the nucleon spin. Unlike the scalar polarizabilities, they are not
invoked by static e.m. fields.

Note that the above Hamiltonian is quadratic in the e.m. field. This mean that the polarizabilities can
directly be probed in the CS process. The expansion in derivatives of the e.m. field translates then into the
low-energy expansion. The polarizabilities thus appear as coefficients in the low-energy expansion of the CS
amplitudes, cf. Sect. 3.

As mentioned above, the scalar dipole polarizabilities are measured in units of 10�4 fm3. In general, the
nucleon polarizabilities are measured in units 10�4 fmn+1, where n is the order at which they appear.

2.3. Lattice QCD
Presently all of the lattice QCD calculations of nucleon polarizabilities use the background-field method [82,

83], which amounts to measuring the shift in the mass spectrum upon applying a classical background field.
On a given configuration, one multiplies the SU(3) gauge fields by a U(1) gauge field. The U(1) links are given
by

Uµ(x) = exp [ieq�Aµ(x)] , (2.3)

where eq is the quark charge and � is the lattice spacing.
The case of the constant magnetic field is the simplest to illustrate. For the field with a magnitude H pointing

in the +z-direction, the usual choice is Aµ(x, y, z, t) = �Hx �µy. The problem with this choice is that due to
the condition that the gauge links Uµ must be periodic, the field is continuous only if eq�2H = 2⇡n/L, with
integer n. The minimal value of H is thus severely limited by the size of the lattice, although an improvement
to H ⇠ 1/L2 behavior is easily achieved (see, e.g., [84]).

One can calculate a baryon two-point function which behaves for large time in the usual manner

C(t) ⇠ e�m(H) t + . . . , (2.4)

but with the exponential damping governed by a field-dependent mass [85]

m(H) = m0 � µzH � 1
2�M1H

2 + O(H3) , (2.5)
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Polarizabilities:

The cross sections �T and �TT are, respectively, the unpolarized and helicity-difference photoabsorption cross
sections: 1/2 (�1/2 ± �3/2). The amplitudes T1(⌫, 0) and S1(⌫, 0) are (up to overall factors) identical to the RCS
amplitudes A1(⌫, 0) and A3(⌫, 0) introduced in Sect. 3, and hence the above DRs apply to the latter amplitudes
too.

The low-energy expansion of the amplitudes goes as:

1

4⇡
T1(⌫, 0) = �Z2↵

M
+ (↵E1 + �M1)⌫

2 +
⇥

↵E1⌫ + �M1⌫ + 1/12 (↵E2 + �M2)
⇤

⌫4 + O(⌫6), (5.17a)

1

4⇡
S1(⌫, 0) = �↵{2

2M
+ M�0⌫

2 + M �̄0⌫
4 + O(⌫6), (5.17b)

where the O(⌫0) terms represent the low-energy theorem (LET) [137, 138]; the scalar polarizabilities ↵E

and �M are introduced in Sect. 2; the forward spin polarizabilities �0, �̄0 are linear combinations of spin
polarizabilities, e.g.:

�0 = �(�E1E1 + �M1M1 + �E1M2 + �M1E2). (5.18)

The rhs of Eq. (5.16) can also be Taylor expanded in ⌫2 and each term matched to the low-energy expansion
of the amplitude on the left-hand side (lhs). We however run immediately into the following difficulty. At ⌫ = 0
(the 0th order in ⌫), the relation for T1 yields an apparently wrong result:

�Z2↵/M = (2/⇡)

ˆ 1

0
d⌫ �T (⌫). (5.19)

The lhs is negative definite whereas the rhs is positive definite. The empirical knowledge of the photoabsorption
cross section for the nucleon shows in addition that the integral on the rhs diverges. This invalidates the
unsubtracted DR for T1. A common choice is to make a subtraction at ⌫ = 0, and use the LET to obtain:

T1(⌫, 0) = �4⇡Z2↵

M
+

2⌫2

⇡

ˆ 1

0
d⌫ 0 �T (⌫ 0)

⌫ 0 2 � ⌫2 � i0+
. (5.20)

The integral now converges and its evaluation for the proton will be discussed in Sect. 5.6.
Matching the low-energy expansion of T1 at O(⌫2), one obtains the Baldin sum rule [2]:

↵E1 + �M1 =
1

2⇡2

ˆ 1

0
d⌫

�T (⌫)

⌫2
. (5.21)

At O(⌫4), we obtain a sum rule for a linear combination of the energy slope of the dipole polarizabilities (↵E1⌫ ,
�M1⌫) and the quadrupole polarizabilities (↵E2, �M2) [60]:

↵E1⌫ + �M1⌫ + 1/12 (↵E2 + �M2) =
1

2⇡2

ˆ 1

0
d⌫

�T (⌫)

⌫4
, (5.22)

referred to as the 4th-order Baldin sum rule.
Considering the low-energy expansion of S1, at the 0th order one obtains the celebrated Gerasimov-Drell-

Hearn (GDH) sum rule [184–186]:

↵

M2
{2 = � 1

⇡2

ˆ 1

0
d⌫

�TT (⌫)

⌫
, (5.23)

which expresses the anomalous magnetic moment { in terms of an energy-weighted integral of the helicity-
difference photoabsorption cross section. This is probably the best studied sum rule. It directly demonstrates
the idea of expressing a purely quantum effect, which is the anomalous magnetic moment, in terms of a
classical quantity, which is the cross section. The perturbative verifications of the GDH sum rule in QED and
other quantum field theories provide further insight into quantum dynamics, see e.g. [187–191].

At O(⌫2) one arrives at the forward spin polarizability (FSP) sum rule, also referred to as the Gell-Mann,
Goldberger and Thirring (GGT) sum rule [182]:

�0 =
1

2⇡2

ˆ 1

0
d⌫

�TT (⌫)

⌫3
, (5.24)
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Leading order:

The cross sections �T and �TT are, respectively, the unpolarized and helicity-difference photoabsorption cross
sections: 1/2 (�1/2 ± �3/2). The amplitudes T1(⌫, 0) and S1(⌫, 0) are (up to overall factors) identical to the RCS
amplitudes A1(⌫, 0) and A3(⌫, 0) introduced in Sect. 3, and hence the above DRs apply to the latter amplitudes
too.

The low-energy expansion of the amplitudes goes as:

1

4⇡
T1(⌫, 0) = �Z2↵

M
+ (↵E1 + �M1)⌫

2 +
⇥

↵E1⌫ + �M1⌫ + 1/12 (↵E2 + �M2)
⇤

⌫4 + O(⌫6), (5.17a)

1

4⇡
S1(⌫, 0) = �↵{2

2M
+ M�0⌫

2 + M �̄0⌫
4 + O(⌫6), (5.17b)

where the O(⌫0) terms represent the low-energy theorem (LET) [137, 138]; the scalar polarizabilities ↵E

and �M are introduced in Sect. 2; the forward spin polarizabilities �0, �̄0 are linear combinations of spin
polarizabilities, e.g.:

�0 = �(�E1E1 + �M1M1 + �E1M2 + �M1E2). (5.18)

The rhs of Eq. (5.16) can also be Taylor expanded in ⌫2 and each term matched to the low-energy expansion
of the amplitude on the left-hand side (lhs). We however run immediately into the following difficulty. At ⌫ = 0
(the 0th order in ⌫), the relation for T1 yields an apparently wrong result:

�Z2↵/M = (2/⇡)

ˆ 1

0
d⌫ �T (⌫). (5.19)

The lhs is negative definite whereas the rhs is positive definite. The empirical knowledge of the photoabsorption
cross section for the nucleon shows in addition that the integral on the rhs diverges. This invalidates the
unsubtracted DR for T1. A common choice is to make a subtraction at ⌫ = 0, and use the LET to obtain:

T1(⌫, 0) = �4⇡Z2↵

M
+

2⌫2

⇡

ˆ 1

0
d⌫ 0 �T (⌫ 0)

⌫ 0 2 � ⌫2 � i0+
. (5.20)

The integral now converges and its evaluation for the proton will be discussed in Sect. 5.6.
Matching the low-energy expansion of T1 at O(⌫2), one obtains the Baldin sum rule [2]:

↵E1 + �M1 =
1

2⇡2

ˆ 1

0
d⌫

�T (⌫)

⌫2
. (5.21)

At O(⌫4), we obtain a sum rule for a linear combination of the energy slope of the dipole polarizabilities (↵E1⌫ ,
�M1⌫) and the quadrupole polarizabilities (↵E2, �M2) [60]:

↵E1⌫ + �M1⌫ + 1/12 (↵E2 + �M2) =
1

2⇡2

ˆ 1

0
d⌫

�T (⌫)

⌫4
, (5.22)

referred to as the 4th-order Baldin sum rule.
Considering the low-energy expansion of S1, at the 0th order one obtains the celebrated Gerasimov-Drell-

Hearn (GDH) sum rule [184–186]:

↵

M2
{2 = � 1

⇡2

ˆ 1

0
d⌫

�TT (⌫)

⌫
, (5.23)

which expresses the anomalous magnetic moment { in terms of an energy-weighted integral of the helicity-
difference photoabsorption cross section. This is probably the best studied sum rule. It directly demonstrates
the idea of expressing a purely quantum effect, which is the anomalous magnetic moment, in terms of a
classical quantity, which is the cross section. The perturbative verifications of the GDH sum rule in QED and
other quantum field theories provide further insight into quantum dynamics, see e.g. [187–191].

At O(⌫2) one arrives at the forward spin polarizability (FSP) sum rule, also referred to as the Gell-Mann,
Goldberger and Thirring (GGT) sum rule [182]:

�0 =
1

2⇡2

ˆ 1

0
d⌫

�TT (⌫)

⌫3
, (5.24)
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Real photons
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Substituting the unitarity relations, Eq. (5.6), into Eq. (5.10) we have:10

T1(⌫, Q2) =
8⇡↵

M

ˆ 1

0

dx

x

f1(x, Q2)

1 � x2(⌫/⌫el)2 � i0+
=

2

⇡

ˆ 1

⌫el

d⌫ 0 ⌫ 0 2�T (⌫ 0, Q2)

⌫ 0 2 � ⌫2 � i0+
, (5.12a)

T2(⌫, Q2) =
16⇡↵M

Q2

ˆ 1

0
dx

f2(x, Q2)

1 � x2(⌫/⌫el)2 � i0+
=

2Q2

⇡

ˆ 1

⌫el

d⌫ 0 ⌫ 0 2[�T + �L](⌫ 0, Q2)

(⌫ 0 2 + Q2)(⌫ 0 2 � ⌫2 � i0+)
, (5.12b)

S1(⌫, Q2) =
16⇡↵M

Q2

ˆ 1

0
dx

g1(x, Q2)

1 � x2(⌫/⌫el)2 � i0+
=

2M

⇡

ˆ 1

⌫el

d⌫ 0 ⌫ 0 3⇥Q
⌫0 �LT + �TT

⇤

(⌫ 0, Q2)

(⌫ 0 2 + Q2)(⌫ 0 2 � ⌫2 � i0+)
, (5.12c)

⌫S2(⌫, Q2) =
16⇡↵M2

Q2

ˆ 1

0
dx

g2(x, Q2)

1 � x2(⌫/⌫el)2 � i0+
=

2M2

⇡

ˆ 1

⌫el

d⌫ 0 ⌫ 0 3⇥⌫0

Q�LT � �TT
⇤

(⌫ 0, Q2)

(⌫ 0 2 + Q2)(⌫ 0 2 � ⌫2 � i0+)
. (5.12d)

Substituting here the elastic structure functions, Eq. (5.7), we obtain the nucleon-pole contribution:

T pole
1 (⌫, Q2) =

4⇡↵

M

⌫2
el G

2
M (Q2)

⌫2
el � ⌫2 � i0+

, (5.13a)

T pole
2 (⌫, Q2) =

8⇡↵ ⌫el

⌫2
el � ⌫2 � i0+

G2
E(Q2) + ⌧G2

M (Q2)

1 + ⌧
, (5.13b)

Spole
1 (⌫, Q2) =

4⇡↵ ⌫el

⌫2
el � ⌫2 � i0+

F1(Q
2) GM (Q2) , (5.13c)

[⌫S2]
pole (⌫, Q2) = � 2⇡↵ ⌫2

el

⌫2
el � ⌫2 � i0+

F2(Q
2) GM (Q2) . (5.13d)

These pole terms vanish in the limit Q2 ! 0, then ⌫ ! 0, as required.
We are now in a position to derive the various sum rules arising from low-energy and/or low-momentum

expansion of the CS amplitudes. The above DRs clearly show that the expansion in energy ⌫ is an expansion in
the moments of structure functions. For example, the Burkhardt-Cottingham (BC) sum rule [183] arises from
taking the low-energy limit, ⌫ ! 0, of the relation (5.12d) for ⌫S2:

0 =

ˆ 1

0
dx g2(x, Q2), (5.14)

valid for any Q2 > 0. Note that, although the unitarity relations are valid in the physical region only, the DRs
can be valid outside of the physical region. The photon virtuality must nevertheless be spacelike, Q2 > 0, in
order to exclude the particle production off the external photons.

Subtracting the DR (5.12d) at ⌫ = 0, and using the BC sum rule, we obtain:

S2(⌫, Q2) =
64⇡↵M4⌫

Q6

ˆ 1

0
dx

x2g2(x, Q2)

1 � x2(⌫/⌫el)2 � i0+
=

2M2⌫

⇡

ˆ 1

⌫el

d⌫ 0 ⌫ 0⇥⌫0

Q�LT � �TT
⇤

(⌫ 0, Q2)

(⌫ 0 2 + Q2)(⌫ 0 2 � ⌫2 � i0+)
. (5.15)

This expression could be obtained immediately by writing the DR for S2, rather than ⌫S2, but then we would
not have established the BC sum rule.

5.4. Sum Rules for Real Photons
We start with considering the model-independent of (5.12) for the case of Q2 = 0. The amplitudes T2 and

S2 drop out, and so do the cross sections containing longitudinal photons. We thus have:

T1(⌫, 0) =
2

⇡

ˆ 1

0
d⌫ 0 ⌫ 0 2�T (⌫ 0)

⌫ 0 2 � ⌫2 � i0+
, (5.16a)

S1(⌫, 0) =
2M

⇡

ˆ 1

0
d⌫ 0 ⌫ 0 �TT (⌫ 0)

⌫ 0 2 � ⌫2 � i0+
. (5.16b)

10Using that, with x = ⌫el/⌫, ⌫el = Q2
/2M, the change of the integration variable from ⌫ to x goes as:ˆ 1

⌫el

d⌫

⌫n
f(⌫, Q2) =

✓
2M

Q2

◆n�1ˆ 1

0

dx xn�2f(x, Q2). (5.11)
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The cross sections �T and �TT are, respectively, the unpolarized and helicity-difference photoabsorption cross
sections: 1/2 (�1/2 ± �3/2). The amplitudes T1(⌫, 0) and S1(⌫, 0) are (up to overall factors) identical to the RCS
amplitudes A1(⌫, 0) and A3(⌫, 0) introduced in Sect. 3, and hence the above DRs apply to the latter amplitudes
too.

The low-energy expansion of the amplitudes goes as:

1

4⇡
T1(⌫, 0) = �Z2↵

M
+ (↵E1 + �M1)⌫

2 +
⇥

↵E1⌫ + �M1⌫ + 1/12 (↵E2 + �M2)
⇤

⌫4 + O(⌫6), (5.17a)

1

4⇡
S1(⌫, 0) = �↵{2

2M
+ M�0⌫

2 + M �̄0⌫
4 + O(⌫6), (5.17b)

where the O(⌫0) terms represent the low-energy theorem (LET) [137, 138]; the scalar polarizabilities ↵E

and �M are introduced in Sect. 2; the forward spin polarizabilities �0, �̄0 are linear combinations of spin
polarizabilities, e.g.:

�0 = �(�E1E1 + �M1M1 + �E1M2 + �M1E2). (5.18)

The rhs of Eq. (5.16) can also be Taylor expanded in ⌫2 and each term matched to the low-energy expansion
of the amplitude on the left-hand side (lhs). We however run immediately into the following difficulty. At ⌫ = 0
(the 0th order in ⌫), the relation for T1 yields an apparently wrong result:

�Z2↵/M = (2/⇡)

ˆ 1

0
d⌫ �T (⌫). (5.19)

The lhs is negative definite whereas the rhs is positive definite. The empirical knowledge of the photoabsorption
cross section for the nucleon shows in addition that the integral on the rhs diverges. This invalidates the
unsubtracted DR for T1. A common choice is to make a subtraction at ⌫ = 0, and use the LET to obtain:

T1(⌫, 0) = �4⇡Z2↵

M
+

2⌫2

⇡

ˆ 1

0
d⌫ 0 �T (⌫ 0)

⌫ 0 2 � ⌫2 � i0+
. (5.20)

The integral now converges and its evaluation for the proton will be discussed in Sect. 5.6.
Matching the low-energy expansion of T1 at O(⌫2), one obtains the Baldin sum rule [2]:

↵E1 + �M1 =
1

2⇡2

ˆ 1

0
d⌫

�T (⌫)

⌫2
. (5.21)

At O(⌫4), we obtain a sum rule for a linear combination of the energy slope of the dipole polarizabilities (↵E1⌫ ,
�M1⌫) and the quadrupole polarizabilities (↵E2, �M2) [60]:

↵E1⌫ + �M1⌫ + 1/12 (↵E2 + �M2) =
1

2⇡2

ˆ 1

0
d⌫

�T (⌫)

⌫4
, (5.22)

referred to as the 4th-order Baldin sum rule.
Considering the low-energy expansion of S1, at the 0th order one obtains the celebrated Gerasimov-Drell-

Hearn (GDH) sum rule [184–186]:

↵

M2
{2 = � 1

⇡2

ˆ 1

0
d⌫

�TT (⌫)

⌫
, (5.23)

which expresses the anomalous magnetic moment { in terms of an energy-weighted integral of the helicity-
difference photoabsorption cross section. This is probably the best studied sum rule. It directly demonstrates
the idea of expressing a purely quantum effect, which is the anomalous magnetic moment, in terms of a
classical quantity, which is the cross section. The perturbative verifications of the GDH sum rule in QED and
other quantum field theories provide further insight into quantum dynamics, see e.g. [187–191].

At O(⌫2) one arrives at the forward spin polarizability (FSP) sum rule, also referred to as the Gell-Mann,
Goldberger and Thirring (GGT) sum rule [182]:

�0 =
1

2⇡2

ˆ 1

0
d⌫

�TT (⌫)

⌫3
, (5.24)
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Low-energy expansion

of magnitude smaller than its volume. It is customary to use the units of 10�4 fm3 for the dipole polarizabilities
of the nucleon.

The critical electric field strength needed to induce any appreciable polarizability of the nucleon can be
estimated as the ratio of the average energy level spacing in the nucleon to the size of the nucleon, i.e.,
Ecrit. ⇡ 100 MeV/1 fm = 1023 Volt/m. Clearly, static electric field strengths of this intensity are not available in
a laboratory. However, the electric field strength of a 100 MeV photon Compton scattering from the nucleon is
approximately 1023 Volt/m. Given the absence of static e.m. fields of the required immensity, the CS process is
currently the best available tool for accessing the nucleon polarizabilities experimentally, cf. Sect. 4.

2.2. Defining Hamiltonian
The response in the energy of the system due to polarizability effects is described by an effective Hamilto-

nian, which usually is ordered according to the number of spacetime derivatives of the e.m. field Aµ(x) [79, 80],

H(2)
e↵ = �4⇡

�

1
2↵E1E

2 + 1
2�M1H

2
�

, (2.1a)

H(3)
e↵ = �4⇡

⇣

1
2�E1E1� · (E ⇥ Ė) + 1

2�M1M1� · (H ⇥ Ḣ) � �M1E2Eij�iHj + �E1M2Hij�iEj

⌘

, (2.1b)

H(4)
e↵ = �4⇡

⇣

1
2↵E1⌫Ė

2
+ 1

2�M1⌫Ḣ
2
⌘

� 4⇡
�

1
12↵E2E

2
ij + 1

12�M2H
2
ij

�

, (2.1c)

where the electric (E) and magnetic (H) field are expressed in terms of the e.m. field tensor, Fµ⌫ = @µA⌫ �
@⌫Aµ, as: Ei = F0i, Hi = ✏ijkFjk. Furthermore, the following shorthand notation is used:

Eij = 1
2(riEj + rjEi), Hij = 1

2(riHj + rjHi). (2.2)

The third-order terms is dependent on the nucleon spin �, and the corresponding polarizabilities are called
the spin polarizabilities [81]. They have no analog in classical electrodynamics, but evidently they describe the
coupling of the induced e.m. moments with the nucleon spin. Unlike the scalar polarizabilities, they are not
invoked by static e.m. fields.

Note that the above Hamiltonian is quadratic in the e.m. field. This mean that the polarizabilities can
directly be probed in the CS process. The expansion in derivatives of the e.m. field translates then into the
low-energy expansion. The polarizabilities thus appear as coefficients in the low-energy expansion of the CS
amplitudes, cf. Sect. 3.

As mentioned above, the scalar dipole polarizabilities are measured in units of 10�4 fm3. In general, the
nucleon polarizabilities are measured in units 10�4 fmn+1, where n is the order at which they appear.

2.3. Lattice QCD
Presently all of the lattice QCD calculations of nucleon polarizabilities use the background-field method [82,

83], which amounts to measuring the shift in the mass spectrum upon applying a classical background field.
On a given configuration, one multiplies the SU(3) gauge fields by a U(1) gauge field. The U(1) links are given
by

Uµ(x) = exp [ieq�Aµ(x)] , (2.3)

where eq is the quark charge and � is the lattice spacing.
The case of the constant magnetic field is the simplest to illustrate. For the field with a magnitude H pointing

in the +z-direction, the usual choice is Aµ(x, y, z, t) = �Hx �µy. The problem with this choice is that due to
the condition that the gauge links Uµ must be periodic, the field is continuous only if eq�2H = 2⇡n/L, with
integer n. The minimal value of H is thus severely limited by the size of the lattice, although an improvement
to H ⇠ 1/L2 behavior is easily achieved (see, e.g., [84]).

One can calculate a baryon two-point function which behaves for large time in the usual manner

C(t) ⇠ e�m(H) t + . . . , (2.4)

but with the exponential damping governed by a field-dependent mass [85]

m(H) = m0 � µzH � 1
2�M1H

2 + O(H3) , (2.5)
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Polarizabilities:

�0 = �(�E1E1 + �M1M1 + �E1M2 + �M1E2)

=
1

4⇡2

Z 1

⌫0

d⌫
�1/2(⌫)� �3/2(⌫)

⌫3

The cross sections �T and �TT are, respectively, the unpolarized and helicity-difference photoabsorption cross
sections: 1/2 (�1/2 ± �3/2). The amplitudes T1(⌫, 0) and S1(⌫, 0) are (up to overall factors) identical to the RCS
amplitudes A1(⌫, 0) and A3(⌫, 0) introduced in Sect. 3, and hence the above DRs apply to the latter amplitudes
too.

The low-energy expansion of the amplitudes goes as:

1

4⇡
T1(⌫, 0) = �Z2↵

M
+ (↵E1 + �M1)⌫

2 +
⇥

↵E1⌫ + �M1⌫ + 1/12 (↵E2 + �M2)
⇤

⌫4 + O(⌫6), (5.17a)

1

4⇡
S1(⌫, 0) = �↵{2

2M
+ M�0⌫

2 + M �̄0⌫
4 + O(⌫6), (5.17b)

where the O(⌫0) terms represent the low-energy theorem (LET) [137, 138]; the scalar polarizabilities ↵E

and �M are introduced in Sect. 2; the forward spin polarizabilities �0, �̄0 are linear combinations of spin
polarizabilities, e.g.:

�0 = �(�E1E1 + �M1M1 + �E1M2 + �M1E2). (5.18)

The rhs of Eq. (5.16) can also be Taylor expanded in ⌫2 and each term matched to the low-energy expansion
of the amplitude on the left-hand side (lhs). We however run immediately into the following difficulty. At ⌫ = 0
(the 0th order in ⌫), the relation for T1 yields an apparently wrong result:

�Z2↵/M = (2/⇡)

ˆ 1

0
d⌫ �T (⌫). (5.19)

The lhs is negative definite whereas the rhs is positive definite. The empirical knowledge of the photoabsorption
cross section for the nucleon shows in addition that the integral on the rhs diverges. This invalidates the
unsubtracted DR for T1. A common choice is to make a subtraction at ⌫ = 0, and use the LET to obtain:

T1(⌫, 0) = �4⇡Z2↵

M
+

2⌫2

⇡

ˆ 1

0
d⌫ 0 �T (⌫ 0)

⌫ 0 2 � ⌫2 � i0+
. (5.20)

The integral now converges and its evaluation for the proton will be discussed in Sect. 5.6.
Matching the low-energy expansion of T1 at O(⌫2), one obtains the Baldin sum rule [2]:

↵E1 + �M1 =
1

2⇡2

ˆ 1

0
d⌫

�T (⌫)

⌫2
. (5.21)

At O(⌫4), we obtain a sum rule for a linear combination of the energy slope of the dipole polarizabilities (↵E1⌫ ,
�M1⌫) and the quadrupole polarizabilities (↵E2, �M2) [60]:

↵E1⌫ + �M1⌫ + 1/12 (↵E2 + �M2) =
1

2⇡2

ˆ 1

0
d⌫

�T (⌫)

⌫4
, (5.22)

referred to as the 4th-order Baldin sum rule.
Considering the low-energy expansion of S1, at the 0th order one obtains the celebrated Gerasimov-Drell-

Hearn (GDH) sum rule [184–186]:

↵

M2
{2 = � 1

⇡2

ˆ 1

0
d⌫

�TT (⌫)

⌫
, (5.23)

which expresses the anomalous magnetic moment { in terms of an energy-weighted integral of the helicity-
difference photoabsorption cross section. This is probably the best studied sum rule. It directly demonstrates
the idea of expressing a purely quantum effect, which is the anomalous magnetic moment, in terms of a
classical quantity, which is the cross section. The perturbative verifications of the GDH sum rule in QED and
other quantum field theories provide further insight into quantum dynamics, see e.g. [187–191].

At O(⌫2) one arrives at the forward spin polarizability (FSP) sum rule, also referred to as the Gell-Mann,
Goldberger and Thirring (GGT) sum rule [182]:

�0 =
1

2⇡2

ˆ 1

0
d⌫

�TT (⌫)

⌫3
, (5.24)
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Leading order:
Next-to-leading order:

The cross sections �T and �TT are, respectively, the unpolarized and helicity-difference photoabsorption cross
sections: 1/2 (�1/2 ± �3/2). The amplitudes T1(⌫, 0) and S1(⌫, 0) are (up to overall factors) identical to the RCS
amplitudes A1(⌫, 0) and A3(⌫, 0) introduced in Sect. 3, and hence the above DRs apply to the latter amplitudes
too.

The low-energy expansion of the amplitudes goes as:

1

4⇡
T1(⌫, 0) = �Z2↵

M
+ (↵E1 + �M1)⌫

2 +
⇥

↵E1⌫ + �M1⌫ + 1/12 (↵E2 + �M2)
⇤

⌫4 + O(⌫6), (5.17a)

1

4⇡
S1(⌫, 0) = �↵{2

2M
+ M�0⌫

2 + M �̄0⌫
4 + O(⌫6), (5.17b)

where the O(⌫0) terms represent the low-energy theorem (LET) [137, 138]; the scalar polarizabilities ↵E

and �M are introduced in Sect. 2; the forward spin polarizabilities �0, �̄0 are linear combinations of spin
polarizabilities, e.g.:

�0 = �(�E1E1 + �M1M1 + �E1M2 + �M1E2). (5.18)

The rhs of Eq. (5.16) can also be Taylor expanded in ⌫2 and each term matched to the low-energy expansion
of the amplitude on the left-hand side (lhs). We however run immediately into the following difficulty. At ⌫ = 0
(the 0th order in ⌫), the relation for T1 yields an apparently wrong result:

�Z2↵/M = (2/⇡)

ˆ 1

0
d⌫ �T (⌫). (5.19)

The lhs is negative definite whereas the rhs is positive definite. The empirical knowledge of the photoabsorption
cross section for the nucleon shows in addition that the integral on the rhs diverges. This invalidates the
unsubtracted DR for T1. A common choice is to make a subtraction at ⌫ = 0, and use the LET to obtain:

T1(⌫, 0) = �4⇡Z2↵

M
+

2⌫2

⇡

ˆ 1

0
d⌫ 0 �T (⌫ 0)

⌫ 0 2 � ⌫2 � i0+
. (5.20)

The integral now converges and its evaluation for the proton will be discussed in Sect. 5.6.
Matching the low-energy expansion of T1 at O(⌫2), one obtains the Baldin sum rule [2]:

↵E1 + �M1 =
1

2⇡2

ˆ 1

0
d⌫

�T (⌫)

⌫2
. (5.21)

At O(⌫4), we obtain a sum rule for a linear combination of the energy slope of the dipole polarizabilities (↵E1⌫ ,
�M1⌫) and the quadrupole polarizabilities (↵E2, �M2) [60]:

↵E1⌫ + �M1⌫ + 1/12 (↵E2 + �M2) =
1

2⇡2

ˆ 1

0
d⌫

�T (⌫)

⌫4
, (5.22)

referred to as the 4th-order Baldin sum rule.
Considering the low-energy expansion of S1, at the 0th order one obtains the celebrated Gerasimov-Drell-

Hearn (GDH) sum rule [184–186]:

↵

M2
{2 = � 1

⇡2

ˆ 1

0
d⌫

�TT (⌫)

⌫
, (5.23)

which expresses the anomalous magnetic moment { in terms of an energy-weighted integral of the helicity-
difference photoabsorption cross section. This is probably the best studied sum rule. It directly demonstrates
the idea of expressing a purely quantum effect, which is the anomalous magnetic moment, in terms of a
classical quantity, which is the cross section. The perturbative verifications of the GDH sum rule in QED and
other quantum field theories provide further insight into quantum dynamics, see e.g. [187–191].

At O(⌫2) one arrives at the forward spin polarizability (FSP) sum rule, also referred to as the Gell-Mann,
Goldberger and Thirring (GGT) sum rule [182]:

�0 =
1

2⇡2

ˆ 1

0
d⌫

�TT (⌫)

⌫3
, (5.24)
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The cross sections �T and �TT are, respectively, the unpolarized and helicity-difference photoabsorption cross
sections: 1/2 (�1/2 ± �3/2). The amplitudes T1(⌫, 0) and S1(⌫, 0) are (up to overall factors) identical to the RCS
amplitudes A1(⌫, 0) and A3(⌫, 0) introduced in Sect. 3, and hence the above DRs apply to the latter amplitudes
too.

The low-energy expansion of the amplitudes goes as:

1

4⇡
T1(⌫, 0) = �Z2↵

M
+ (↵E1 + �M1)⌫

2 +
⇥

↵E1⌫ + �M1⌫ + 1/12 (↵E2 + �M2)
⇤

⌫4 + O(⌫6), (5.17a)

1

4⇡
S1(⌫, 0) = �↵{2

2M
+ M�0⌫

2 + M �̄0⌫
4 + O(⌫6), (5.17b)

where the O(⌫0) terms represent the low-energy theorem (LET) [137, 138]; the scalar polarizabilities ↵E

and �M are introduced in Sect. 2; the forward spin polarizabilities �0, �̄0 are linear combinations of spin
polarizabilities, e.g.:

�0 = �(�E1E1 + �M1M1 + �E1M2 + �M1E2). (5.18)

The rhs of Eq. (5.16) can also be Taylor expanded in ⌫2 and each term matched to the low-energy expansion
of the amplitude on the left-hand side (lhs). We however run immediately into the following difficulty. At ⌫ = 0
(the 0th order in ⌫), the relation for T1 yields an apparently wrong result:

�Z2↵/M = (2/⇡)

ˆ 1

0
d⌫ �T (⌫). (5.19)

The lhs is negative definite whereas the rhs is positive definite. The empirical knowledge of the photoabsorption
cross section for the nucleon shows in addition that the integral on the rhs diverges. This invalidates the
unsubtracted DR for T1. A common choice is to make a subtraction at ⌫ = 0, and use the LET to obtain:

T1(⌫, 0) = �4⇡Z2↵

M
+

2⌫2

⇡

ˆ 1

0
d⌫ 0 �T (⌫ 0)

⌫ 0 2 � ⌫2 � i0+
. (5.20)

The integral now converges and its evaluation for the proton will be discussed in Sect. 5.6.
Matching the low-energy expansion of T1 at O(⌫2), one obtains the Baldin sum rule [2]:

↵E1 + �M1 =
1

2⇡2

ˆ 1

0
d⌫

�T (⌫)

⌫2
. (5.21)

At O(⌫4), we obtain a sum rule for a linear combination of the energy slope of the dipole polarizabilities (↵E1⌫ ,
�M1⌫) and the quadrupole polarizabilities (↵E2, �M2) [60]:

↵E1⌫ + �M1⌫ + 1/12 (↵E2 + �M2) =
1

2⇡2

ˆ 1

0
d⌫

�T (⌫)

⌫4
, (5.22)

referred to as the 4th-order Baldin sum rule.
Considering the low-energy expansion of S1, at the 0th order one obtains the celebrated Gerasimov-Drell-

Hearn (GDH) sum rule [184–186]:
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M2
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⇡2

ˆ 1

0
d⌫

�TT (⌫)

⌫
, (5.23)

which expresses the anomalous magnetic moment { in terms of an energy-weighted integral of the helicity-
difference photoabsorption cross section. This is probably the best studied sum rule. It directly demonstrates
the idea of expressing a purely quantum effect, which is the anomalous magnetic moment, in terms of a
classical quantity, which is the cross section. The perturbative verifications of the GDH sum rule in QED and
other quantum field theories provide further insight into quantum dynamics, see e.g. [187–191].

At O(⌫2) one arrives at the forward spin polarizability (FSP) sum rule, also referred to as the Gell-Mann,
Goldberger and Thirring (GGT) sum rule [182]:
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ˆ 1

0
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⌫3
, (5.24)
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The 2nd moments appear in the following generalization of the forward spin polarizabilities [61]:

�0(Q 2) = 16↵M2

Q 6

Z x0

0
dx x2 gTT (x,Q 2) = 1

2⇡2

Z 1

0

d⌫
⌫3 �TT (⌫,Q 2), (5.41)

�LT (Q 2) = 16↵M2

Q 6

Z x0

0
dx x2[g1 + g2](x,Q 2) = 1

2⇡2

Z 1

0

d⌫
⌫2Q

�LT (⌫,Q 2), (5.42)

which evidently satisfy the following relations at Q 2 = 0:

�0 = lim
Q 2!0

16↵M2

Q 6

Z x0

0
dx x2 g1(x,Q 2), (5.43)

�LT = �0 + lim
Q 2!0

16↵M2

Q 6

Z x0

0
dx x2 g2 (x,Q 2). (5.44)

The first of these is simply the GTT sum rule given in Eq. (5.24). At large Q 2, where the Wandzura–Wilczek relation [199]
[quoted in Eq. (6.45)] is applicable and the elastic contributions can be neglected, one can show that [61]: �LT (Q 2) =
1
3�0(Q 2).

From the Q 2 term in the expansion of S1, and the ⌫2 term in the expansion of S2, one obtains the following relations
involving the GPs [59]:

↵I 01(0) = 1
12

↵~2hr2i2 + 1
2
M2�E1M2 � 3

2
↵M3 ⇥

P 0(M1,M1)1(0) + P 0(L1,L1)1(0)
⇤

, (5.45a)

�LT = ��E1E1 + 3↵M
⇥

P 0(M1,M1)1(0) � P 0(L1,L1)1(0)
⇤

. (5.45b)

The momentum derivatives of the GPs are given by:

P 0 (M1,M1)1(0) ± P 0 (L1,L1)1(0) ⌘ d
dq2

h

P (M1,M1)1(q2) ± P (L1,L1)1(q2)
i

q2=0
, (5.46)

with q2 being the initial photon c.m. three-momentum squared. The superscript indicates the multipolarities, L1(M1)
denoting electric (magnetic) dipole transitions of the initial and final photons, and ‘1’ implies that these transitions involve
the spin-flip of the nucleon, cf. [66,171]. An empirical implication of these relations, in the context of the so-called
‘‘�LT -puzzle’’, is briefly considered in Section 7.

Another combination of the 2nd moments of spin structure functions, i.e.:

d̄2(Q 2) =
Z x0

0
dx x2

⇥

3g2(x,Q 2) + 2g1(x,Q 2)
⇤

, (5.47)

is of interest in connection to the concept of color polarizability [200]. In terms of the above-introduced quantities it reads:

d̄2(Q 2) = Q 4

8M4

⇢

M2Q 2

↵
�LT (Q 2) + ⇥

I1(Q 2) � IA(Q 2)
⇤

�

, (5.48)

and goes as Q 6 for low Q .

5.6. Empirical evaluations of sum rules

Recall that the forward RCS is described by two scalar amplitudes, denoted here [and in Eq. (4.10a)] as:

f (⌫) ⌘ T1(⌫, 0)
4⇡

=
p
s

2M
�

�1 + �5
�

�

�

✓=0, g(⌫) ⌘ ⌫S1(⌫, 0)
4⇡M

=
p
s

2M
�

�1 � �5
�

�

�

✓=0, (5.49)

where the helicity amplitudes �i are introduced in Section 3.2. The corresponding DRs, Eqs. (5.16) and (5.20), read then as
follows:

f (⌫) = �Z
2↵

M
+ ⌫2

2⇡2

Z 1

0
d⌫ 0 �T (⌫

0)
⌫ 0 2 � ⌫2 � i0+ , (5.50a)

g(⌫) = ⌫

2⇡2

Z 1

0
d⌫ 0 ⌫ 0�TT (⌫

0)
⌫ 0 2 � ⌫2 � i0+ . (5.50b)

Therefore, given the total unpolarized cross section �T and the helicity-difference cross-section �TT , the forward CS can be
completely determined. The cross sections for the proton are fairly well known. Their most recent fits and the evaluation
of the integrals are performed by Gryniuk et al. [60]. The corresponding results for the amplitudes are displayed in Figs. 5.3
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Fig. 5.3. Amplitude f (⌫) for the proton obtained from Eq. (5.50a) using different fits of the total photoabsorption cross section [17,60,201,202] (fit I & II
refer to the results of Ref. [60]). The experimental point is from DESY [181].

Fig. 5.4. Spin-dependent amplitude g(⌫) obtained from Eq. (5.50b). The lower panel shows also the B�PT predictions for this amplitude [49,54].

and 5.4. The first figure shows also the results of previous evaluations and an experimental point from the DESY 1973
experiment [181]. In the second figure the upper panel shows the fit to Im g together with the corresponding result for
the real part. The lower panel shows a comparison of these results with a B�PT calculation at lower energy. Given these
amplitudes, one can determine the two non-vanishing (in the forward limit) observables:
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d⌦L

✓=0= |f |2 + |g|2, ⌃2z
✓=0= � fg⇤ + f ⇤g

|f |2 + |g|2 . (5.51)

The obtained ⌃2z [203], compared with the B�PT predictions, demonstrates the importance of chiral dynamics in this
observable, cf. [54, Fig. 16].

One can also evaluate the various sum rules presented in Section 5.4. Evaluations of the sum rules deriving from f (⌫)
(i.e., Baldin sum rule, etc.) are gathered in Table 5.1 for the proton and neutron, respectively. These results are summarized
and compared to the state-of-art �PT results in Figs. 7.1 and 7.2.

Damashek andGilman [201] initiated a study of the high-energy behavior of the amplitude f (⌫) for the proton. In addition
to the Regge prediction, they found a constant contribution comparable in sign and magnitude to the Thomson term:
�↵/M ' �3.03 µb GeV. This extra constant is assumed to correspond to a fixed J = 0 Regge pole (↵i(t) = 0) [204,205],

where W ¼
ffiffiffi
s

p
is the total energy of the γp system. The

background function is from [6]:

σBðWÞ ¼
X2

k¼−2
CkðW −W0Þk; ð12Þ

where W0 ¼ Mp þmπ corresponds with the pion photo-
production threshold.
Observing a significant discrepancy between SAID and

MAID around the Δð1232Þ-resonance peak and a similar

discrepancy between two sets of experimental data, we
have made two different fits:

(I) MAID [12] þ LEGS [13] þ Armstrong et al. [6],
(II) SAID [14] þ MacCormick et al. [15].

They are shown in Fig. 1 by the red solid and blue dashed
lines, respectively. The corresponding values of parameters
are given in Tables I and II. In both fits, we have also made
use of the GRAAL 2007 data [16] shown in the figure by
light blue squares. These data were not available at the time
of the previous sum rule evaluations.
Finally, for the high-energy region, we use the standard

Regge form [20] (p. 191):

σReggeðWÞ ¼ c1Wp1 þ c2Wp2 : ð13Þ

For W in GeV and the cross section in μb, we obtain the
following parameters (for both of our fits):

FIG. 1 (color online). Fits of the experimental data for the total photoabsorption cross section on the proton. Fit I is obtained using
MAID [12] results below the 2π production and data from LEGS [13] and Armstrong et al. [6] above it. Fit II uses SAID [14] and the data
of MacCormick et al. [15]. Both fits use Bartalini et al. [16] and the high-energy data [17–19] displayed in the inset.

TABLE I. Fitting parameters for the resonances (11) obtained
for fits I and II.

M (MeV) Γ (MeV) AðμbÞ
Fit I 1213.6% 0.1 117.6% 1.9 522.7% 17.0

1412.8% 5.9 82.8% 26.8 40.1% 33.8
1496.0% 2.8 136.5% 11.1 161.8% 32.4
1649.4% 4.1 135.3% 15.3 83.2% 22.7
1697.5% 2.6 18.8% 12.6 18.2% 26.0
1894.3% 15.6 302.0% 41.3 31.5% 8.7

Fit II 1214.8% 0.1 99.0% 1.1 502.3% 12.3
1403.9% 6.2 118.2% 19.6 51.8% 23.8
1496.9% 2.1 133.4% 9.4 162.0% 29.2
1648.0% 4.4 135.2% 15.9 83.6% 23.8
1697.2% 2.7 21.2% 13.2 18.7% 25.9
1893.7% 17.4 323.5% 45.3 31.7% 9.1

TABLE II. Fitting parameters for the background (12) obtained
for fits I and II in the resonance region.

Fit I Fit II

C−2 ðμb GeV2Þ 0.44% 0.22 0.26% 0.17
C−1 ðμb GeVÞ −11.06% 3.69 −7.97% 2.89
C0 ðμbÞ 74.38% 20.16 57.27% 16.09
C1 ðμb GeV−1Þ 22.18% 37.71 54.26% 31.07
C2 ðμb GeV−2Þ 37.69% 21.48 19.51% 18.17
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Fig. 5.3. Amplitude f (⌫) for the proton obtained from Eq. (5.50a) using different fits of the total photoabsorption cross section [17,60,201,202] (fit I & II
refer to the results of Ref. [60]). The experimental point is from DESY [181].

Fig. 5.4. Spin-dependent amplitude g(⌫) obtained from Eq. (5.50b). The lower panel shows also the B�PT predictions for this amplitude [49,54].

and 5.4. The first figure shows also the results of previous evaluations and an experimental point from the DESY 1973
experiment [181]. In the second figure the upper panel shows the fit to Im g together with the corresponding result for
the real part. The lower panel shows a comparison of these results with a B�PT calculation at lower energy. Given these
amplitudes, one can determine the two non-vanishing (in the forward limit) observables:
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✓=0= |f |2 + |g|2, ⌃2z
✓=0= � fg⇤ + f ⇤g

|f |2 + |g|2 . (5.51)

The obtained ⌃2z [203], compared with the B�PT predictions, demonstrates the importance of chiral dynamics in this
observable, cf. [54, Fig. 16].

One can also evaluate the various sum rules presented in Section 5.4. Evaluations of the sum rules deriving from f (⌫)
(i.e., Baldin sum rule, etc.) are gathered in Table 5.1 for the proton and neutron, respectively. These results are summarized
and compared to the state-of-art �PT results in Figs. 7.1 and 7.2.

Damashek andGilman [201] initiated a study of the high-energy behavior of the amplitude f (⌫) for the proton. In addition
to the Regge prediction, they found a constant contribution comparable in sign and magnitude to the Thomson term:
�↵/M ' �3.03 µb GeV. This extra constant is assumed to correspond to a fixed J = 0 Regge pole (↵i(t) = 0) [204,205],

4

TABLE II. Empirical evaluations of the GDH and FSP integrals.

IGDH �0 �̄0
(µb) (10�6 fm4) (10�6 fm6)

GDH & A2 [9, 11] ⇡ 212 ⇡ �86

Helbing [21] 212± 6± 12

Bianchi-Thomas [24] 207± 23

Pasquini et al. [12] 210± 6± 14 �90± 8± 11 60± 7± 7

This work 204.5± 21.4 �92.9± 10.5 48.4± 8.2

GDH sum rule 204.784481(4)a

B�PT [15] �90± 140 110± 50

HB�PT [17] �260± 190

a Right-hand side of Eq. (7) with CODATA [19] values of proton M and .

We note that the main contribution to the estimated uncer-
tainty of the GDH integral comes from the high-energy Regge
behavior, which is possibly both due to the fact that parame-
ters seem to be not well “fixed” and because we have used a
simplified covariance matrix estimation for these parameters.
As for the higher-order sum rules, it appears that the main con-
tribution to the uncertainty comes from our assumption about
the systematic uncertainty of the partial-wave analyses (low-
energy region).

TABLE III. Contributions to the GDH and FSP integrals by regions.

Sum Rule
Region low-energy medium-energy high-energy

IGDH (µb) 43.6± 6.0 175.7± 3.7 �14.8± 19.9

�0 (10�6 fm4) 3.6± 10.3 �96.5± 2.0 (2± 7)⇥ 10�2

�̄0 (10�6 fm6) 77.1± 8.2 �28.7± 0.6 (2± 36)⇥ 10�5

FIG. 2. The GDH and FSP integrals as a function of the upper inte-
gration bound. Bands represent estimated errors. Asymptotic values
of the integrals are displayed on the right and marked with colored
triangles.

We next evaluate the entire spin-dependent amplitude g(⌫).
In order to improve on the accuracy, we use the subtracted

dispersion relation:

Re g(⌫) = � ↵2

2M2
⌫ � ⌫3

4⇡2

 1

⌫0

d⌫0 ��abs(⌫0)

(⌫0 2 � ⌫2) ⌫0 . (12)

The only difference with the unsubtracted one, Eq. (6), is ac-
curacy. Indeed, the subtraction replaces the value of the GDH
integral (see “This work” in Table II) by the much more accu-
rate GDH sum rule value (next row) and leads to the smaller
uncertainty.

The remaining integral in Eq. (12) converges very fast in the
considered energy range. The resulting amplitude is plotted in
Fig. 3. The upper panel shows the real and imaginary parts in
the energy range where the data (for the imaginary part) are
available.

The lower panel of Fig. 3 zooms into the lower energy range
where our results can be compared with next-next-to-leading
order �PT calculations of Lensky et al. [15]. One notes here
that the imaginary parts differ appreciably at energies around
0.25 GeV. Nevertheless, their integrals (i.e., the real parts)
agree perfectly at low ⌫. This is a “scientific miracle” of the
effective field theory — the low-energy quantities are well de-
scribed, even though they are obtained as loop or dispersive
integrals which include higher-energy domains where the the-
ory is inapplicable.

FIG. 3. Spin-dependent amplitude g(⌫) obtained from numerical in-
tegration of the fit of data for the helicity-difference photoproduction
cross section. Dashed and dotted curves in the bottom panel are the
B�PT predictions of Ref. [15]. Bands represent the error estimate.

V. OBSERVABLES

Given both amplitudes, f(⌫) and g(⌫), one can reconstruct
the energy dependence of the forward CS observables. The
differential cross section of the forward CS in the laboratory

O(⌫) O(⌫3) O(⌫5)
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Figure 6.5: (a) TPE diagram in forward kinematics: the horizontal lines correspond to the lepton and the proton (bold), where the
‘blob’ represents all possible excitations. (b) Elastic contribution to TPE. The crossed diagrams are not drawn.

6.3. Structure Effects through Two-Photon Exchange
Having obtained the standard FSE of (6.1) using the Breit potential, we consider here a different approach.

We consider the correction, to the Coulomb potential, due to the two-photon exchange (TPE), see Fig. 6.5 (a).
A great advantage of this approach is that one can access the inelastic effects of the proton structure [241, 242].
On the other hand, it is less systematic and cannot be used without matching to a systematic expansion. We
shall only use it to 1st-order perturbation theory and match the elastic part, Fig. 6.5 (b), with the FSE derived
from the Breit potential.

Let us note right away that the TPE contains an iteration of the Coulomb potential present in the wave
functions. However, we do not need to worry about the double-counting, as the Coulomb interaction gives no
contribution to the Lamb shift or HFS.

To O(↵5) it will be sufficient to evaluate the TPE amplitude at zero energy (p · l = mM) and momentum
transfer (t = 0). The resulting number, M, is (up to normalization) the potential in momentum space, or the
�-function potential in coordinate space. In this way it can only affect the S-levels.

The forward TPE amplitude is obviously a loop integral involving the doubly-virtual Compton scattering
(VVCS) amplitude. The latter has been discussed in Sect. 5. According to Eq. (5.1), its tensor structure
decomposes into a symmetric, spin-independent part parametrized by scalar amplitudes T1,2(⌫, Q2), and an
antisymmetric, spin-dependent part parametrized by S1,2(⌫, Q2). The HFS obviously depends on the latter,
while the Lamb shift depends on the former.

More specifically, the shift of the nS-level is given by:

�E(nS) = 8⇡↵m�2
n

1

i

ˆ 1

�1

d⌫

2⇡

ˆ
dq

(2⇡)3

�

Q2 � 2⌫2
�

T1(⌫, Q2) � (Q2 + ⌫2) T2(⌫, Q2)

Q4(Q4 � 4m2⌫2)
, (6.30)

with �2
n = 1/(⇡n3a3) the wave function squared at the origin, and ⌫ = q0, Q2 = q2 � q2

0. The correction to the
HFS is given by:

EHFS(nS)

EF (nS)
=

4m

µ

1

i

ˆ 1

�1

d⌫

2⇡

ˆ
dq

(2⇡)3
1

Q4 � 4m2⌫2

(

�

2Q2 � ⌫2
�

Q2
S1(⌫, Q2) + 3

⌫

M
S2(⌫, Q2)

)

. (6.31)

For further evaluation, one performs a Wick rotation, i.e. changes the integration over q0 to Q0 = �iq0. Note
that this is only possible at zero energy (threshold); at finite energy one needs to take care of the poles moving
across the imaginary q0 axis (see, e.g., Ref. [243]). After the Wick rotation, the integration four-momentum is
Euclidean and we can evaluate it in hyperspherical coordinates,

Qµ = Q(cos �, sin � sin ✓ cos ', sin � sin ✓ sin ', sin � cos ✓).

The integral over ✓ and ' can be done right away, yielding a factor of 4⇡. The integral over ⌫ = iQ cos �
can be done after substituting the DRs for the VVCS amplitudes, Eq. (5.12). Introducing the “lepton velocity”

54

(a) (b)

Figure 6.5: (a) TPE diagram in forward kinematics: the horizontal lines correspond to the lepton and the proton (bold), where the
‘blob’ represents all possible excitations. (b) Elastic contribution to TPE. The crossed diagrams are not drawn.

6.3. Structure Effects through Two-Photon Exchange
Having obtained the standard FSE of (6.1) using the Breit potential, we consider here a different approach.

We consider the correction, to the Coulomb potential, due to the two-photon exchange (TPE), see Fig. 6.5 (a).
A great advantage of this approach is that one can access the inelastic effects of the proton structure [241, 242].
On the other hand, it is less systematic and cannot be used without matching to a systematic expansion. We
shall only use it to 1st-order perturbation theory and match the elastic part, Fig. 6.5 (b), with the FSE derived
from the Breit potential.

Let us note right away that the TPE contains an iteration of the Coulomb potential present in the wave
functions. However, we do not need to worry about the double-counting, as the Coulomb interaction gives no
contribution to the Lamb shift or HFS.

To O(↵5) it will be sufficient to evaluate the TPE amplitude at zero energy (p · l = mM) and momentum
transfer (t = 0). The resulting number, M, is (up to normalization) the potential in momentum space, or the
�-function potential in coordinate space. In this way it can only affect the S-levels.

The forward TPE amplitude is obviously a loop integral involving the doubly-virtual Compton scattering
(VVCS) amplitude. The latter has been discussed in Sect. 5. According to Eq. (5.1), its tensor structure
decomposes into a symmetric, spin-independent part parametrized by scalar amplitudes T1,2(⌫, Q2), and an
antisymmetric, spin-dependent part parametrized by S1,2(⌫, Q2). The HFS obviously depends on the latter,
while the Lamb shift depends on the former.

More specifically, the shift of the nS-level is given by:

�E(nS) = 8⇡↵m�2
n

1
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Q4(Q4 � 4m2⌫2)
, (6.30)

with �2
n = 1/(⇡n3a3) the wave function squared at the origin, and ⌫ = q0, Q2 = q2 � q2

0. The correction to the
HFS is given by:
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For further evaluation, one performs a Wick rotation, i.e. changes the integration over q0 to Q0 = �iq0. Note
that this is only possible at zero energy (threshold); at finite energy one needs to take care of the poles moving
across the imaginary q0 axis (see, e.g., Ref. [243]). After the Wick rotation, the integration four-momentum is
Euclidean and we can evaluate it in hyperspherical coordinates,

Qµ = Q(cos �, sin � sin ✓ cos ', sin � sin ✓ sin ', sin � cos ✓).

The integral over ✓ and ' can be done right away, yielding a factor of 4⇡. The integral over ⌫ = iQ cos �
can be done after substituting the DRs for the VVCS amplitudes, Eq. (5.12). Introducing the “lepton velocity”
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with X = ⌫2 � q2 k2. The once-subtracted DR for even amplitudes, then reads:

M(⌫, k2, q2) = M(0, k2, q2) +
4⌫2

⇡

Z 1

⌫0

d⌫ 0

⌫ 0

p
X �(⌫ 0, k2, q2)

⌫ 0 2 � ⌫2
, (A.2)

where we chose the subtraction to be at ⌫ = 0 and X = ⌫ 0 2 � q2 k2.
We will now derive a general formula for the two-loop vacuum polarization contribu-

tion originating from a contracted LbL amplitude, M(k, q), which obeys Eq. (A.2):
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Here, we performed a Wick rotation, switched to hyperspherical coordinates and per-
formed all angular integrations. The only non-trivial angular integrations that we per-
formed are:
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From the unsubtracted DR:

M(⌫, k2, q2) =
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we derive:
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Appendix B. Proton-Neutron Mass Difference

Contracting the photon lines of the Compton tensor, we obtain a loop contribution to
the nucleon self-energy, see Fig. B.4. We have:

�M = �
Z

d

4q

(2⇡)4 i

gµ⌫T µ⌫
(q, p)

q2 + i0+
, (B.1)
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Figure 6.5: (a) TPE diagram in forward kinematics: the horizontal lines correspond to the lepton and the proton (bold), where the
‘blob’ represents all possible excitations. (b) Elastic contribution to TPE. The crossed diagrams are not drawn.

6.3. Structure Effects through Two-Photon Exchange
Having obtained the standard FSE of (6.1) using the Breit potential, we consider here a different approach.

We consider the correction, to the Coulomb potential, due to the two-photon exchange (TPE), see Fig. 6.5 (a).
A great advantage of this approach is that one can access the inelastic effects of the proton structure [241, 242].
On the other hand, it is less systematic and cannot be used without matching to a systematic expansion. We
shall only use it to 1st-order perturbation theory and match the elastic part, Fig. 6.5 (b), with the FSE derived
from the Breit potential.

Let us note right away that the TPE contains an iteration of the Coulomb potential present in the wave
functions. However, we do not need to worry about the double-counting, as the Coulomb interaction gives no
contribution to the Lamb shift or HFS.

To O(↵5) it will be sufficient to evaluate the TPE amplitude at zero energy (p · l = mM) and momentum
transfer (t = 0). The resulting number, M, is (up to normalization) the potential in momentum space, or the
�-function potential in coordinate space. In this way it can only affect the S-levels.

The forward TPE amplitude is obviously a loop integral involving the doubly-virtual Compton scattering
(VVCS) amplitude. The latter has been discussed in Sect. 5. According to Eq. (5.1), its tensor structure
decomposes into a symmetric, spin-independent part parametrized by scalar amplitudes T1,2(⌫, Q2), and an
antisymmetric, spin-dependent part parametrized by S1,2(⌫, Q2). The HFS obviously depends on the latter,
while the Lamb shift depends on the former.

More specifically, the shift of the nS-level is given by:

�E(nS) = 8⇡↵m�2
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with �2
n = 1/(⇡n3a3) the wave function squared at the origin, and ⌫ = q0, Q2 = q2 � q2

0. The correction to the
HFS is given by:
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For further evaluation, one performs a Wick rotation, i.e. changes the integration over q0 to Q0 = �iq0. Note
that this is only possible at zero energy (threshold); at finite energy one needs to take care of the poles moving
across the imaginary q0 axis (see, e.g., Ref. [243]). After the Wick rotation, the integration four-momentum is
Euclidean and we can evaluate it in hyperspherical coordinates,

Qµ = Q(cos �, sin � sin ✓ cos ', sin � sin ✓ sin ', sin � cos ✓).

The integral over ✓ and ' can be done right away, yielding a factor of 4⇡. The integral over ⌫ = iQ cos �
can be done after substituting the DRs for the VVCS amplitudes, Eq. (5.12). Introducing the “lepton velocity”
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Figure 6.5: (a) TPE diagram in forward kinematics: the horizontal lines correspond to the lepton and the proton (bold), where the
‘blob’ represents all possible excitations. (b) Elastic contribution to TPE. The crossed diagrams are not drawn.

6.3. Structure Effects through Two-Photon Exchange
Having obtained the standard FSE of (6.1) using the Breit potential, we consider here a different approach.

We consider the correction, to the Coulomb potential, due to the two-photon exchange (TPE), see Fig. 6.5 (a).
A great advantage of this approach is that one can access the inelastic effects of the proton structure [241, 242].
On the other hand, it is less systematic and cannot be used without matching to a systematic expansion. We
shall only use it to 1st-order perturbation theory and match the elastic part, Fig. 6.5 (b), with the FSE derived
from the Breit potential.

Let us note right away that the TPE contains an iteration of the Coulomb potential present in the wave
functions. However, we do not need to worry about the double-counting, as the Coulomb interaction gives no
contribution to the Lamb shift or HFS.

To O(↵5) it will be sufficient to evaluate the TPE amplitude at zero energy (p · l = mM) and momentum
transfer (t = 0). The resulting number, M, is (up to normalization) the potential in momentum space, or the
�-function potential in coordinate space. In this way it can only affect the S-levels.

The forward TPE amplitude is obviously a loop integral involving the doubly-virtual Compton scattering
(VVCS) amplitude. The latter has been discussed in Sect. 5. According to Eq. (5.1), its tensor structure
decomposes into a symmetric, spin-independent part parametrized by scalar amplitudes T1,2(⌫, Q2), and an
antisymmetric, spin-dependent part parametrized by S1,2(⌫, Q2). The HFS obviously depends on the latter,
while the Lamb shift depends on the former.

More specifically, the shift of the nS-level is given by:
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with �2
n = 1/(⇡n3a3) the wave function squared at the origin, and ⌫ = q0, Q2 = q2 � q2

0. The correction to the
HFS is given by:
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For further evaluation, one performs a Wick rotation, i.e. changes the integration over q0 to Q0 = �iq0. Note
that this is only possible at zero energy (threshold); at finite energy one needs to take care of the poles moving
across the imaginary q0 axis (see, e.g., Ref. [243]). After the Wick rotation, the integration four-momentum is
Euclidean and we can evaluate it in hyperspherical coordinates,

Qµ = Q(cos �, sin � sin ✓ cos ', sin � sin ✓ sin ', sin � cos ✓).

The integral over ✓ and ' can be done right away, yielding a factor of 4⇡. The integral over ⌫ = iQ cos �
can be done after substituting the DRs for the VVCS amplitudes, Eq. (5.12). Introducing the “lepton velocity”
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with X = ⌫2 � q2 k2. The once-subtracted DR for even amplitudes, then reads:
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, (A.2)

where we chose the subtraction to be at ⌫ = 0 and X = ⌫ 0 2 � q2 k2.
We will now derive a general formula for the two-loop vacuum polarization contribu-

tion originating from a contracted LbL amplitude, M(k, q), which obeys Eq. (A.2):
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Here, we performed a Wick rotation, switched to hyperspherical coordinates and per-
formed all angular integrations. The only non-trivial angular integrations that we per-
formed are:
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From the unsubtracted DR:
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we derive:
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Appendix B. Proton-Neutron Mass Difference

Contracting the photon lines of the Compton tensor, we obtain a loop contribution to
the nucleon self-energy, see Fig. B.4. We have:

�M = �
Z

d

4q

(2⇡)4 i

gµ⌫T µ⌫
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q2 + i0+
, (B.1)

4
Figure B.1: Contribution to the nucleon self-energy with photon loop.
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in terms of the lab-frame photon energy ⌫ and the photon virtuality Q2. Assuming un-
subtracted dispersion relations for the spin-independent Compton scattering amplitudes:
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we find:
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In the following, we Wick rotate, replace the integration over q4 by hyperspherical coordi-
nates and substitute ⌫ 0 by the Mandelstam variable s. Our final expression reads:
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where all angular integrations have been performed and we introduced:
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The separate contribution of T1(0, Q2
) reads:
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(a) (b)

Figure 6.5: (a) TPE diagram in forward kinematics: the horizontal lines correspond to the lepton and the proton (bold), where the
‘blob’ represents all possible excitations. (b) Elastic contribution to TPE. The crossed diagrams are not drawn.

6.3. Structure Effects through Two-Photon Exchange
Having obtained the standard FSE of (6.1) using the Breit potential, we consider here a different approach.

We consider the correction, to the Coulomb potential, due to the two-photon exchange (TPE), see Fig. 6.5 (a).
A great advantage of this approach is that one can access the inelastic effects of the proton structure [241, 242].
On the other hand, it is less systematic and cannot be used without matching to a systematic expansion. We
shall only use it to 1st-order perturbation theory and match the elastic part, Fig. 6.5 (b), with the FSE derived
from the Breit potential.

Let us note right away that the TPE contains an iteration of the Coulomb potential present in the wave
functions. However, we do not need to worry about the double-counting, as the Coulomb interaction gives no
contribution to the Lamb shift or HFS.

To O(↵5) it will be sufficient to evaluate the TPE amplitude at zero energy (p · l = mM) and momentum
transfer (t = 0). The resulting number, M, is (up to normalization) the potential in momentum space, or the
�-function potential in coordinate space. In this way it can only affect the S-levels.

The forward TPE amplitude is obviously a loop integral involving the doubly-virtual Compton scattering
(VVCS) amplitude. The latter has been discussed in Sect. 5. According to Eq. (5.1), its tensor structure
decomposes into a symmetric, spin-independent part parametrized by scalar amplitudes T1,2(⌫, Q2), and an
antisymmetric, spin-dependent part parametrized by S1,2(⌫, Q2). The HFS obviously depends on the latter,
while the Lamb shift depends on the former.

More specifically, the shift of the nS-level is given by:

�E(nS) = 8⇡↵m�2
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with �2
n = 1/(⇡n3a3) the wave function squared at the origin, and ⌫ = q0, Q2 = q2 � q2

0. The correction to the
HFS is given by:
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. (6.31)

For further evaluation, one performs a Wick rotation, i.e. changes the integration over q0 to Q0 = �iq0. Note
that this is only possible at zero energy (threshold); at finite energy one needs to take care of the poles moving
across the imaginary q0 axis (see, e.g., Ref. [243]). After the Wick rotation, the integration four-momentum is
Euclidean and we can evaluate it in hyperspherical coordinates,

Qµ = Q(cos �, sin � sin ✓ cos ', sin � sin ✓ sin ', sin � cos ✓).

The integral over ✓ and ' can be done right away, yielding a factor of 4⇡. The integral over ⌫ = iQ cos �
can be done after substituting the DRs for the VVCS amplitudes, Eq. (5.12). Introducing the “lepton velocity”
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(a) (b)

Figure 6.5: (a) TPE diagram in forward kinematics: the horizontal lines correspond to the lepton and the proton (bold), where the
‘blob’ represents all possible excitations. (b) Elastic contribution to TPE. The crossed diagrams are not drawn.

6.3. Structure Effects through Two-Photon Exchange
Having obtained the standard FSE of (6.1) using the Breit potential, we consider here a different approach.

We consider the correction, to the Coulomb potential, due to the two-photon exchange (TPE), see Fig. 6.5 (a).
A great advantage of this approach is that one can access the inelastic effects of the proton structure [241, 242].
On the other hand, it is less systematic and cannot be used without matching to a systematic expansion. We
shall only use it to 1st-order perturbation theory and match the elastic part, Fig. 6.5 (b), with the FSE derived
from the Breit potential.

Let us note right away that the TPE contains an iteration of the Coulomb potential present in the wave
functions. However, we do not need to worry about the double-counting, as the Coulomb interaction gives no
contribution to the Lamb shift or HFS.

To O(↵5) it will be sufficient to evaluate the TPE amplitude at zero energy (p · l = mM) and momentum
transfer (t = 0). The resulting number, M, is (up to normalization) the potential in momentum space, or the
�-function potential in coordinate space. In this way it can only affect the S-levels.

The forward TPE amplitude is obviously a loop integral involving the doubly-virtual Compton scattering
(VVCS) amplitude. The latter has been discussed in Sect. 5. According to Eq. (5.1), its tensor structure
decomposes into a symmetric, spin-independent part parametrized by scalar amplitudes T1,2(⌫, Q2), and an
antisymmetric, spin-dependent part parametrized by S1,2(⌫, Q2). The HFS obviously depends on the latter,
while the Lamb shift depends on the former.

More specifically, the shift of the nS-level is given by:

�E(nS) = 8⇡↵m�2
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with �2
n = 1/(⇡n3a3) the wave function squared at the origin, and ⌫ = q0, Q2 = q2 � q2

0. The correction to the
HFS is given by:
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For further evaluation, one performs a Wick rotation, i.e. changes the integration over q0 to Q0 = �iq0. Note
that this is only possible at zero energy (threshold); at finite energy one needs to take care of the poles moving
across the imaginary q0 axis (see, e.g., Ref. [243]). After the Wick rotation, the integration four-momentum is
Euclidean and we can evaluate it in hyperspherical coordinates,

Qµ = Q(cos �, sin � sin ✓ cos ', sin � sin ✓ sin ', sin � cos ✓).

The integral over ✓ and ' can be done right away, yielding a factor of 4⇡. The integral over ⌫ = iQ cos �
can be done after substituting the DRs for the VVCS amplitudes, Eq. (5.12). Introducing the “lepton velocity”
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with X = ⌫2 � q2 k2. The once-subtracted DR for even amplitudes, then reads:
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where we chose the subtraction to be at ⌫ = 0 and X = ⌫ 0 2 � q2 k2.
We will now derive a general formula for the two-loop vacuum polarization contribu-

tion originating from a contracted LbL amplitude, M(k, q), which obeys Eq. (A.2):
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Here, we performed a Wick rotation, switched to hyperspherical coordinates and per-
formed all angular integrations. The only non-trivial angular integrations that we per-
formed are:
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From the unsubtracted DR:
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Appendix B. Proton-Neutron Mass Difference

Contracting the photon lines of the Compton tensor, we obtain a loop contribution to
the nucleon self-energy, see Fig. B.4. We have:
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4
Figure B.1: Contribution to the nucleon self-energy with photon loop.
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in terms of the lab-frame photon energy ⌫ and the photon virtuality Q2. Assuming un-
subtracted dispersion relations for the spin-independent Compton scattering amplitudes:
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In the following, we Wick rotate, replace the integration over q4 by hyperspherical coordi-
nates and substitute ⌫ 0 by the Mandelstam variable s. Our final expression reads:
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where all angular integrations have been performed and we introduced:
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The separate contribution of T1(0, Q2
) reads:
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V. Two-Photon Exchange in Hydrogen-Like Atoms

(a) (b)

Figure V.2.: Two-photon-exchange diagrams in forward kinematics: the horizontal lines correspond to the
lepton and the nucleus (bold). (a) Elastic contribution to the two-photon-exchange diagram. (b) Inelastic
contribution to the two-photon-exchange diagram, where the “blob” represents all possible excitations.
The crossed diagrams are not drawn.

elastic FFs as:
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where the elastic Dirac and Pauli FFs are related to the e.m. Sachs FFs in the following way:
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see also Eq. (II.18). Substituting the elastic structure functions into the above expressions for
the S-level shift and the HFS, the nucleon-pole contribution is found as:
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where v =
p

1 + ⌧�1. Equivalently, one can plug the nucleon-pole part of the VVCS amplitudes
[322],
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Power-counting: how many powers of p will a given Feynman graph 
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Power-counting: how many powers of p will a given Feynman graph 
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The 1st nucleon excitation — Delta(1232) is within reach of chiral 
perturbation theory (293 MeV excitation energy is a light scale)

Include into the chiral effective Lagrangian as explicit dof

Power-counting for Delta contributions (SSE,  ``delta-counting”) 
depends on what chiral order is assigned to the excitation scale.
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Chiral EFT of Compton scattering off protons
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Proton polarizabilities from Compton scattering

Separation of Proton Polarizabilities with the Beam Asymmetry of Compton Scattering

Nadiia Krupina and Vladimir Pascalutsa
PRISMA Cluster of Excellence Institut für Kernphysik, Johannes Gutenberg–Universität Mainz, 55128 Mainz, Germany

(Received 3 April 2013)

1 We propose to determine the magnetic dipole polarizability of the proton from the beam asymmetry of

low-energy Compton scattering based on the fact that the leading non-Born contribution to the asymmetry

is given by the magnetic polarizability alone; the electric polarizability cancels out. The beam asymmetry

thus provides a simple and clean separation of the magnetic polarizability from the electric one.

Introducing polarizabilities in a Lorentz-invariant fashion, we compute the higher-order (recoil) effects

of polarizabilities on beam asymmetry and show that these effects are suppressed in forward kinematics.

With the prospects of precision Compton experiments at the Mainz Microtron and High Intensity Gamma

Source facilities in mind, we argue why the beam asymmetry could be the best way to measure the elusive

magnetic polarizability of the proton.

DOI: PACS numbers: 13.60.Fz, 14.20.Dh, 25.20.Dc

The current Particle Data Group (PDG) [1] values of the
electric- and magnetic-dipole polarizabilities of the proton
[2,3], i.e.,

!E1 ¼ ð12:0# 0:6Þ % 10&4 fm3; (1a)

"M1 ¼ ð1:9# 0:5Þ % 10&4 fm3 (1b)

are in significant disagreement with the most recent post-
dictions of chiral effective field theory [4,5], as can be seen
in Fig. 1. The state-of-the-art chiral effective field theory
calculations, based on either the baryon (B) or heavy-
baryon (HB) chiral perturbation theory (ChPT) with octet
and decuplet fields [6], are in excellent agreement with the
experimental Compton-scattering cross sections, but not
necessarily in agreement with the polarizabilities extracted
from these data by the experimental groups, cf. [7] for
review. The situation is becoming more acute as the
demand for precise knowledge of nucleon polarizabilities
is growing; they are for instance the main source of uncer-
tainty in the extraction of the proton charge radius from the
muonic hydrogen Lamb shift (see [8] for a recent review).

A likely source of these discrepancies is an underesti-
mate of model dependence in the extraction of polarizabil-
ities from Compton-scattering data. In principle, one
should opt for a model-independent extraction, based on
the low-energy expansion (LEX) of Compton-scattering
observables, where the leading-order terms, beyond the
Born term, are expressed through polarizabilities. For ex-
ample, the non-Born part of the unpolarized differential
cross section for Compton scattering off a target with mass
M and charge Ze is given by [2]
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structure constant. Hence, given the exactly known Born
contribution [9] and the experimental angular distribution
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polarizabilities with a negligible model dependence. In
reality, however, in order to resolve the small polarizability
effect in the tiny Compton cross sections, most of the
measurements are done at energies exceeding 100 MeV,
i.e., not small compared to the pion mass m&. It is m&, the
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Proton polarizabilities from Compton scattering

Separation of Proton Polarizabilities with the Beam Asymmetry of Compton Scattering
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1 We propose to determine the magnetic dipole polarizability of the proton from the beam asymmetry of

low-energy Compton scattering based on the fact that the leading non-Born contribution to the asymmetry

is given by the magnetic polarizability alone; the electric polarizability cancels out. The beam asymmetry

thus provides a simple and clean separation of the magnetic polarizability from the electric one.

Introducing polarizabilities in a Lorentz-invariant fashion, we compute the higher-order (recoil) effects

of polarizabilities on beam asymmetry and show that these effects are suppressed in forward kinematics.

With the prospects of precision Compton experiments at the Mainz Microtron and High Intensity Gamma

Source facilities in mind, we argue why the beam asymmetry could be the best way to measure the elusive

magnetic polarizability of the proton.
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I. INTRODUCTION

The recent advent of muonic hydrogen spectroscopy [1] is probing the limits of our under-
standing of the nucleon’s electromagnetic structure. The unveiled discrepancy in the charge
radius value between probing the nucleon with muons [1, 2] or electrons [3, 4] is only 4%,
but is of great statistical significance (5 to 8 std deviations) at the current level of precision.
Interestingly enough, the accuracy of both muonic-hydrogen and electron-scattering mea-
surements is limited by the knowledge of subleading e↵ects of nucleon structure, entering
through the two-photon exchange (TPE). The main aim of our present studies is to pro-
vide predictions for these contributions from first principles using a low-energy e↵ective-field
theory of QCD, referred to as the baryon chiral perturbation theory (B�PT), see, e.g. [5].

In this endeavor we are primarily concerned with the doubly-virtual Compton scattering
(VVCS) process which carries all the nucleon structure information of the TPE. Unitarity
(optical theorem) relates the imaginary part of the forward VVCS amplitude to nucleon
structure functions, and then the use of dispersion relations allows one to write the low-
energy expansion of VVCS in terms of moments of structure functions [6]. The low-energy
expansion of VVCS can, on the other hand, be directly computed in �PT. Of course, not
all of the moments enter the low-energy expansion of VVCS: either only odd or only even
ones do, depending on the structure function. Here we shall present the leading-order (LO)
and next-to-leading-order (NLO) B�PT predictions for the following moments:
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and F1,2, g1,2 are respectively the unpolarized and polarized inelastic structure functions,
which depend on the photon virtuality Q

2 and the Bjorken variable x = Q

2
/(2M

N

⌫), with
M

N

the nucleon mass and ⌫ the photon energy; x0 corresponds with an inelastic threshold,
such as that of a pion production; ↵ is the fine-structure constant.

These gold-plated moments have already been the subject of intense experimental studies
[7–13], including an ongoing experimental program at Je↵erson Laboratory [14, 15], see
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FIG. 13. Longitudinal-transverse spin polarizabilities, �LT (Q
2), for

the proton and neutron as a function of Q2. For the blue band, the red
dashed line, and the black dotted line the legend is the same as in Fig. 7.
The blue dotted and orange dot-dashed lines are the O(p3) and O(p4)
calculations of Ref. [6], while the red band is the IR result of [35].
On the other hand, the grey band is the covariant BChPT calculation
including the �(1232) of Ref. [3]. The experimental points of �nLT are
from Ref. [28].
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solid line: Total.
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DeltaLT puzzle — none of chiral PT calculation describe neutron deltaLT.
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Forward spin polarizability at low Q
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FIG. 8. Forward spin polarizabilities, �0(Q2), for the proton (p) and neutron (n) as a function of Q2. For the blue band

and the red line the legend is the same as in Fig. 6. The O(p3) + O(p4) HB result of Ref. [6] is indicated by the blue

short-dashed line, however for the proton the prediction lies outside the range of values displayed in the figure. The

MAID curves, both in black dotted lines, are from Ref. [17] in the case of the proton, and Ref. [28] in the case of the

neutron. The experimental determinations for the proton are taken from Ref. [26] (blue dots) and Ref. [27] (purple dot),

while for the neutron the blue dots are from Ref. [28] and the greenish dots are from Ref. [67] (statistical error in gray,

systematic uncertainty in green). The grey band is the BChPT+� result of [3].
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3. Compton Scattering and Polarizabilities

3.1. Compton Processes
The processes of CS, represented by Fig. 3.1, are classified according to the photon virtualities, q2 and q0 2.

The target particle, hereby the nucleon, is on the mass shell: p2 = p0 2 = M2. The Mandelstam variables for
this two-body scattering process are:

s = (p + q)2 = M2 + 2p · q + q2 = (p0 + q0)2, (3.1a)
u = (p0 + q)2 = M2 � 2p0 · q + q2 = (p � q0)2, (3.1b)
t = (p � p0)2 = 2M2 � 2p · p0 = (q � q0)2. (3.1c)

Their sum is as usual given by the sum of invariant masses squared: s + t + u = 2M2 + q2 + q0 2. Throughout
the paper we use the following kinematical invariants,

⌫ = p · q/M, ⌫ 0 = p · q0/M, (3.2)

which in the lab frame have the meaning of, respectively, the incoming and outgoing photon energies.

Figure 3.1: The Compton scattering off the nucleon: �(q) + N(p) ! �(q0) + N(p0).

In the most general case, the initial and final photons are virtual, with different virtualities, q2 6= q02. In
reality, this situation may occur in the dilepton electro-production, e�N ! e�N e+e�, the NN̄ production in
e+e� collisions, or in the two-photon-exchange contribution to lepton-nucleon scattering, which is discussed in
Sect. 6 in the context of atomic calculations.

Denoting the photon helicity by �� and the nucleon helicity by �N , there are in general 3 ⇥ 3 ⇥ 2 ⇥ 2 = 36
helicity amplitudes, T�0

��
0
N���N

, describing this process. Discrete symmetries, such as parity and time reversal,
reduce the number of independent helicity amplitudes by about a half, as will be discussed below.

The Feynman amplitude Tµ⌫ describing the CS process is a rank-2 tensor-spinor which depends on the
four-momenta q, q0, p, p0. Due to momentum conservation, three of them are independent, e.g.: q, q0, and
P = 1

2(p + p0). The helicity amplitudes are expressed in terms of the Feynman amplitude as:

T�0
��

0
N���N

= ū�0
N

(p0) "⇤
�0
�
(q0) · T (q0, q, P ) · "�� (q) u�N

(p) , (3.3)

with the nucleon spinors and photon polarization vectors defined in Sect. 1.1. A consequence of e.m. gauge
invariance is

q0
µTµ⌫(q0, q, P ) = 0 = q⌫T

µ⌫(q0, q, P ), (3.4)

valid for on-shell nucleons and arbitrary photon virtualities. The Lorentz decomposition of the Feynman am-
plitude in terms of the invariant amplitudes Ai,

Tµ⌫(q0, q, P ) = e2
X

i

Oµ⌫
i Ai(⌫

0, q0 2, ⌫, q2), (3.5)

contains 18 terms, after the constraints due to parity, time reversal and gauge invariance are taken into account
[95]. For q0 2 = q2, this number reduces to 12. For the rest of this section we restrict ourselves to the real CS,
i.e., the case where both photons are real (q0 2 = q2 = 0). The case where one of the photons is virtual (VCS
and timelike CS) is briefly discussed in Sect. 4. The forward doubly-virtual CS appears prominently in Sect. 5
and 6.

10

5. Sum Rules

The fundamental connection of light absorption and scattering, due to unitarity and causality, is manifested
in a variety of sum rules, which are the subject of this Section. They all are derived from the analyticity, unitarity
and symmetry properties of the forward CS amplitude, depicted in Fig. 5.1. In general, the photons are virtual,
with spacelike virtuality q2 = �Q2 < 0. The corresponding amplitude in then referred to as the forward
Doubly-Virtual Compton Scattering (VVCS) amplitude. In what follows we consider its properties, sketch the
derivation of the sum rules, and discuss their empirical consequences.

Figure 5.1: Forward Compton scattering: N(p) + �(q) ! N(p) + �(q), with either real or virtual photons.

5.1. Forward VVCS Amplitude
In the forward kinematics (t = 0), the Lorentz structure of the VVCS amplitude is decomposed in four

independent tensor forms:

Tµ⌫(q, p) =

✓

�gµ⌫ +
qµq⌫

q2

◆

T1(⌫, Q2) +
1

M2

✓

pµ � p · q

q2
qµ

◆ ✓

p⌫ � p · q

q2
q⌫

◆

T2(⌫, Q2)

� 1

M
�µ⌫↵q↵ S1(⌫, Q2) � 1

M2

�

�µ⌫q2 + qµ�⌫↵q↵ � q⌫�µ↵q↵
�

S2(⌫, Q2), (5.1)

with T1,2 the spin-independent and S1,2 the spin-dependent invariant amplitudes, functions of ⌫ = (s � u)/4M
and Q2 = �q2. This decomposition is explicitly gauge invariant and splits naturally into symmetric and anti-
symmetric parts,

Tµ⌫ = Tµ⌫
S + Tµ⌫

A , (5.2)

which, respectively, do not and do depend on the nucleon spin. Given that the vector indices are to be contracted
with either the polarization vector, satisfying q · " = 0, or with another gauge-invariant tensor, the terms
containing qµ or q⌫ can be omitted, hence,7

Tµ⌫
S (q, p) = �gµ⌫T1(⌫, Q2) +

pµp⌫

M2
T2(⌫, Q2), (5.3a)

Tµ⌫
A (q, p) = � 1

M
�µ⌫↵q↵ S1(⌫, Q2) +

Q2

M2
�µ⌫S2(⌫, Q2). (5.3b)

One immediate observation is that the symmetry under photon crossing translates into the following conditions,
for real ⌫:

T1(�⌫, Q2) = T1(⌫, Q2), T2(�⌫, Q2) = T2(⌫, Q2), (5.4a)
S1(�⌫, Q2) = S1(⌫, Q2), S2(�⌫, Q2) = � S2(⌫, Q2). (5.4b)

Hence, S2 is odd with respect to the sign reflection of ⌫, the other amplitudes are even. We will often consider
the combination ⌫S2, such that it has the same crossing properties as the other amplitudes.

7It is customary to write the spin-dependent amplitude with the help of the nucleon spin four-vector s↵, satisfying s2 = �1 and
s · p = 0:

Tµ⌫
A (q, p) =

i

M
✏µ⌫↵� q↵s� S1(⌫, Q2) +

i

M3
✏µ⌫↵� q↵(p · q s� � s · q p�) S2(⌫, Q2).
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FIG. 9. Longitudinal-transverse spin polarizabilities, �
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For the blue band, the red line, and the black dotted line the legend is the same as in Fig. 6. The orange dot-dashed and

blue short-dashed line are the O(p3) and O(p3) + O(p4) HB calculations of Ref. [6]. The red band is the IR result of

[35] and the grey band is the covariant BChPT calculation including the �(1232) of Ref. [3]. The experimental points

of �n
LT

are from Ref. [28].
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3. Compton Scattering and Polarizabilities

3.1. Compton Processes
The processes of CS, represented by Fig. 3.1, are classified according to the photon virtualities, q2 and q0 2.

The target particle, hereby the nucleon, is on the mass shell: p2 = p0 2 = M2. The Mandelstam variables for
this two-body scattering process are:

s = (p + q)2 = M2 + 2p · q + q2 = (p0 + q0)2, (3.1a)
u = (p0 + q)2 = M2 � 2p0 · q + q2 = (p � q0)2, (3.1b)
t = (p � p0)2 = 2M2 � 2p · p0 = (q � q0)2. (3.1c)

Their sum is as usual given by the sum of invariant masses squared: s + t + u = 2M2 + q2 + q0 2. Throughout
the paper we use the following kinematical invariants,

⌫ = p · q/M, ⌫ 0 = p · q0/M, (3.2)

which in the lab frame have the meaning of, respectively, the incoming and outgoing photon energies.

Figure 3.1: The Compton scattering off the nucleon: �(q) + N(p) ! �(q0) + N(p0).

In the most general case, the initial and final photons are virtual, with different virtualities, q2 6= q02. In
reality, this situation may occur in the dilepton electro-production, e�N ! e�N e+e�, the NN̄ production in
e+e� collisions, or in the two-photon-exchange contribution to lepton-nucleon scattering, which is discussed in
Sect. 6 in the context of atomic calculations.

Denoting the photon helicity by �� and the nucleon helicity by �N , there are in general 3 ⇥ 3 ⇥ 2 ⇥ 2 = 36
helicity amplitudes, T�0

��
0
N���N

, describing this process. Discrete symmetries, such as parity and time reversal,
reduce the number of independent helicity amplitudes by about a half, as will be discussed below.

The Feynman amplitude Tµ⌫ describing the CS process is a rank-2 tensor-spinor which depends on the
four-momenta q, q0, p, p0. Due to momentum conservation, three of them are independent, e.g.: q, q0, and
P = 1

2(p + p0). The helicity amplitudes are expressed in terms of the Feynman amplitude as:

T�0
��

0
N���N

= ū�0
N

(p0) "⇤
�0
�
(q0) · T (q0, q, P ) · "�� (q) u�N

(p) , (3.3)

with the nucleon spinors and photon polarization vectors defined in Sect. 1.1. A consequence of e.m. gauge
invariance is

q0
µTµ⌫(q0, q, P ) = 0 = q⌫T

µ⌫(q0, q, P ), (3.4)

valid for on-shell nucleons and arbitrary photon virtualities. The Lorentz decomposition of the Feynman am-
plitude in terms of the invariant amplitudes Ai,

Tµ⌫(q0, q, P ) = e2
X

i

Oµ⌫
i Ai(⌫

0, q0 2, ⌫, q2), (3.5)

contains 18 terms, after the constraints due to parity, time reversal and gauge invariance are taken into account
[95]. For q0 2 = q2, this number reduces to 12. For the rest of this section we restrict ourselves to the real CS,
i.e., the case where both photons are real (q0 2 = q2 = 0). The case where one of the photons is virtual (VCS
and timelike CS) is briefly discussed in Sect. 4. The forward doubly-virtual CS appears prominently in Sect. 5
and 6.

10

5. Sum Rules

The fundamental connection of light absorption and scattering, due to unitarity and causality, is manifested
in a variety of sum rules, which are the subject of this Section. They all are derived from the analyticity, unitarity
and symmetry properties of the forward CS amplitude, depicted in Fig. 5.1. In general, the photons are virtual,
with spacelike virtuality q2 = �Q2 < 0. The corresponding amplitude in then referred to as the forward
Doubly-Virtual Compton Scattering (VVCS) amplitude. In what follows we consider its properties, sketch the
derivation of the sum rules, and discuss their empirical consequences.

Figure 5.1: Forward Compton scattering: N(p) + �(q) ! N(p) + �(q), with either real or virtual photons.

5.1. Forward VVCS Amplitude
In the forward kinematics (t = 0), the Lorentz structure of the VVCS amplitude is decomposed in four

independent tensor forms:
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S2(⌫, Q2), (5.1)

with T1,2 the spin-independent and S1,2 the spin-dependent invariant amplitudes, functions of ⌫ = (s � u)/4M
and Q2 = �q2. This decomposition is explicitly gauge invariant and splits naturally into symmetric and anti-
symmetric parts,

Tµ⌫ = Tµ⌫
S + Tµ⌫

A , (5.2)

which, respectively, do not and do depend on the nucleon spin. Given that the vector indices are to be contracted
with either the polarization vector, satisfying q · " = 0, or with another gauge-invariant tensor, the terms
containing qµ or q⌫ can be omitted, hence,7
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S (q, p) = �gµ⌫T1(⌫, Q2) +
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One immediate observation is that the symmetry under photon crossing translates into the following conditions,
for real ⌫:

T1(�⌫, Q2) = T1(⌫, Q2), T2(�⌫, Q2) = T2(⌫, Q2), (5.4a)
S1(�⌫, Q2) = S1(⌫, Q2), S2(�⌫, Q2) = � S2(⌫, Q2). (5.4b)

Hence, S2 is odd with respect to the sign reflection of ⌫, the other amplitudes are even. We will often consider
the combination ⌫S2, such that it has the same crossing properties as the other amplitudes.

7It is customary to write the spin-dependent amplitude with the help of the nucleon spin four-vector s↵, satisfying s2 = �1 and
s · p = 0:

Tµ⌫
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3. Compton Scattering and Polarizabilities

3.1. Compton Processes
The processes of CS, represented by Fig. 3.1, are classified according to the photon virtualities, q2 and q0 2.

The target particle, hereby the nucleon, is on the mass shell: p2 = p0 2 = M2. The Mandelstam variables for
this two-body scattering process are:

s = (p + q)2 = M2 + 2p · q + q2 = (p0 + q0)2, (3.1a)
u = (p0 + q)2 = M2 � 2p0 · q + q2 = (p � q0)2, (3.1b)
t = (p � p0)2 = 2M2 � 2p · p0 = (q � q0)2. (3.1c)

Their sum is as usual given by the sum of invariant masses squared: s + t + u = 2M2 + q2 + q0 2. Throughout
the paper we use the following kinematical invariants,

⌫ = p · q/M, ⌫ 0 = p · q0/M, (3.2)

which in the lab frame have the meaning of, respectively, the incoming and outgoing photon energies.

Figure 3.1: The Compton scattering off the nucleon: �(q) + N(p) ! �(q0) + N(p0).

In the most general case, the initial and final photons are virtual, with different virtualities, q2 6= q02. In
reality, this situation may occur in the dilepton electro-production, e�N ! e�N e+e�, the NN̄ production in
e+e� collisions, or in the two-photon-exchange contribution to lepton-nucleon scattering, which is discussed in
Sect. 6 in the context of atomic calculations.

Denoting the photon helicity by �� and the nucleon helicity by �N , there are in general 3 ⇥ 3 ⇥ 2 ⇥ 2 = 36
helicity amplitudes, T�0

��
0
N���N

, describing this process. Discrete symmetries, such as parity and time reversal,
reduce the number of independent helicity amplitudes by about a half, as will be discussed below.

The Feynman amplitude Tµ⌫ describing the CS process is a rank-2 tensor-spinor which depends on the
four-momenta q, q0, p, p0. Due to momentum conservation, three of them are independent, e.g.: q, q0, and
P = 1

2(p + p0). The helicity amplitudes are expressed in terms of the Feynman amplitude as:
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= ū�0
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(p0) "⇤
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(q0) · T (q0, q, P ) · "�� (q) u�N

(p) , (3.3)

with the nucleon spinors and photon polarization vectors defined in Sect. 1.1. A consequence of e.m. gauge
invariance is

q0
µTµ⌫(q0, q, P ) = 0 = q⌫T

µ⌫(q0, q, P ), (3.4)

valid for on-shell nucleons and arbitrary photon virtualities. The Lorentz decomposition of the Feynman am-
plitude in terms of the invariant amplitudes Ai,

Tµ⌫(q0, q, P ) = e2
X

i

Oµ⌫
i Ai(⌫

0, q0 2, ⌫, q2), (3.5)

contains 18 terms, after the constraints due to parity, time reversal and gauge invariance are taken into account
[95]. For q0 2 = q2, this number reduces to 12. For the rest of this section we restrict ourselves to the real CS,
i.e., the case where both photons are real (q0 2 = q2 = 0). The case where one of the photons is virtual (VCS
and timelike CS) is briefly discussed in Sect. 4. The forward doubly-virtual CS appears prominently in Sect. 5
and 6.
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5. Sum Rules

The fundamental connection of light absorption and scattering, due to unitarity and causality, is manifested
in a variety of sum rules, which are the subject of this Section. They all are derived from the analyticity, unitarity
and symmetry properties of the forward CS amplitude, depicted in Fig. 5.1. In general, the photons are virtual,
with spacelike virtuality q2 = �Q2 < 0. The corresponding amplitude in then referred to as the forward
Doubly-Virtual Compton Scattering (VVCS) amplitude. In what follows we consider its properties, sketch the
derivation of the sum rules, and discuss their empirical consequences.

Figure 5.1: Forward Compton scattering: N(p) + �(q) ! N(p) + �(q), with either real or virtual photons.

5.1. Forward VVCS Amplitude
In the forward kinematics (t = 0), the Lorentz structure of the VVCS amplitude is decomposed in four

independent tensor forms:
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with T1,2 the spin-independent and S1,2 the spin-dependent invariant amplitudes, functions of ⌫ = (s � u)/4M
and Q2 = �q2. This decomposition is explicitly gauge invariant and splits naturally into symmetric and anti-
symmetric parts,

Tµ⌫ = Tµ⌫
S + Tµ⌫

A , (5.2)

which, respectively, do not and do depend on the nucleon spin. Given that the vector indices are to be contracted
with either the polarization vector, satisfying q · " = 0, or with another gauge-invariant tensor, the terms
containing qµ or q⌫ can be omitted, hence,7

Tµ⌫
S (q, p) = �gµ⌫T1(⌫, Q2) +

pµp⌫

M2
T2(⌫, Q2), (5.3a)

Tµ⌫
A (q, p) = � 1

M
�µ⌫↵q↵ S1(⌫, Q2) +

Q2

M2
�µ⌫S2(⌫, Q2). (5.3b)

One immediate observation is that the symmetry under photon crossing translates into the following conditions,
for real ⌫:

T1(�⌫, Q2) = T1(⌫, Q2), T2(�⌫, Q2) = T2(⌫, Q2), (5.4a)
S1(�⌫, Q2) = S1(⌫, Q2), S2(�⌫, Q2) = � S2(⌫, Q2). (5.4b)

Hence, S2 is odd with respect to the sign reflection of ⌫, the other amplitudes are even. We will often consider
the combination ⌫S2, such that it has the same crossing properties as the other amplitudes.

7It is customary to write the spin-dependent amplitude with the help of the nucleon spin four-vector s↵, satisfying s2 = �1 and
s · p = 0:

Tµ⌫
A (q, p) =

i

M
✏µ⌫↵� q↵s� S1(⌫, Q2) +

i

M3
✏µ⌫↵� q↵(p · q s� � s · q p�) S2(⌫, Q2).
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horizontal blue bands and the slanted brown band have
a common overlap. Further ChPT calculations of GPs
are needed to perform a similar consistency cross-check
in ChPT.
In conclusion, we have presented two sum rules, Eq. (3),

which extend the celebrated Gerasimov-Drell-Hearn and
Burkhardt-Cottingham sum rules, respectively. The new
sum rules involve low-energy electromagnetic properties
which are accessed in different experiments: the Pauli
radius of the target (e.g., nucleon), spin polarizabilities,
and the slopes of two of its four lowest order generalized
polarizabilities. The present empirical and phenomenologi-
cal information on these quantities for the proton is shown
to be consistent with the sum rules, albeit with large
experimental uncertainties. New experiments, ongoing at
the MAMI, Jefferson Lab, and HIγS facilities, will deliver
a substantially improved input of the quantities entering
this sum rule, and thus provide a new model-independent

constraint on the low-energy spin structure of the proton.
It will also be interesting to examine the sum rules in
theory. They can cross-check the consistency of different
variants of chiral perturbation theory, as all of the involved
quantities can in principle be calculated to a given order
in the chiral expansion. In a broader context, the sum
rules establish a fundamental relation between the low-
momentum transfer light absorption and scattering on a
polarized spin-1=2 target.

We thank Barbara Pasquini, Chungwen Kao, Philippe
Martel, and Karl Slifer for helpful discussions. This work
was supported by the Deutsche Forschungsgemeinschaft
(DFG) through the Collaborative Research Center [The
Low-Energy Frontier of the Standard Model (SFB 1044)]
and the Cluster of Excellence [Precision Physics,
Fundamental Interactions and Structure of Matter
(PRISMA)].

[1] R. Kronig, On the theory of dispersion of x rays, J. Opt. Soc.
Am. 12, 547 (1926); H. A. Kramers, Atti Congr. Intern.
Fisici Como 2, 545 (1927).

[2] A. M. Baldin, Polarizability Of nucleons, Nucl. Phys. 18,
310 (1960).

[3] S. B. Gerasimov, Yad. Fiz. 2, 598 (1965) [A sum rule
for magnetic moments and the damping of the nucleon

magnetic moment in nuclei, Sov. J. Nucl. Phys. 2, 430
(1966)].

[4] S. D. Drell and A. C. Hearn, Exact Sum Rule for Nucleon
Magnetic Moments, Phys. Rev. Lett. 16, 908 (1966).

[5] M. Gell-Mann, M. L. Goldberger, and W. E. Thirring, Use
of causality conditions in quantum theory, Phys. Rev. 95,
1612 (1954).
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cal information on these quantities for the proton is shown
to be consistent with the sum rules, albeit with large
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a substantially improved input of the quantities entering
this sum rule, and thus provide a new model-independent

constraint on the low-energy spin structure of the proton.
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Virtual Compton scattering (VCS) and generalized polarizabilities (GPs) 

3

| {z }
Born VCS

| {z }
non-Born VCS

+ += + +

| {z }
Bethe-Heitler

FIG. 1: Mechanisms contributing to ep æ ep“ in the one-photon-exchange approximation: Bethe-Heitler,
Born VCS, non-Born VCS. Thick (thin) solid lines denote the proton (the electron), wavy lines denote pho-
tons. Small circles denote the interaction vertex of a proton with a virtual photon, and the ellipse stands for
the generic non-Born VCS amplitude.

been echoed by theory advances. A number of impressive calculations have been done in heavy-
baryon chiral perturbation theory (HB‰PT) [14–18], albeit showing a rather poor convergence. A
much more empirically viable theory of proton GPs and VCS was developed by Pasquini et al. [19,
20] based on fixed-t dispersive relations (DRs) for the VCS amplitudes. Incidentally, this framework
is used in many experimental studies to extract the GPs from the VCS observables.

The present work is aiming to advance the chiral effective-field theoretic approach by applying
the manifestly Lorentz-invariant variant of baryon chiral perturbation theory (B‰PT) to nucleon
VCS and GPs. As many recent calculations demonstrate (see, e.g., [21–30]), B‰PT shows an
improved convergence over the analogous HB‰PT calculations, and, as result, a more “natural” de-
scription of the nucleon polarizabilities and Compton scattering processes [31–35]. In this paper,
we extend the previous B‰PT calculations of Lensky et al. [34–36], done for nucleon polarizabilities
appearing in real and forward doubly-virtual Compton scattering (RCS and VVCS, respectively),
to the case of GPs and VCS. As in the previous cases, the present calculation is “predictive” in the
sense that it has no free parameters to be fixed by the empirical information from Compton pro-
cesses. And, as in other cases, we find significant improvements in convergence over the analogous
HB‰PT results. Arguably, the main improvement is that our postdictions compare well with the
experimental data on VCS observables, at least given the significant theoretical uncertainties.

The paper is organized as follows. In Sec. II, we open with the general remarks concerning the
connection between polarizabilities and low-energy Compton scattering processes, and then focus
on defining the GPs and the VCS observables. Sec. III contains the details of our B‰PT calculation,
including power-counting, diagrams, theory error estimate, and remarks on a number of technical
issues which arise in these calculations. Sec. IV compares our calculation with previous estimates:
the linear ‡-model, HB‰PT calculations, and fixed-t dispersive estimates. Sec. V confronts the
results with the available experimental data. Sec. VI contains the concluding remarks. Appendix A
contains expressions for the tensors that are used in the decomposition of the VCS amplitude,
whereas Appendix B contains analytic expressions for those combinations of the invariant VCS
amplitudes that contribute to the GPs.

II. POLARIZABILITIES IN COMPTON PROCESSES

Let us start by pointing out that there are two different ways of introducing the momentum-
transfer dependence of polarizabilities: one via the forward doubly-virtual Compton scattering
(VVCS), the other via the single-virtual Compton scattering (VCS). To see the difference, consider
a general Compton scattering (CS) process in Fig. 2, described by a number of scalar amplitudes
A

i

, functions of Mandelstam invariants

s = (p + q)

2
= (pÕ

+ qÕ
)

2, t = (q ≠ qÕ
)

2
= (pÕ ≠ p)

2, u = (p ≠ qÕ
)

2
= (pÕ ≠ q)

2. (1)
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FIG. 11: (Color online) Generalized scalar polarizabilities: (a) –E1(Q2
), (b) —M1(Q2

). Description of curves
and points is the same as in Fig. 7.

response function P
T T

in Eq. (13). This would allow one to experimentally access the dominant
spin GP P (M1,M1)1 for the first time and provide a strong test of the B‰PT predictions presented in
this work.

Additionally, new data on the unpolarized response functions and GPs are expected to arrive
soon from MAMI. These data will complement the Q2

= 0.2 GeV2 points [13]. In particular,
expected are data at Q2

= 0.1 GeV2 and Q2
= 0.45 GeV2, which is in the domain of applicability of

B‰PT. These data will also further test the theoretical predictions.
One has to admit that the current theoretical uncertainty estimate gives a rather sizeable error

band, which should be improved upon. An O(p4
) calculation of GPs in B‰PT that would include

the remaining fi� loops that contribute at O(p3
) in the high-momenta regime and both the fiN

and fi� O(p4
) contributions in this regime would allow to significantly decrease the theoretical

uncertainty.
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Appendix A: Tensor decomposition of the VCS amplitude

In this section we give the details of the tensor decomposition of the VCS amplitude. The basis used by
us is fli, i = 1, . . . , 12, introduced in Ref. [5]. Its decomposition in terms of Tarrach’s T1, . . . , T34 (which are
given below) reads

fl1 = ≠ q · qÕT1 + T3 ,

fl2 = ≠ 4M2›2T1 ≠ 4q · qÕT6 + 4M›T7 ,

fl3 = ≠ 2M›Q2T1 ≠ M›(T4 + T5) + Q2
(T7 ≠ T8) + q · qÕ

(T9 ≠ T10) ,

16

Source “M1E2 “E1M2
B‰PT [36] 1.1 ± 0.3 0.2 ± 0.2

Fixed-t DR [20, 57] 2.2 ≠0.1

HB‰PT [58, 59] 1.9 ± 0.5 ≠0.4 ± 0.6

MAMI 2015 [60] 1.99 ± 0.29 ≠0.7 ± 1.2

TABLE I: Values of proton mixed spin polarisabilities “E1M2 and “M1E2, in units of 10

≠4 fm4 resulting in the
different frameworks: O(p4/∆) B‰PT [36], fixed-t DR [20, 57] based on the MAID-2007 [55] multipoles,
and O(p4

) HB‰PT [58, 59], compared with the latest empirical extraction from experimental data [60].

show in Table I the values of the two mixed polarizabilities, “
M1E2 and “

E1M2, resulting in B‰PT
framework at O(p4/∆), in fixed-t DR, in HB‰PT at O(p4

), and the results of extraction of the spin
polarizabilities from experimental data of one of the beam-target asymmetries, �2x

.

V. RESULTS FOR VCS OBSERVABLES

The experiments aiming to measure the GPs are based on the low-energy expansion of the
ep“ process, Eq. (13), which results in the extraction of the VCS response functions. Then, with
some further assumptions on the size of spin GPs, taken usually from the fixed-t DR framework of
Ref. [20], one obtains the two scalar GPs, –

E1 and —
M1. We first consider our results at the level

of the response functions, since it provides a more direct comparison to experiment.
In Figs. 7 to 10, we show our B‰PT results (red solid line, with cyan band indicating the un-

certainty estimate), compared with the fixed-t DR calculation (blue bands), and experimental data
where available. In this calculation we used the Bradford et al. [63] parametrization of nucleon

0.0 0.1 0.2 0.3 0.4 0.5
Q2 @GeV2D

0

25

50

75

P L
L-
P T

Tê∂
@Ge

V-
2 D

FIG. 7: VCS response function PLL(Q2
) ≠ PT T (Q2

)/Á. The total O(p3
) + O(p4/∆) result is given by the red

solid curve with the cyan band showing the estimated theoretical uncertainty as explained in the text. DR
results [20] are shown by the blue band. The curves correspond to Á = 0.65. The data shown are: black
open circle, PDG 2014 [61]; blue circle, Olmos de León et al [62]; green diamond, MIT-Bates (DR) [7, 8];
green open diamond, MIT-Bates (LEX) [7, 8]; purple solid square, MAMI (DR) [13]; purple open square,
MAMI (LEX) [13]; red solid triangle, MAMI1 (LEX) [9]; red solid inverted triangle, MAMI1 (DR) [11]; red
open triangle, MAMI2 (LEX) [10]. Some of the data points are shifted to the right in order to enhance their
visibility; namely, Olmos de León, MIT-Bates (LEX), MAMI LEX, MAMI1 DR and MAMI2 LEX sets have the
same values of Q2 as PDG, MIT-Bates (DR), MAMI DR, and MAMI1 LEX, respectively.
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FIG. 8: VCS response function PLT (Q2
). Notation is as in Fig. 7.

form factors, as input in Eq. (14). The bands of the DR results are obtained by varying the dipole
cut-offs �

–

and �

—

within the uncertainties given in Sec. IV C.
The first two response functions, P

LL

≠ P
T T

/Á and P
LT

(Fig. 7 and 8), are used to extract
–

E1(Q2
) and —

M1(Q2
), respectively. Our results here are in good agreement with the data as well

as with the DR results. The only place of disagreement is P
LT

(0) = ≠2M—
M1/–em, due to the

larger value of the static magnetic polarizability resulting in B‰PT, as mentioned already in the
previous section.
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FIG. 9: VCS response function P ‹
LT (Q2

). Notation is as in Fig. 7, except from the data: red square,
MAMI [12], and the green dotted curve that shows the B‰PT result with only the contribution of PLL

included, see Eq. (15).

Apart from these two response functions extracted from unpolarized measurements, there has
been a single low-Q2 double-polarization experiment at MAMI [12] extracting the response func-
tion P ‹

LT

defined in Eq. (15). This data point, together with theoretical curves, is shown in Fig. 9.
This is perhaps the only place where one can see that the B‰PT calculation is in a better agreement
with the data than the DR calculation. On the other hand, the slope at Q2

= 0 is in a perfect
agreement between the two calculations.

preliminary MAMI data: 
L. Corea, H. Fonvieille,  

H. Merkel et al. [A1 Coll.] 
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Muonic Hydrogen Lamb shift
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Abstract The proton polarizability effect in the muonic-
hydrogen Lamb shift comes out as a prediction of baryon
chiral perturbation theory at leading order and our calcu-
lation yields !E (pol)(2P − 2S) = 8+3

−1 µeV. This result is
consistent with most of evaluations based on dispersive sum
rules, but it is about a factor of 2 smaller than the recent result
obtained in heavy-baryon chiral perturbation theory. We also
find that the effect of !(1232)-resonance excitation on the
Lamb shift is suppressed, as is the entire contribution of the
magnetic polarizability; the electric polarizability dominates.
Our results reaffirm the point of view that the proton structure
effects, beyond the charge radius, are too small to resolve the
‘proton radius puzzle’.

1 Introduction

The eight standard-deviation (7.9σ ) discrepancy in the value
of proton’s charge radius obtained from elastic electron–
proton scattering [1] and hydrogen spectroscopy [2] on one
hand and from the muonic-hydrogen (µH) spectroscopy
[3,4] on the other, a.k.a. the proton charge radius puzzle [5,6],
is yet to meet its fully agreeable solution. One way to solve
it is to find an effect that would raise the µH Lamb shift by
about 310 µeV, and it has been suggested that proton struc-
ture could produce such an effect at O(α5

em), e.g. [7,8]. Most
of the studies, however, derive an order of magnitude smaller
effect of proton structure beyond the charge radius [9–15].

The O(α5
em) effects of proton structure in the Lamb shift

are usually divided into the effect of (i) the 3rd Zemach
moment, (ii) finite-size recoil, and (iii) polarizabilities. The
first two are sometimes combined into (i′) the ‘elastic’ 2γ

contribution, while the polarizability effect is often split
between (ii′) the ‘inelastic’ 2γ and (iii′) a ‘subtraction’ term,

a e-mail: alarcon@kph.uni-mainz.de

cf. Table 1. The ‘elastic’ and ‘inelastic’ 2γ contributions are
well constrained by the available empirical information on,
respectively, the proton form factors and unpolarized struc-
ture functions. The ‘subtraction’ contribution must be mod-
eled, and in principle one can make up a model where the
effect is large enough to resolve the puzzle [8].

In this work we observe that chiral perturbation theory
(χPT) contains definitive predictions for all of the above
mentioned O(α5

em) proton structure effects, hence no model-
ing is needed, assuming of course that χPT is an adequate the-
ory of the low-energy nucleon structure. Some of the effects
were already assessed in the heavy-baryon variant of the the-
ory (HBχPT), namely: Nevado and Pineda [11] computed the
polarizability effect to leading order (LO) [i.e., O(p3)], while
Birse and McGovern [13] computed the ‘subtraction’ term
in O(p4) HBχPT (with the caveat explained in the end of
Sect. 4). Here, on the other hand, we work in the framework of
a manifestly Lorentz-invariant variant of χPT in the baryon
sector, referred to as BχPT [16–19]. At least the LO results
for nucleon polarizabilities are known to be very different
in the two variants of the theory, e.g., the proton magnetic
polarizability is (in units of 10−4 fm3): 1.2 in HBχPT [20]
vs. −1.8 in BχPT [21–23]. Thus, the LO effect of the pion
cloud is paramagnetic in one case and diamagnetic in the
other (see [24,25] for more on HBχPT vs. BχPT). Due to
these qualitative and quantitative differences it is interesting
to examine the BχPT predictions for the 2γ contributions to
the Lamb shift. Here we compute the polarizability effect at
LO BχPT and indeed find it significantly different from the
LO HBχPT results of Nevado and Pineda [11]; see Table 1.

Our result for the ‘subtraction’ and ‘inelastic’ contribu-
tions differ from most of the previous works because we have
neglected the effect of the nucleon transition into its lowest
excited state—the !(1232). We argue, however (in Sect. 3),
that the latter effect cancels out of the polarizability contri-
bution. Thus, even though the ‘subtraction’ and ‘inelastic’
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The leading-order prediction of proton polarizability-like effect on the muonic hydrogen Lamb shift is ob-
tained in baryon chiral perturbation theory. The magnitude of the effect is �E(2P � 2S) ' 8µeV, which is
consistent with previous calculations based on heavy-baryon chiral perturbation theory and dispersion theory.
Our result rules out the scenarios where the ”proton charge radius puzzle” is solved by O(↵5

em) effects of proton
structure on the side of muonic hydrogen.

PACS numbers:

The ”proton charge radius puzzle” stands for the discrep-
ancy in the value of proton’s charge radius obtained form elas-
tic electron-proton scattering measurements [1] and atomic
measurements of the normal hydrogen [2] on one hand, and
the muonic hydrogen (µH) spectroscopy [3] on the other. The
discrepancy is almost 8 standard deviations (i.e., 7.7�). One
way to mend it is to find an effect which would raise the µH
Lamb shift by about 310 µeV and it has been suggested that
proton structure can produce such an effect at O(↵5

em

). Most
of the studies, however, derive a very modest effect of proton
structure beyond the charge radius.

Namely, the measured Lamb shift for the muonic hydrogen
is around 300 µeV lower than one expects from theory using
the charge radius deduced from normal hydrogen. This dif-
ference could be due to the internal electromagnetic structure
of the proton since, due to its larger mass, the muon is much
closer to the proton than the electron. Several studies have
been done investigating the effects of the internal electromag-
netic structure of the proton to the muonic hydrogen Lamb
shift. They point to a contribution of the order of -10µeV,
which is one order of magnitude smaller than needed to recon-
cile the electronic and muonic hydrogen measurements. Re-
cently, it was suggested that this difference could be accounted
for by effects of the proton magnetic polarizability at large vir-
tualities in the two photon exchange diagrams [4].

In this letter we investigate the contribution of the hadronic
structure of the proton to the muonic hydrogen Lamb shift.
They enter in the two photon exchange diagrams and are
related to the forward double virtual Compton scattering
(VVCS) on the proton. These contributions to the Lamb shift
can be parametrized in terms of the Compton tensor Tµ⌫ . This
embodies the information on the response of the proton due
to electromagnetic probes. For forward scattering, the spin-
averaged Compton tensor takes the form [5]

(b) (c)(a)

(d) (e) (f )

(g) (h) (j)

(k)

�

FIG. 1: Diagrams considered for the calculation of T1 and T2. Only
the direct process in the VVCS is shown. Double line represents the
�(1232) propagator.
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2), (1)

where m
N

is the nucleon mass, P and q are the proton and
photon momenta, respectively , ⌫ = P ·q/m

N

and Q2 = �q2

is the virtuality of the photons.
On the other hand, since we are interested in the O(↵5

em

)
contributions, we considered that the external muon and pro-
ton lines have zero three-momentum, which implies that ⌫ =
P · q/m

N

= q0. Corrections due to finite three-momenta are
higher orders in ↵

em

.
From this consideration, one can derive a very simple sum

rule to connect T1 and T2 to the Lamb shift correction �E
nS

[5]

= with corrections 
to elastic  

proton FFs  
subtracted, 

i.e. “polarizability” 
alone
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Table 1 Summary of available calculations of the ‘subtraction’ (second row), ‘inelastic’ (third row), and their sum—polarizability (last row) effects
on the 2S level of µH. The last column represents the χPT predictions obtained in this work; here the omitted effect of the "(1232)-resonance
excitation is missing in the first two (‘subtraction’ and ‘inelastic’) numbers, but it does not affect the total polarizability contribution where it is to
cancel out

(µeV) Pachucki [9] Martynenko [10] Nevado and
Pineda [11]

Carlson and
Vanderhaeghen [12]

Birse and
McGovern [13]

Gorchtein
et al. [14]

LO-BχPT
[this work]

"E (subt)
2S 1.8 2.3 – 5.3 (1.9) 4.2 (1.0) −2.3 (4.6)a −3.0

"E (inel)
2S −13.9 −13.8 – −12.7 (5) −12.7 (5)b −13.0 (6) −5.2

"E (pol)
2S −12 (2) −11.5 −18.5 −7.4 (2.4) −8.5 (1.1) −15.3 (5.6) −8.2(+1.2

−2.5)

a Adjusted value; the original value of Ref. [14], +3.3, is based on a different decomposition into the ‘elastic’ and ‘polarizability’ contributions
b Taken from Ref. [12]

values appear to be very different from the empirical values
due to neglect of the "(1232) excitation, the polarizability
contribution is not affected by this neglect.

The details of our calculation and main results are pre-
sented in the following section. Remarks on the role of the
"(1232) excitation are given in Sect. 3. The heavy-baryon
expansion of our results is discussed in Sect. 4. An “effective-
ness” criterion is applied to the HBχPT and BχPT results in
Sect. 5. The conclusions are given in Sect. 6. Expressions for
the LO χPT forward doubly virtual proton Compton scat-
tering (VVCS) amplitude and pion electroproduction cross
sections are given in Appendices A and B, respectively.

2 Outline of the calculation and results

We begin with the leading order chiral Lagrangian for the
pion and nucleon fields, as well as the minimally coupled
photons; see e.g. [16]. After a chiral rotation of the nucleon
field the Lagrangian resembles that of the chiral soliton
model; see [26] for details. As the result, the pseudovec-
tor π N N interaction transforms into the pseudoscalar one,
while a new scalar–isoscalar ππ N N interaction is generated.
The original and the redefined pion–nucleon Lagrangians,
expanded up to the second order in the pion field, take the
form

L(1)
π N = N

(
i /∂ − MN + gA

2 fπ
τ a /∂ πaγ5

− 1
4 f 2

π

τ aεabcπb /∂ πc
)

N + O(π3), (1a)

L′(1)
π N = N

(
i /∂ − MN − i

gA

fπ
MN τ aπaγ5

+ g2
A

2 f 2
π

MN π2 + (g2
A − 1)

4 f 2
π

τ aεabcπb /∂ πc

)

N + O(π3),

(1b)

where N (x) and MN is the nucleon field and mass, respec-
tively, πa(x) is the pion field; gA ≃ 1.27, fπ ≃ 92.4 MeV.

Upon the minimal inclusion of the electromagnetic field,
the two Lagrangians give identical results for the O(p3)

Compton scattering amplitude and the isovector term pro-
portional to (g2

A − 1) does not contribute. Working with the
second Lagrangian, however, simplifies a lot the evaluation
of the two-loop graphs needed for the Lamb-shift calcula-
tion. The resulting Feynman diagrams, omitting crossed and
time-reversed ones, are shown in Fig. 1.

These graphs represent an O(α2
em) correction to the

Coulomb potential and can be treated in stationary pertur-
bation theory. Since the Coulomb wave function is O(α

3/2
em ),

the first-order contribution of these graphs to the energy shift
is O(α5

em) as requested. As any energy transfer in the atomic
system brings in extra powers of αem, we neglect it, and hence
consider strictly the zero-energy forward kinematics. In this
case the Feynman amplitude M is a number in momentum
space, corresponding to a potential equal to M δ(r⃗). Because
of the δ-function only the S-levels are shifted:

"EnS = φ2
n M, (2)

where φ2
n = m3

r α
3
em/(πn3) is the hydrogen wave function at

the origin, for mr = mℓ Mp/(mℓ + Mp) the reduced mass
of the lepton–proton system, and mℓ, Mp = MN the corre-
sponding masses of the constituents.

It is customary for the 2γ contributions to be split into
leptonic and hadronic parts, i.e.,

M = e2

2mℓ

∫
d4q

i(2π)4

1
q4 Lµν(ℓ, q) T µν(P, q), (3)

where e2 = 4παem is the lepton charge squared, and

Lµν = 1
1
4 q4 − (ℓ · q)2

[q2ℓµℓν − (qµℓν + qνℓµ) ℓ · q

+gµν(ℓ · q)2] (4)

is the leptonic tensor, with ℓ and q the 4-momenta of the
lepton and the photons, respectively; gµν = diag(1,−1,−1,

−1) is the Minkowski metric tensor. The tensor T µν is the
unpolarized VVCS amplitude, which can be written in terms
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of Nevado and Pineda [11] at zero energy (ν = 0), up to a
convention for an overall normalization of the amplitudes.
We have also reproduced their expressions for T1 and T2 (cf.
Eq. (3.2) and (3.5) in Ref. [11]) for all ν and Q2.

Substituting these expressions into (12), we obtain the
following value for the polarizability contribution to the 2S-
level shift in µH:

"E (pol)
2S (LO-HBχPT) = −17.85 µeV. (19)

This is slightly different from the result of Ref. [11] that we
quote in Eq. (11), which is because of the neglected energy
dependence, i.e., the use of the LEX in deriving Eq. (12) from
(6). Still, the difference between the exact and LEX result is
well within the expected 15 % uncertainty of such calculation
and hence we conclude that the LEX approximation works
well in this case too.

Substitution to Eq. (17) yields the HBχPT predictions for
the ‘inelastic’ and ‘subtraction’ contributions:

"E (subt)
2S (LO-HBχPT) = 1.3 µeV, (20a)

"E (inel)
2S (LO-HBχPT) = −19.1 µeV. (20b)

Neglecting for a moment the difference between τπ and τµ,
we obtain very simple closed expressions for the Lamb-shift
contributions:

"E (pol)
2S (LO-HBχPT)

≈ α5
emm3

r g2
A

4(4π fπ )2

mµ

mπ
(1−10G+6 log 2)=−16.1 µeV, (21a)

"E (subt)
2S (LO-HBχPT)

≈ α5
emm3

r g2
A

8(4π fπ )2

mµ

mπ
(1 − 2G + 2 log 2) = 1.1 µeV, (21b)

"E (inel)
2S (LO-HBχPT)

≈ α5
emm3

r g2
A

8(4π fπ )2

mµ

mπ
(1 − 18G+10 log 2) = −17.2 µeV,

(21c)

where G ≃ 0.9160 is the Catalan constant. This should pro-
vide an impression of the parametric dependencies arising
in χPT for this effect. The resulting numbers are within the
expected uncertainty for HBχPT result, and they can in prin-
ciple be easily improved in a perturbative treatment of the
pion–muon mass difference.

So far we have been discussing the O(p3) result. At higher
orders one in addition to the VVCS calculation needs to con-
sider the appropriate operators from the effective lepton–
nucleon Lagrangian with corresponding low-energy con-
stants fixed to, e.g., the low-energy lepton–nucleon scatter-

Footnote 1 continued
come from the expansion of the leading pion loop contribution to the
term βM1 Q2 in powers of mπ and hence are part of δβ in that reference.

ing. Birse and McGovern [13] computed the VVCS ampli-
tude T1(0, Q2) to order O(p4), but they evaded the consider-
ation of the lepton–nucleon terms by introducing a “physical
cutoff” in Q. Hence, their resulting calculation of the subtrac-
tion term is strongly cutoff dependent and lies, strictly speak-
ing, outside the χPT framework; we refer to it as “HBχPT-
inspired” calculation.

5 “Effectiveness” of HBχPT vs. BχPT

Although at high enough orders HBχPT and BχPT are
bound to yield the same results, at low orders this is not
necessarily so and practice shows that especially at ‘predic-
tive’ orders, where there are no free low-energy constants
to absorb the differences, HBχPT and BχPT results differ
substantially, sometimes even in the sign of the total effect
(cf. the order p3 result for the magnetic polarizability of the
nucleon [24,26]). The proton polarizability contribution to
the Lamb shift is apparently such a case as well. So, hav-
ing found the substantial differences between the HBχPT
and BχPT predictions the obvious question is: which one is
more reliable, if any?

A rather common point of view is that, since HBχPT
neglects only the effects of “higher order”, any substantial
disagreement only signals the importance of higher-order
effects and hence neither of the calculations should be trusted
at this order. On the other hand, it is plausible that not all the
higher-order effects are large, but only the ones present in
the BχPT calculation and dismissed in the one of HBχPT.
In support of the latter scenario is the physical principle
of analyticity—consequence of (micro-)causality, which in
BχPT is obeyed exactly, while in HBχPT it is obeyed only
approximately, albeit improvable order by order.

Another, perhaps more quantitative criterion is the one put
forward by Strikman and Weiss [32]. In the interpretation of
Ref. [24], it requires that the high-momentum contribution
of finite (renormalized) loop integrals over quantities which
are invariant under redefinitions of hadron fields should not
exceed the expected uncertainty of the given-order calcula-
tion. In other words, the contribution from beyond the scales
at which the effective theory is applicable should not exceed
a natural estimate of missing higher-order effects.

In our case the VVCS amplitudes are such quantities
invariant under redefinitions of pion and nucleon fields and
hence it makes sense to examine Fig. 4, where the polariz-
ability effect is plotted as a function of the ultraviolet cutoff
Qmax imposed on the momentum integration in (12).

The figure clearly shows that the relative size of the high-
momentum contribution in the HBχPT case is substantially
larger than in BχPT.

Assuming the breakdown scale for χPT is of order of the
ρ-meson mass, mρ = 777 MeV, we can make a more quanti-
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Table 1 Summary of available calculations of the ‘subtraction’ (second row), ‘inelastic’ (third row), and their sum—polarizability (last row) effects
on the 2S level of µH. The last column represents the χPT predictions obtained in this work; here the omitted effect of the "(1232)-resonance
excitation is missing in the first two (‘subtraction’ and ‘inelastic’) numbers, but it does not affect the total polarizability contribution where it is to
cancel out

(µeV) Pachucki [9] Martynenko [10] Nevado and
Pineda [11]

Carlson and
Vanderhaeghen [12]

Birse and
McGovern [13]

Gorchtein
et al. [14]

LO-BχPT
[this work]

"E (subt)
2S 1.8 2.3 – 5.3 (1.9) 4.2 (1.0) −2.3 (4.6)a −3.0

"E (inel)
2S −13.9 −13.8 – −12.7 (5) −12.7 (5)b −13.0 (6) −5.2

"E (pol)
2S −12 (2) −11.5 −18.5 −7.4 (2.4) −8.5 (1.1) −15.3 (5.6) −8.2(+1.2

−2.5)

a Adjusted value; the original value of Ref. [14], +3.3, is based on a different decomposition into the ‘elastic’ and ‘polarizability’ contributions
b Taken from Ref. [12]

values appear to be very different from the empirical values
due to neglect of the "(1232) excitation, the polarizability
contribution is not affected by this neglect.

The details of our calculation and main results are pre-
sented in the following section. Remarks on the role of the
"(1232) excitation are given in Sect. 3. The heavy-baryon
expansion of our results is discussed in Sect. 4. An “effective-
ness” criterion is applied to the HBχPT and BχPT results in
Sect. 5. The conclusions are given in Sect. 6. Expressions for
the LO χPT forward doubly virtual proton Compton scat-
tering (VVCS) amplitude and pion electroproduction cross
sections are given in Appendices A and B, respectively.

2 Outline of the calculation and results

We begin with the leading order chiral Lagrangian for the
pion and nucleon fields, as well as the minimally coupled
photons; see e.g. [16]. After a chiral rotation of the nucleon
field the Lagrangian resembles that of the chiral soliton
model; see [26] for details. As the result, the pseudovec-
tor π N N interaction transforms into the pseudoscalar one,
while a new scalar–isoscalar ππ N N interaction is generated.
The original and the redefined pion–nucleon Lagrangians,
expanded up to the second order in the pion field, take the
form

L(1)
π N = N

(
i /∂ − MN + gA

2 fπ
τ a /∂ πaγ5

− 1
4 f 2

π

τ aεabcπb /∂ πc
)

N + O(π3), (1a)

L′(1)
π N = N

(
i /∂ − MN − i

gA

fπ
MN τ aπaγ5

+ g2
A

2 f 2
π

MN π2 + (g2
A − 1)

4 f 2
π

τ aεabcπb /∂ πc

)

N + O(π3),

(1b)

where N (x) and MN is the nucleon field and mass, respec-
tively, πa(x) is the pion field; gA ≃ 1.27, fπ ≃ 92.4 MeV.

Upon the minimal inclusion of the electromagnetic field,
the two Lagrangians give identical results for the O(p3)

Compton scattering amplitude and the isovector term pro-
portional to (g2

A − 1) does not contribute. Working with the
second Lagrangian, however, simplifies a lot the evaluation
of the two-loop graphs needed for the Lamb-shift calcula-
tion. The resulting Feynman diagrams, omitting crossed and
time-reversed ones, are shown in Fig. 1.

These graphs represent an O(α2
em) correction to the

Coulomb potential and can be treated in stationary pertur-
bation theory. Since the Coulomb wave function is O(α

3/2
em ),

the first-order contribution of these graphs to the energy shift
is O(α5

em) as requested. As any energy transfer in the atomic
system brings in extra powers of αem, we neglect it, and hence
consider strictly the zero-energy forward kinematics. In this
case the Feynman amplitude M is a number in momentum
space, corresponding to a potential equal to M δ(r⃗). Because
of the δ-function only the S-levels are shifted:

"EnS = φ2
n M, (2)

where φ2
n = m3

r α
3
em/(πn3) is the hydrogen wave function at

the origin, for mr = mℓ Mp/(mℓ + Mp) the reduced mass
of the lepton–proton system, and mℓ, Mp = MN the corre-
sponding masses of the constituents.

It is customary for the 2γ contributions to be split into
leptonic and hadronic parts, i.e.,

M = e2

2mℓ

∫
d4q

i(2π)4

1
q4 Lµν(ℓ, q) T µν(P, q), (3)

where e2 = 4παem is the lepton charge squared, and

Lµν = 1
1
4 q4 − (ℓ · q)2

[q2ℓµℓν − (qµℓν + qνℓµ) ℓ · q

+gµν(ℓ · q)2] (4)

is the leptonic tensor, with ℓ and q the 4-momenta of the
lepton and the photons, respectively; gµν = diag(1,−1,−1,

−1) is the Minkowski metric tensor. The tensor T µν is the
unpolarized VVCS amplitude, which can be written in terms
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of Nevado and Pineda [11] at zero energy (ν = 0), up to a
convention for an overall normalization of the amplitudes.
We have also reproduced their expressions for T1 and T2 (cf.
Eq. (3.2) and (3.5) in Ref. [11]) for all ν and Q2.

Substituting these expressions into (12), we obtain the
following value for the polarizability contribution to the 2S-
level shift in µH:

"E (pol)
2S (LO-HBχPT) = −17.85 µeV. (19)

This is slightly different from the result of Ref. [11] that we
quote in Eq. (11), which is because of the neglected energy
dependence, i.e., the use of the LEX in deriving Eq. (12) from
(6). Still, the difference between the exact and LEX result is
well within the expected 15 % uncertainty of such calculation
and hence we conclude that the LEX approximation works
well in this case too.

Substitution to Eq. (17) yields the HBχPT predictions for
the ‘inelastic’ and ‘subtraction’ contributions:

"E (subt)
2S (LO-HBχPT) = 1.3 µeV, (20a)

"E (inel)
2S (LO-HBχPT) = −19.1 µeV. (20b)

Neglecting for a moment the difference between τπ and τµ,
we obtain very simple closed expressions for the Lamb-shift
contributions:

"E (pol)
2S (LO-HBχPT)

≈ α5
emm3

r g2
A

4(4π fπ )2

mµ

mπ
(1−10G+6 log 2)=−16.1 µeV, (21a)

"E (subt)
2S (LO-HBχPT)

≈ α5
emm3

r g2
A

8(4π fπ )2

mµ

mπ
(1 − 2G + 2 log 2) = 1.1 µeV, (21b)

"E (inel)
2S (LO-HBχPT)

≈ α5
emm3

r g2
A

8(4π fπ )2

mµ

mπ
(1 − 18G+10 log 2) = −17.2 µeV,

(21c)

where G ≃ 0.9160 is the Catalan constant. This should pro-
vide an impression of the parametric dependencies arising
in χPT for this effect. The resulting numbers are within the
expected uncertainty for HBχPT result, and they can in prin-
ciple be easily improved in a perturbative treatment of the
pion–muon mass difference.

So far we have been discussing the O(p3) result. At higher
orders one in addition to the VVCS calculation needs to con-
sider the appropriate operators from the effective lepton–
nucleon Lagrangian with corresponding low-energy con-
stants fixed to, e.g., the low-energy lepton–nucleon scatter-

Footnote 1 continued
come from the expansion of the leading pion loop contribution to the
term βM1 Q2 in powers of mπ and hence are part of δβ in that reference.

ing. Birse and McGovern [13] computed the VVCS ampli-
tude T1(0, Q2) to order O(p4), but they evaded the consider-
ation of the lepton–nucleon terms by introducing a “physical
cutoff” in Q. Hence, their resulting calculation of the subtrac-
tion term is strongly cutoff dependent and lies, strictly speak-
ing, outside the χPT framework; we refer to it as “HBχPT-
inspired” calculation.

5 “Effectiveness” of HBχPT vs. BχPT

Although at high enough orders HBχPT and BχPT are
bound to yield the same results, at low orders this is not
necessarily so and practice shows that especially at ‘predic-
tive’ orders, where there are no free low-energy constants
to absorb the differences, HBχPT and BχPT results differ
substantially, sometimes even in the sign of the total effect
(cf. the order p3 result for the magnetic polarizability of the
nucleon [24,26]). The proton polarizability contribution to
the Lamb shift is apparently such a case as well. So, hav-
ing found the substantial differences between the HBχPT
and BχPT predictions the obvious question is: which one is
more reliable, if any?

A rather common point of view is that, since HBχPT
neglects only the effects of “higher order”, any substantial
disagreement only signals the importance of higher-order
effects and hence neither of the calculations should be trusted
at this order. On the other hand, it is plausible that not all the
higher-order effects are large, but only the ones present in
the BχPT calculation and dismissed in the one of HBχPT.
In support of the latter scenario is the physical principle
of analyticity—consequence of (micro-)causality, which in
BχPT is obeyed exactly, while in HBχPT it is obeyed only
approximately, albeit improvable order by order.

Another, perhaps more quantitative criterion is the one put
forward by Strikman and Weiss [32]. In the interpretation of
Ref. [24], it requires that the high-momentum contribution
of finite (renormalized) loop integrals over quantities which
are invariant under redefinitions of hadron fields should not
exceed the expected uncertainty of the given-order calcula-
tion. In other words, the contribution from beyond the scales
at which the effective theory is applicable should not exceed
a natural estimate of missing higher-order effects.

In our case the VVCS amplitudes are such quantities
invariant under redefinitions of pion and nucleon fields and
hence it makes sense to examine Fig. 4, where the polariz-
ability effect is plotted as a function of the ultraviolet cutoff
Qmax imposed on the momentum integration in (12).

The figure clearly shows that the relative size of the high-
momentum contribution in the HBχPT case is substantially
larger than in BχPT.

Assuming the breakdown scale for χPT is of order of the
ρ-meson mass, mρ = 777 MeV, we can make a more quanti-
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of Nevado and Pineda [11] at zero energy (ν = 0), up to a
convention for an overall normalization of the amplitudes.
We have also reproduced their expressions for T1 and T2 (cf.
Eq. (3.2) and (3.5) in Ref. [11]) for all ν and Q2.

Substituting these expressions into (12), we obtain the
following value for the polarizability contribution to the 2S-
level shift in µH:

"E (pol)
2S (LO-HBχPT) = −17.85 µeV. (19)

This is slightly different from the result of Ref. [11] that we
quote in Eq. (11), which is because of the neglected energy
dependence, i.e., the use of the LEX in deriving Eq. (12) from
(6). Still, the difference between the exact and LEX result is
well within the expected 15 % uncertainty of such calculation
and hence we conclude that the LEX approximation works
well in this case too.

Substitution to Eq. (17) yields the HBχPT predictions for
the ‘inelastic’ and ‘subtraction’ contributions:

"E (subt)
2S (LO-HBχPT) = 1.3 µeV, (20a)

"E (inel)
2S (LO-HBχPT) = −19.1 µeV. (20b)

Neglecting for a moment the difference between τπ and τµ,
we obtain very simple closed expressions for the Lamb-shift
contributions:

"E (pol)
2S (LO-HBχPT)

≈ α5
emm3

r g2
A

4(4π fπ )2

mµ

mπ
(1−10G+6 log 2)=−16.1 µeV, (21a)

"E (subt)
2S (LO-HBχPT)

≈ α5
emm3

r g2
A

8(4π fπ )2

mµ

mπ
(1 − 2G + 2 log 2) = 1.1 µeV, (21b)

"E (inel)
2S (LO-HBχPT)

≈ α5
emm3

r g2
A

8(4π fπ )2

mµ

mπ
(1 − 18G+10 log 2) = −17.2 µeV,

(21c)

where G ≃ 0.9160 is the Catalan constant. This should pro-
vide an impression of the parametric dependencies arising
in χPT for this effect. The resulting numbers are within the
expected uncertainty for HBχPT result, and they can in prin-
ciple be easily improved in a perturbative treatment of the
pion–muon mass difference.

So far we have been discussing the O(p3) result. At higher
orders one in addition to the VVCS calculation needs to con-
sider the appropriate operators from the effective lepton–
nucleon Lagrangian with corresponding low-energy con-
stants fixed to, e.g., the low-energy lepton–nucleon scatter-

Footnote 1 continued
come from the expansion of the leading pion loop contribution to the
term βM1 Q2 in powers of mπ and hence are part of δβ in that reference.

ing. Birse and McGovern [13] computed the VVCS ampli-
tude T1(0, Q2) to order O(p4), but they evaded the consider-
ation of the lepton–nucleon terms by introducing a “physical
cutoff” in Q. Hence, their resulting calculation of the subtrac-
tion term is strongly cutoff dependent and lies, strictly speak-
ing, outside the χPT framework; we refer to it as “HBχPT-
inspired” calculation.

5 “Effectiveness” of HBχPT vs. BχPT

Although at high enough orders HBχPT and BχPT are
bound to yield the same results, at low orders this is not
necessarily so and practice shows that especially at ‘predic-
tive’ orders, where there are no free low-energy constants
to absorb the differences, HBχPT and BχPT results differ
substantially, sometimes even in the sign of the total effect
(cf. the order p3 result for the magnetic polarizability of the
nucleon [24,26]). The proton polarizability contribution to
the Lamb shift is apparently such a case as well. So, hav-
ing found the substantial differences between the HBχPT
and BχPT predictions the obvious question is: which one is
more reliable, if any?

A rather common point of view is that, since HBχPT
neglects only the effects of “higher order”, any substantial
disagreement only signals the importance of higher-order
effects and hence neither of the calculations should be trusted
at this order. On the other hand, it is plausible that not all the
higher-order effects are large, but only the ones present in
the BχPT calculation and dismissed in the one of HBχPT.
In support of the latter scenario is the physical principle
of analyticity—consequence of (micro-)causality, which in
BχPT is obeyed exactly, while in HBχPT it is obeyed only
approximately, albeit improvable order by order.

Another, perhaps more quantitative criterion is the one put
forward by Strikman and Weiss [32]. In the interpretation of
Ref. [24], it requires that the high-momentum contribution
of finite (renormalized) loop integrals over quantities which
are invariant under redefinitions of hadron fields should not
exceed the expected uncertainty of the given-order calcula-
tion. In other words, the contribution from beyond the scales
at which the effective theory is applicable should not exceed
a natural estimate of missing higher-order effects.

In our case the VVCS amplitudes are such quantities
invariant under redefinitions of pion and nucleon fields and
hence it makes sense to examine Fig. 4, where the polariz-
ability effect is plotted as a function of the ultraviolet cutoff
Qmax imposed on the momentum integration in (12).

The figure clearly shows that the relative size of the high-
momentum contribution in the HBχPT case is substantially
larger than in BχPT.

Assuming the breakdown scale for χPT is of order of the
ρ-meson mass, mρ = 777 MeV, we can make a more quanti-
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Table 1 Summary of available calculations of the ‘subtraction’ (second row), ‘inelastic’ (third row), and their sum—polarizability (last row) effects
on the 2S level of µH. The last column represents the χPT predictions obtained in this work; here the omitted effect of the "(1232)-resonance
excitation is missing in the first two (‘subtraction’ and ‘inelastic’) numbers, but it does not affect the total polarizability contribution where it is to
cancel out

(µeV) Pachucki [9] Martynenko [10] Nevado and
Pineda [11]

Carlson and
Vanderhaeghen [12]

Birse and
McGovern [13]

Gorchtein
et al. [14]

LO-BχPT
[this work]

"E (subt)
2S 1.8 2.3 – 5.3 (1.9) 4.2 (1.0) −2.3 (4.6)a −3.0

"E (inel)
2S −13.9 −13.8 – −12.7 (5) −12.7 (5)b −13.0 (6) −5.2

"E (pol)
2S −12 (2) −11.5 −18.5 −7.4 (2.4) −8.5 (1.1) −15.3 (5.6) −8.2(+1.2

−2.5)

a Adjusted value; the original value of Ref. [14], +3.3, is based on a different decomposition into the ‘elastic’ and ‘polarizability’ contributions
b Taken from Ref. [12]

values appear to be very different from the empirical values
due to neglect of the "(1232) excitation, the polarizability
contribution is not affected by this neglect.

The details of our calculation and main results are pre-
sented in the following section. Remarks on the role of the
"(1232) excitation are given in Sect. 3. The heavy-baryon
expansion of our results is discussed in Sect. 4. An “effective-
ness” criterion is applied to the HBχPT and BχPT results in
Sect. 5. The conclusions are given in Sect. 6. Expressions for
the LO χPT forward doubly virtual proton Compton scat-
tering (VVCS) amplitude and pion electroproduction cross
sections are given in Appendices A and B, respectively.

2 Outline of the calculation and results

We begin with the leading order chiral Lagrangian for the
pion and nucleon fields, as well as the minimally coupled
photons; see e.g. [16]. After a chiral rotation of the nucleon
field the Lagrangian resembles that of the chiral soliton
model; see [26] for details. As the result, the pseudovec-
tor π N N interaction transforms into the pseudoscalar one,
while a new scalar–isoscalar ππ N N interaction is generated.
The original and the redefined pion–nucleon Lagrangians,
expanded up to the second order in the pion field, take the
form

L(1)
π N = N

(
i /∂ − MN + gA

2 fπ
τ a /∂ πaγ5

− 1
4 f 2

π

τ aεabcπb /∂ πc
)

N + O(π3), (1a)

L′(1)
π N = N

(
i /∂ − MN − i

gA

fπ
MN τ aπaγ5

+ g2
A

2 f 2
π

MN π2 + (g2
A − 1)

4 f 2
π

τ aεabcπb /∂ πc

)

N + O(π3),

(1b)

where N (x) and MN is the nucleon field and mass, respec-
tively, πa(x) is the pion field; gA ≃ 1.27, fπ ≃ 92.4 MeV.

Upon the minimal inclusion of the electromagnetic field,
the two Lagrangians give identical results for the O(p3)

Compton scattering amplitude and the isovector term pro-
portional to (g2

A − 1) does not contribute. Working with the
second Lagrangian, however, simplifies a lot the evaluation
of the two-loop graphs needed for the Lamb-shift calcula-
tion. The resulting Feynman diagrams, omitting crossed and
time-reversed ones, are shown in Fig. 1.

These graphs represent an O(α2
em) correction to the

Coulomb potential and can be treated in stationary pertur-
bation theory. Since the Coulomb wave function is O(α

3/2
em ),

the first-order contribution of these graphs to the energy shift
is O(α5

em) as requested. As any energy transfer in the atomic
system brings in extra powers of αem, we neglect it, and hence
consider strictly the zero-energy forward kinematics. In this
case the Feynman amplitude M is a number in momentum
space, corresponding to a potential equal to M δ(r⃗). Because
of the δ-function only the S-levels are shifted:

"EnS = φ2
n M, (2)

where φ2
n = m3

r α
3
em/(πn3) is the hydrogen wave function at

the origin, for mr = mℓ Mp/(mℓ + Mp) the reduced mass
of the lepton–proton system, and mℓ, Mp = MN the corre-
sponding masses of the constituents.

It is customary for the 2γ contributions to be split into
leptonic and hadronic parts, i.e.,

M = e2

2mℓ

∫
d4q

i(2π)4

1
q4 Lµν(ℓ, q) T µν(P, q), (3)

where e2 = 4παem is the lepton charge squared, and

Lµν = 1
1
4 q4 − (ℓ · q)2

[q2ℓµℓν − (qµℓν + qνℓµ) ℓ · q

+gµν(ℓ · q)2] (4)

is the leptonic tensor, with ℓ and q the 4-momenta of the
lepton and the photons, respectively; gµν = diag(1,−1,−1,

−1) is the Minkowski metric tensor. The tensor T µν is the
unpolarized VVCS amplitude, which can be written in terms
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Figure 7.6: �LT of the nucleons. fig:deltaLT
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Figure 7.7: Summary of available calculations for the polarizability correction to the Lamb shift in µH. fig:LSSummary
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More on n=2 for muonic hydrogen:
Lamb shift dominated by vacuum polarization, drops 
2S state by a lot 
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Figure 3 shows the two measured mp res-
onances. Details of the data analysis are given
in (12). The laser frequency was changed every
few hours, and we accumulated data for up to
13 hours per laser frequency. The laser frequen-
cy was calibrated [supplement in (6)] by using
well-known water absorption lines. The reso-
nance positions corrected for laser intensity ef-
fects using the line shape model (12) are

ns ¼ 54611:16(1:00)stat(30)sysGHz ð2Þ

nt ¼ 49881:35(57)stat(30)sysGHz ð3Þ

where “stat” and “sys” indicate statistical and sys-
tematic uncertainties, giving total experimental un-
certainties of 1.05 and 0.65 GHz, respectively.
Although extracted from the same data, the fre-
quency value of the triplet resonance, nt, is slightly
more accurate than in (6) owing to several improve-
ments in the data analysis. The fitted line widths
are 20.0(3.6) and 15.9(2.4) GHz, respectively, com-
patible with the expected 19.0 GHz resulting from
the laser bandwidth (1.75 GHz at full width at half
maximum) and the Doppler broadening (1 GHz)
of the 18.6-GHz natural line width.

The systematic uncertainty of each measure-
ment is 300 MHz, given by the frequency cal-
ibration uncertainty arising from pulse-to-pulse
fluctuations in the laser and from broadening
effects occurring in the Raman process. Other
systematic corrections we have considered are
the Zeeman shift in the 5-T field (<60 MHz),
AC and DC Stark shifts (<1 MHz), Doppler
shift (<1 MHz), pressure shift (<2 MHz), and
black-body radiation shift (<<1 MHz). All these
typically important atomic spectroscopy system-
atics are small because of the small size of mp.

The Lamb shift and the hyperfine splitting.
From these two transition measurements, we
can independently deduce both the Lamb shift
(DEL = DE2P1/2−2S1/2) and the 2S-HFS splitting
(DEHFS) by the linear combinations (13)

1
4
hns þ

3
4
hnt ¼ DEL þ 8:8123ð2ÞmeV

hns − hnt ¼ DEHFS − 3:2480ð2ÞmeV ð4Þ

Finite size effects are included in DEL and
DEHFS. The numerical terms include the cal-
culated values of the 2P fine structure, the 2P3/2
hyperfine splitting, and the mixing of the 2P
states (14–18). The finite proton size effects on
the 2P fine and hyperfine structure are smaller
than 1 × 10−4 meV because of the small overlap
between the 2P wave functions and the nu-
cleus. Thus, their uncertainties arising from
the proton structure are negligible. By using
the measured transition frequencies ns and nt
in Eqs. 4, we obtain (1 meV corresponds to
241.79893 GHz)

DEexp
L ¼ 202:3706(23) meV ð5Þ

DEexp
HFS ¼ 22:8089(51) meV ð6Þ

The uncertainties result from quadratically
adding the statistical and systematic uncertain-
ties of ns and nt.

The charge radius. The theory (14, 16–22)
relating the Lamb shift to rE yields (13):

DEth
L ¼ 206:0336(15Þ − 5:2275(10Þr2E þ DETPE

ð7Þ

where E is in meV and rE is the root mean
square (RMS) charge radius given in fm and
defined as rE

2 = ∫d3r r2 rE(r) with rE being the
normalized proton charge distribution. The first
term on the right side of Eq. 7 accounts for
radiative, relativistic, and recoil effects. Fine and
hyperfine corrections are absent here as a con-
sequence of Eqs. 4. The other terms arise from
the proton structure. The leading finite size effect
−5.2275(10)rE2 meV is approximately given by
Eq. 1 with corrections given in (13, 17, 18).
Two-photon exchange (TPE) effects, including the
proton polarizability, are covered by the term
DETPE = 0.0332(20) meV (19, 24–26). Issues
related with TPE are discussed in (12, 13).

The comparison of DEth
L (Eq. 7) with DEexp

L
(Eq. 5) yields

rE ¼ 0:84087(26)exp(29)th fm
¼ 0:84087(39) fm ð8Þ

This rE value is compatible with our pre-
vious mp result (6), but 1.7 times more precise,
and is now independent of the theoretical pre-
diction of the 2S-HFS. Although an order of
magnitude more precise, the mp-derived proton
radius is at 7s variance with the CODATA-2010
(7) value of rE = 0.8775(51) fm based on H spec-
troscopy and electron-proton scattering.

Magnetic and Zemach radii. The theoretical
prediction (17, 18, 27–29) of the 2S-HFS is (13)

DEth
HFS ¼ 22:9763(15Þ − 0:1621(10)rZ þ DEpol

HFS

ð9Þ

where E is in meVand rZ is in fm. The first term is
the Fermi energy arising from the interaction
between the muon and the proton magnetic mo-
ments, corrected for radiative and recoil con-
tributions, and includes a small dependence of
−0.0022rE2 meV = −0.0016 meVon the charge
radius (13).

The leading proton structure term depends
on rZ, defined as

rZ ¼ ∫d3r∫d3r′r′rE(r)rM(r − r′) ð10Þ

with rM being the normalized proton mag-
netic moment distribution. The HFS polariz-

Fig. 1. (A) Formation of mp in highly excited states and subsequent cascade with emission of “prompt”
Ka, b, g. (B) Laser excitation of the 2S-2P transition with subsequent decay to the ground state with Ka
emission. (C) 2S and 2P energy levels. The measured transitions ns and nt are indicated together with
the Lamb shift, 2S-HFS, and 2P-fine and hyperfine splitting.

25 JANUARY 2013 VOL 339 SCIENCE www.sciencemag.org418

RESEARCH ARTICLES

CREMA Collaboration measured 2 transitions in muonic H: 
Pohl et al., Nature (2010) 

Antognini et al., Science (2013)
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2S hyperfine splitting and Zemach radius
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Figure 6.1: (color online) Determination of the proton’s elec-
tric and magnetic radii. The shown values are given in the
text. The green lines display the Bernauer fit with TPE cor-
rections: TPE-a (solid), TPE-b (dashed). The different uncer-
tainties given in [209] are added in quadrature.

The current situation is illustrated in Fig. 6.1. The CO-
DATA 2010 recommended value, combining the H and ep
scattering results, is [214]:

RE(H + ep) = 0.8775(51) fm, (6.3)

which is in 7� disagreement with the µH result. The CO-
DATA value does not include the extraction based on the
dispersive approach [217]. For more details we refer to re-
cent reviews dedicated exclusively to the ‘proton-size puz-
zle’ [39, 40].

We, on the other hand, shall focus on the evalua-
tions of the proton structure effects beyond the lead-
ing order. These are required, together with the
QED corrections, as input in the spectroscopy de-
termination of the charge radius. In the follow-
ing, we mainly consider the µH since it is much
more sensitive, than H, to the proton structure ef-
fects.23

6.2. Charge and Zemach Radii from Muonic Hydrogen
The extraction from µH relies on the following theoretical description of the classic (2P -2S) Lamb shift and

the 2S hyperfine splitting (HFS) [2] (in units of meV):

�Eth
LS = 206.0336(15) � 5.2275(10) (RE/fm)2 +�ETPE

LS , with �ETPE
LS = 0.0332(20), (6.4a)

�Eth
HFS = 22.9763(15) � 0.1621(10) (RZ/fm) +�E(pol)

HFS , with �E(pol)
HFS = 0.0080(26), (6.4b)

where the first number includes the QED effects, as well as their interference with the LO finite-size effect, i.e.,
RE; �ETPE

LS stands for the proton structure effects beyond the LO24; RZ is the Zemach radius; �E(pol)
HFS is the

polarizability effect in the HFS.
The n = 2 energy-level scheme of µH is illustrated in Fig. 6.2, together with the measured transition

frequencies, ⌫s and ⌫t. The obtained experimental values for the Lamb shift and the HFS [215],

�Eexp
LS = 202.3706(23)meV, (6.5a)

�Eexp
HFS = 22.8089(51)meV, (6.5b)

rely not only on the transition frequencies, but also on predictions of the 2P fine and hyperfine structure
splittings [223] (cf. Fig. 6.2):

⇤ 2P fine structure: �EFS = 8.352082meV,

⇤ 2P3/2 hyperfine structure splitting: �E 2P3/2 HFS = 3.392588meV,

⇤ 2P (f = 1) level mixing: � = 0.14456meV.

Comparison of theory and experiment allows to extract both the proton charge radius and the Zemach radius:
RE = 0.84087(39) fm, RZ = 1.082(37) fm.25

23 The layman explanation of the bigger sensitivity is that the muon probes the proton from a much smaller distance (given the ratio
of the Bohr radii aH/aµH ⇡ 186), thus having a better view on the proton.

24As pointed out in [221, 222], the extraction of RE from the µH Lamb shift uses as input the 3rd Zemach moment from parametriza-
tions of ep data, despite the fact that the latter are inconsistent with resulting RE . This creates a consistency problem in the Lamb shift
description of Eq. (6.4a): in this manner, RE of Eq. (6.7a) and Eq. (6.9) are different!

25Note that the first µH measurement, reported in [1], only covered the transition frequency ⌫t. Accordingly, theory input was
needed also for the 2S HFS: �E2S HFS = 22.8148(78)meV [224] (using RZ = 1.022 fm [225]). In this way, solely the proton charge
radius could be predicted: RE = 0.84184(67) fm.
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tions of the proton structure effects beyond the lead-
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QED corrections, as input in the spectroscopy de-
termination of the charge radius. In the follow-
ing, we mainly consider the µH since it is much
more sensitive, than H, to the proton structure ef-
fects.23
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The extraction from µH relies on the following theoretical description of the classic (2P -2S) Lamb shift and
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where the first number includes the QED effects, as well as their interference with the LO finite-size effect, i.e.,
RE; �ETPE

LS stands for the proton structure effects beyond the LO24; RZ is the Zemach radius; �E(pol)
HFS is the

polarizability effect in the HFS.
The n = 2 energy-level scheme of µH is illustrated in Fig. 6.2, together with the measured transition

frequencies, ⌫s and ⌫t. The obtained experimental values for the Lamb shift and the HFS [215],

�Eexp
LS = 202.3706(23)meV, (6.5a)

�Eexp
HFS = 22.8089(51)meV, (6.5b)

rely not only on the transition frequencies, but also on predictions of the 2P fine and hyperfine structure
splittings [223] (cf. Fig. 6.2):

⇤ 2P fine structure: �EFS = 8.352082meV,

⇤ 2P3/2 hyperfine structure splitting: �E 2P3/2 HFS = 3.392588meV,

⇤ 2P (f = 1) level mixing: � = 0.14456meV.

Comparison of theory and experiment allows to extract both the proton charge radius and the Zemach radius:
RE = 0.84087(39) fm, RZ = 1.082(37) fm.25

23 The layman explanation of the bigger sensitivity is that the muon probes the proton from a much smaller distance (given the ratio
of the Bohr radii aH/aµH ⇡ 186), thus having a better view on the proton.

24As pointed out in [221, 222], the extraction of RE from the µH Lamb shift uses as input the 3rd Zemach moment from parametriza-
tions of ep data, despite the fact that the latter are inconsistent with resulting RE . This creates a consistency problem in the Lamb shift
description of Eq. (6.4a): in this manner, RE of Eq. (6.7a) and Eq. (6.9) are different!

25Note that the first µH measurement, reported in [1], only covered the transition frequency ⌫t. Accordingly, theory input was
needed also for the 2S HFS: �E2S HFS = 22.8148(78)meV [224] (using RZ = 1.022 fm [225]). In this way, solely the proton charge
radius could be predicted: RE = 0.84184(67) fm.
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Figure 6.4: One-photon exchange graph with FF dependent e.m. vertex.

The effect of elastic proton FFs in the hydrogen Lamb shift and HFS is expressed as (omitting recoil):26

�EFSE
LS = � Z↵

12a3

"

R2
E � hr3iE(2)

2a

#

+O(↵6), (6.7a)

�EnSHFS = EF



1 � 2

a
RZ

�

+O(↵6), (6.7b)

where a = 1/(Z↵mr) is the Bohr radius; EF is the Fermi energy corresponding to the n-th S-level:

EF (nS) =
8Z↵

3a3
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is the proton’s 3rd Zemach moment; and

RZ = � 4

⇡

ˆ 1

0

dQ

Q2



GE(Q2)GM (Q2)

1 + { � 1

�

(6.10)

is its Zemach radius. Hereinafter, m is the lepton mass (i.e., me or mµ), M is the proton mass, and mr is the
reduced mass of the lepton-proton system. Furthermore, { is the anomalous magnetic moment and S will
denote the proton’s spin.

In deriving these FSEs, we consider the one-photon exchange diagram shown in Fig. 6.4, where the e.m.
vertex for the proton is given by:

�µ = Z�µF1(Q
2) � 1

2M
�µ⌫q⌫F2(Q

2), (6.11)

with the proton structure information embedded in the Dirac and Pauli FFs. For the photon propagator we
chose the representation in massive Coulomb gauge:

�µ⌫(q, t) = � 1

q2



gµ⌫ � 1

q2 + t
(qµq⌫ � �µq⌫ � �⌫qµ)

�

, with � = (0, ~q ), (6.12)

albeit with the exception that for contractions of the propagator with the subtraction term in Eq. (6.6) we apply
the massless Coulomb gauge.

Deducing a coordinate potential from this Feynman diagram — the so-called Breit potential —, will allow us
to calculate the corrections to the point-like Coulomb interaction within the framework of perturbation theory
(PT). Neglecting retardation, meaning the q0 dependence in the denominators of Eqs. (6.6) and (6.12), one

26In this section we will keep the nuclear charge Z. Of course, for the proton it is Z = 1.
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Table 6.2: Summary of available dispersive calculations for the TPE correction to the HFS in µH.

Reference FF RZ [fm] �Z

[ppm]
�p

recoil

[ppm]
�pol

[ppm]
�1
[ppm]

�2
[ppm]

�FSE

[ppm]
E2S HFS

[meV]

Carlson
et al.
[270, 278]a

AMT [267] 1.080 �7703 931 351(114) 370(112) �19(19) �6421(140) 22.8123

AS [284] 1.091 �7782 931 353 �6498 22.8105

Kelly [266] 1.069 �7622 931 353 �6338 22.8141

MAMI [238,
268, 269]

1.045 22.8187

combinedb 22.8146(49)

Faustov
et al. [276]c 470(104) 518 �48

Martynenko
et al. [225]d Dipole 1.022 �7180 460(80) 514 �58 22.8138(78)e

Experiment
[215]

1.082(37) 22.8089(51)

aQED, higher-order and other small corrections included in E2S HFS are taken from [224]. The Zemach term includes radiative
corrections: �Z = �2↵mrRZ(1 + �radZ ) with �radZ given in [277, 279]. Empirical information on structure functions and FFs are taken
from [195, 262, 280–283].

bslightly moved average of the selected FFs
cThe calculation is based on experimental data for the nucleon polarized structure functions obtained at SLAC, DESY and CERN

[285–290].
dThe calculation is based on experimental data for the nucleon polarized structure functions obtained at SLAC, DESY and CERN

[285–292].
eAdjusted value; as suggested in [270], the original value, 22.8148(78)meV, is corrected by adding �1µeV, because the conventions

of ‘elastic’ and ‘inelastic’ contributions, applied in [224], are inconsistent, see discussion below Eq. (6.52).

l

N

� 0

Figure 6.8: Pion-exchange contribution to the energy spectrum of hydrogen.

The available dispersive calculations for the TPE correction to the HFS in µH are listed in Table 6.2 and
illustrated in Fig. 7.9. Remember that the leading-order HFS is given by the 2S Fermi energy; the numerical
value for µH is:

EF (2S) = 22.8054meV. (6.54)

The structure function g2 is not well measured for the proton. Evaluations of the polarizability contribution
to the HFS are either based on models for g2, or make use of the Wandzura-Wilczek relation [301]:39

gWW
2 (⌫, Q2) = �g1(⌫, Q

2) +

ˆ ⌫

⌫0

d⌫ 0

⌫ 0
g1(⌫

0, Q2), (6.55)

where gWW
2 is the leading twist contribution. For that reason, �2 is accompanied by a large relative error, cf.

Table 6.2 (first row). However, since the weighting function in Eq. (6.48b) tends to be numerically small,
�2 contributes only little to the polarizability effect and the overall uncertainty comes mainly from the �1
contribution.

Information on the structure function g1 is available for momentum-transfers larger than Q2
min. ⇠ 0.05GeV2

[280]. Below this threshold, the Q2-integrand of Eq. (6.48a) is interpolated exploiting well-known sum rules.
In the case of H, where the electron mass can be safely neglected, the slope of the integrand is fixed by the GDH

39Note that the Wandzura-Wilczek relation is consistent with the Burkhardt-Cottingham sum rule, i.e.,
´ 1

0
dx gWW

2 (x,Q2) = 0, cf.
Eq. (5.24), what can be easily shown with the help of Fubini’s theorem.
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Table 6.2: Summary of available dispersive calculations for the TPE correction to the HFS in µH.
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The available dispersive calculations for the TPE correction to the HFS in µH are listed in Table 6.2 and
illustrated in Fig. 7.9. Remember that the leading-order HFS is given by the 2S Fermi energy; the numerical
value for µH is:

EF (2S) = 22.8054meV. (6.54)

The structure function g2 is not well measured for the proton. Evaluations of the polarizability contribution
to the HFS are either based on models for g2, or make use of the Wandzura-Wilczek relation [301]:39
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where gWW
2 is the leading twist contribution. For that reason, �2 is accompanied by a large relative error, cf.

Table 6.2 (first row). However, since the weighting function in Eq. (6.48b) tends to be numerically small,
�2 contributes only little to the polarizability effect and the overall uncertainty comes mainly from the �1
contribution.

Information on the structure function g1 is available for momentum-transfers larger than Q2
min. ⇠ 0.05GeV2

[280]. Below this threshold, the Q2-integrand of Eq. (6.48a) is interpolated exploiting well-known sum rules.
In the case of H, where the electron mass can be safely neglected, the slope of the integrand is fixed by the GDH

39Note that the Wandzura-Wilczek relation is consistent with the Burkhardt-Cottingham sum rule, i.e.,
´ 1
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2 (x,Q2) = 0, cf.
Eq. (5.24), what can be easily shown with the help of Fubini’s theorem.
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2S hyperfine splitting and Zemach radius
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Figure 6.1: (color online) Determination of the proton’s elec-
tric and magnetic radii. The shown values are given in the
text. The green lines display the Bernauer fit with TPE cor-
rections: TPE-a (solid), TPE-b (dashed). The different uncer-
tainties given in [209] are added in quadrature.

The current situation is illustrated in Fig. 6.1. The CO-
DATA 2010 recommended value, combining the H and ep
scattering results, is [214]:

RE(H + ep) = 0.8775(51) fm, (6.3)

which is in 7� disagreement with the µH result. The CO-
DATA value does not include the extraction based on the
dispersive approach [217]. For more details we refer to re-
cent reviews dedicated exclusively to the ‘proton-size puz-
zle’ [39, 40].

We, on the other hand, shall focus on the evalua-
tions of the proton structure effects beyond the lead-
ing order. These are required, together with the
QED corrections, as input in the spectroscopy de-
termination of the charge radius. In the follow-
ing, we mainly consider the µH since it is much
more sensitive, than H, to the proton structure ef-
fects.23

6.2. Charge and Zemach Radii from Muonic Hydrogen
The extraction from µH relies on the following theoretical description of the classic (2P -2S) Lamb shift and

the 2S hyperfine splitting (HFS) [2] (in units of meV):

�Eth
LS = 206.0336(15) � 5.2275(10) (RE/fm)2 +�ETPE

LS , with �ETPE
LS = 0.0332(20), (6.4a)

�Eth
HFS = 22.9763(15) � 0.1621(10) (RZ/fm) +�E(pol)

HFS , with �E(pol)
HFS = 0.0080(26), (6.4b)

where the first number includes the QED effects, as well as their interference with the LO finite-size effect, i.e.,
RE; �ETPE

LS stands for the proton structure effects beyond the LO24; RZ is the Zemach radius; �E(pol)
HFS is the

polarizability effect in the HFS.
The n = 2 energy-level scheme of µH is illustrated in Fig. 6.2, together with the measured transition

frequencies, ⌫s and ⌫t. The obtained experimental values for the Lamb shift and the HFS [215],

�Eexp
LS = 202.3706(23)meV, (6.5a)

�Eexp
HFS = 22.8089(51)meV, (6.5b)

rely not only on the transition frequencies, but also on predictions of the 2P fine and hyperfine structure
splittings [223] (cf. Fig. 6.2):

⇤ 2P fine structure: �EFS = 8.352082meV,

⇤ 2P3/2 hyperfine structure splitting: �E 2P3/2 HFS = 3.392588meV,

⇤ 2P (f = 1) level mixing: � = 0.14456meV.

Comparison of theory and experiment allows to extract both the proton charge radius and the Zemach radius:
RE = 0.84087(39) fm, RZ = 1.082(37) fm.25

23 The layman explanation of the bigger sensitivity is that the muon probes the proton from a much smaller distance (given the ratio
of the Bohr radii aH/aµH ⇡ 186), thus having a better view on the proton.

24As pointed out in [221, 222], the extraction of RE from the µH Lamb shift uses as input the 3rd Zemach moment from parametriza-
tions of ep data, despite the fact that the latter are inconsistent with resulting RE . This creates a consistency problem in the Lamb shift
description of Eq. (6.4a): in this manner, RE of Eq. (6.7a) and Eq. (6.9) are different!

25Note that the first µH measurement, reported in [1], only covered the transition frequency ⌫t. Accordingly, theory input was
needed also for the 2S HFS: �E2S HFS = 22.8148(78)meV [224] (using RZ = 1.022 fm [225]). In this way, solely the proton charge
radius could be predicted: RE = 0.84184(67) fm.
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tions of the proton structure effects beyond the lead-
ing order. These are required, together with the
QED corrections, as input in the spectroscopy de-
termination of the charge radius. In the follow-
ing, we mainly consider the µH since it is much
more sensitive, than H, to the proton structure ef-
fects.23
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The extraction from µH relies on the following theoretical description of the classic (2P -2S) Lamb shift and
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where the first number includes the QED effects, as well as their interference with the LO finite-size effect, i.e.,
RE; �ETPE

LS stands for the proton structure effects beyond the LO24; RZ is the Zemach radius; �E(pol)
HFS is the

polarizability effect in the HFS.
The n = 2 energy-level scheme of µH is illustrated in Fig. 6.2, together with the measured transition

frequencies, ⌫s and ⌫t. The obtained experimental values for the Lamb shift and the HFS [215],

�Eexp
LS = 202.3706(23)meV, (6.5a)

�Eexp
HFS = 22.8089(51)meV, (6.5b)

rely not only on the transition frequencies, but also on predictions of the 2P fine and hyperfine structure
splittings [223] (cf. Fig. 6.2):

⇤ 2P fine structure: �EFS = 8.352082meV,

⇤ 2P3/2 hyperfine structure splitting: �E 2P3/2 HFS = 3.392588meV,

⇤ 2P (f = 1) level mixing: � = 0.14456meV.

Comparison of theory and experiment allows to extract both the proton charge radius and the Zemach radius:
RE = 0.84087(39) fm, RZ = 1.082(37) fm.25

23 The layman explanation of the bigger sensitivity is that the muon probes the proton from a much smaller distance (given the ratio
of the Bohr radii aH/aµH ⇡ 186), thus having a better view on the proton.

24As pointed out in [221, 222], the extraction of RE from the µH Lamb shift uses as input the 3rd Zemach moment from parametriza-
tions of ep data, despite the fact that the latter are inconsistent with resulting RE . This creates a consistency problem in the Lamb shift
description of Eq. (6.4a): in this manner, RE of Eq. (6.7a) and Eq. (6.9) are different!

25Note that the first µH measurement, reported in [1], only covered the transition frequency ⌫t. Accordingly, theory input was
needed also for the 2S HFS: �E2S HFS = 22.8148(78)meV [224] (using RZ = 1.022 fm [225]). In this way, solely the proton charge
radius could be predicted: RE = 0.84184(67) fm.
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Figure 6.4: One-photon exchange graph with FF dependent e.m. vertex.

The effect of elastic proton FFs in the hydrogen Lamb shift and HFS is expressed as (omitting recoil):26

�EFSE
LS = � Z↵

12a3

"

R2
E � hr3iE(2)

2a

#

+O(↵6), (6.7a)

�EnSHFS = EF



1 � 2

a
RZ

�

+O(↵6), (6.7b)

where a = 1/(Z↵mr) is the Bohr radius; EF is the Fermi energy corresponding to the n-th S-level:

EF (nS) =
8Z↵

3a3
1 + {
mM

1

n3
; (6.8)
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48
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is the proton’s 3rd Zemach moment; and

RZ = � 4

⇡

ˆ 1

0

dQ

Q2



GE(Q2)GM (Q2)

1 + { � 1

�

(6.10)

is its Zemach radius. Hereinafter, m is the lepton mass (i.e., me or mµ), M is the proton mass, and mr is the
reduced mass of the lepton-proton system. Furthermore, { is the anomalous magnetic moment and S will
denote the proton’s spin.

In deriving these FSEs, we consider the one-photon exchange diagram shown in Fig. 6.4, where the e.m.
vertex for the proton is given by:

�µ = Z�µF1(Q
2) � 1

2M
�µ⌫q⌫F2(Q

2), (6.11)

with the proton structure information embedded in the Dirac and Pauli FFs. For the photon propagator we
chose the representation in massive Coulomb gauge:

�µ⌫(q, t) = � 1

q2



gµ⌫ � 1

q2 + t
(qµq⌫ � �µq⌫ � �⌫qµ)

�

, with � = (0, ~q ), (6.12)

albeit with the exception that for contractions of the propagator with the subtraction term in Eq. (6.6) we apply
the massless Coulomb gauge.

Deducing a coordinate potential from this Feynman diagram — the so-called Breit potential —, will allow us
to calculate the corrections to the point-like Coulomb interaction within the framework of perturbation theory
(PT). Neglecting retardation, meaning the q0 dependence in the denominators of Eqs. (6.6) and (6.12), one

26In this section we will keep the nuclear charge Z. Of course, for the proton it is Z = 1.

50

Table 6.2: Summary of available dispersive calculations for the TPE correction to the HFS in µH.

Reference FF RZ [fm] �Z

[ppm]
�p

recoil

[ppm]
�pol

[ppm]
�1
[ppm]

�2
[ppm]

�FSE

[ppm]
E2S HFS

[meV]

Carlson
et al.
[270, 278]a

AMT [267] 1.080 �7703 931 351(114) 370(112) �19(19) �6421(140) 22.8123

AS [284] 1.091 �7782 931 353 �6498 22.8105

Kelly [266] 1.069 �7622 931 353 �6338 22.8141

MAMI [238,
268, 269]

1.045 22.8187

combinedb 22.8146(49)

Faustov
et al. [276]c 470(104) 518 �48

Martynenko
et al. [225]d Dipole 1.022 �7180 460(80) 514 �58 22.8138(78)e

Experiment
[215]

1.082(37) 22.8089(51)

aQED, higher-order and other small corrections included in E2S HFS are taken from [224]. The Zemach term includes radiative
corrections: �Z = �2↵mrRZ(1 + �radZ ) with �radZ given in [277, 279]. Empirical information on structure functions and FFs are taken
from [195, 262, 280–283].

bslightly moved average of the selected FFs
cThe calculation is based on experimental data for the nucleon polarized structure functions obtained at SLAC, DESY and CERN

[285–290].
dThe calculation is based on experimental data for the nucleon polarized structure functions obtained at SLAC, DESY and CERN

[285–292].
eAdjusted value; as suggested in [270], the original value, 22.8148(78)meV, is corrected by adding �1µeV, because the conventions

of ‘elastic’ and ‘inelastic’ contributions, applied in [224], are inconsistent, see discussion below Eq. (6.52).
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Figure 6.8: Pion-exchange contribution to the energy spectrum of hydrogen.

The available dispersive calculations for the TPE correction to the HFS in µH are listed in Table 6.2 and
illustrated in Fig. 7.9. Remember that the leading-order HFS is given by the 2S Fermi energy; the numerical
value for µH is:

EF (2S) = 22.8054meV. (6.54)

The structure function g2 is not well measured for the proton. Evaluations of the polarizability contribution
to the HFS are either based on models for g2, or make use of the Wandzura-Wilczek relation [301]:39

gWW
2 (⌫, Q2) = �g1(⌫, Q

2) +

ˆ ⌫

⌫0

d⌫ 0

⌫ 0
g1(⌫

0, Q2), (6.55)

where gWW
2 is the leading twist contribution. For that reason, �2 is accompanied by a large relative error, cf.

Table 6.2 (first row). However, since the weighting function in Eq. (6.48b) tends to be numerically small,
�2 contributes only little to the polarizability effect and the overall uncertainty comes mainly from the �1
contribution.

Information on the structure function g1 is available for momentum-transfers larger than Q2
min. ⇠ 0.05GeV2

[280]. Below this threshold, the Q2-integrand of Eq. (6.48a) is interpolated exploiting well-known sum rules.
In the case of H, where the electron mass can be safely neglected, the slope of the integrand is fixed by the GDH

39Note that the Wandzura-Wilczek relation is consistent with the Burkhardt-Cottingham sum rule, i.e.,
´ 1

0
dx gWW

2 (x,Q2) = 0, cf.
Eq. (5.24), what can be easily shown with the help of Fubini’s theorem.

61

from	2S	HFS:
Table 6.2: Summary of available dispersive calculations for the TPE correction to the HFS in µH.

Reference FF RZ [fm] �Z

[ppm]
�p

recoil

[ppm]
�pol

[ppm]
�1
[ppm]

�2
[ppm]

�FSE

[ppm]
E2S HFS

[meV]

Carlson
et al.
[270, 278]a

AMT [267] 1.080 �7703 931 351(114) 370(112) �19(19) �6421(140) 22.8123

AS [284] 1.091 �7782 931 353 �6498 22.8105

Kelly [266] 1.069 �7622 931 353 �6338 22.8141

MAMI [238,
268, 269]

1.045 22.8187

combinedb 22.8146(49)

Faustov
et al. [276]c 470(104) 518 �48

Martynenko
et al. [225]d Dipole 1.022 �7180 460(80) 514 �58 22.8138(78)e

Experiment
[215]

1.082(37) 22.8089(51)

aQED, higher-order and other small corrections included in E2S HFS are taken from [224]. The Zemach term includes radiative
corrections: �Z = �2↵mrRZ(1 + �radZ ) with �radZ given in [277, 279]. Empirical information on structure functions and FFs are taken
from [195, 262, 280–283].

bslightly moved average of the selected FFs
cThe calculation is based on experimental data for the nucleon polarized structure functions obtained at SLAC, DESY and CERN

[285–290].
dThe calculation is based on experimental data for the nucleon polarized structure functions obtained at SLAC, DESY and CERN

[285–292].
eAdjusted value; as suggested in [270], the original value, 22.8148(78)meV, is corrected by adding �1µeV, because the conventions

of ‘elastic’ and ‘inelastic’ contributions, applied in [224], are inconsistent, see discussion below Eq. (6.52).

l

N

� 0

Figure 6.8: Pion-exchange contribution to the energy spectrum of hydrogen.

The available dispersive calculations for the TPE correction to the HFS in µH are listed in Table 6.2 and
illustrated in Fig. 7.9. Remember that the leading-order HFS is given by the 2S Fermi energy; the numerical
value for µH is:

EF (2S) = 22.8054meV. (6.54)

The structure function g2 is not well measured for the proton. Evaluations of the polarizability contribution
to the HFS are either based on models for g2, or make use of the Wandzura-Wilczek relation [301]:39

gWW
2 (⌫, Q2) = �g1(⌫, Q

2) +

ˆ ⌫

⌫0

d⌫ 0

⌫ 0
g1(⌫

0, Q2), (6.55)

where gWW
2 is the leading twist contribution. For that reason, �2 is accompanied by a large relative error, cf.

Table 6.2 (first row). However, since the weighting function in Eq. (6.48b) tends to be numerically small,
�2 contributes only little to the polarizability effect and the overall uncertainty comes mainly from the �1
contribution.

Information on the structure function g1 is available for momentum-transfers larger than Q2
min. ⇠ 0.05GeV2

[280]. Below this threshold, the Q2-integrand of Eq. (6.48a) is interpolated exploiting well-known sum rules.
In the case of H, where the electron mass can be safely neglected, the slope of the integrand is fixed by the GDH

39Note that the Wandzura-Wilczek relation is consistent with the Burkhardt-Cottingham sum rule, i.e.,
´ 1

0
dx gWW

2 (x,Q2) = 0, cf.
Eq. (5.24), what can be easily shown with the help of Fubini’s theorem.
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1S HFS:  New experiment (approved)

HFS theory status

Phys. Rev. A 68 052503, Phys. Rev. A 83, 042509, Phys. Rev. A 71, 022506

µp µ 3He+

Magnitude Uncertainty Magnitude Uncertainty
∆EHFS

0 182.443 meV 0.1 × 10−6 1370.725 meV 0.1 × 10−6

∆QED 1.1 × 10−3 1 × 10−6 1.2 × 10−3 1 × 10−6

∆weak+hVP 2 × 10−5 2 × 10−6

∆Zemach 7.5 × 10−3 7.5 × 10−5 3.5 × 10−2 2.2 × 10−4

∆recoil 1.7 × 10−3 10−6 2 × 10−4

∆pol 4.6 × 10−4 8 × 10−5 (3.5 × 10−3)∗ (2.5 × 10−4)∗

∆EHFS(1S) = [1 +∆QED +∆weak+hVP +∆Zemach +∆recoil +∆pol

!"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""#"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""$
∆TPE

]∆EHFS
0

← GE(Q2), GM (Q2)
← GE , GM , F1, F2

← g1(x,Q2), g2(x,Q2)

A. Antognini BVR47, PSI 09.02.2016 – p. 5

Chiral perturbation theory of muonic hydrogen Lamb shift

Jose Manuel Alarcón,1 Vadim Lensky,2 and Vladimir Pascalutsa1

1

Cluster of Excellence PRISMA Institut f¨ur Kernphysik,

Johannes Gutenberg-Universit¨at, Mainz D-55099, Germany

2

Theoretical Physics Group, School of Physics and Astronomy,

University of Manchester, Manchester, M13 9PL, United Kingdom

(Dated: October 24, 2013)

The leading-order prediction of proton polarizability-like effect on the muonic hydrogen Lamb shift is ob-
tained in baryon chiral perturbation theory. The magnitude of the effect is �E(2P � 2S) ' 8µeV, which is
consistent with previous calculations based on heavy-baryon chiral perturbation theory and dispersion theory.
Our result rules out the scenarios where the ”proton charge radius puzzle” is solved by O(↵5

em) effects of proton
structure on the side of muonic hydrogen.

PACS numbers:

The ”proton charge radius puzzle” stands for the discrep-
ancy in the value of proton’s charge radius obtained form elas-
tic electron-proton scattering measurements [1] and atomic
measurements of the normal hydrogen [2] on one hand, and
the muonic hydrogen (µH) spectroscopy [3] on the other. The
discrepancy is almost 8 standard deviations (i.e., 7.7�). One
way to mend it is to find an effect which would raise the µH
Lamb shift by about 310 µeV and it has been suggested that
proton structure can produce such an effect at O(↵5

em

). Most
of the studies, however, derive a very modest effect of proton
structure beyond the charge radius.

Namely, the measured Lamb shift for the muonic hydrogen
is around 300 µeV lower than one expects from theory using
the charge radius deduced from normal hydrogen. This dif-
ference could be due to the internal electromagnetic structure
of the proton since, due to its larger mass, the muon is much
closer to the proton than the electron. Several studies have
been done investigating the effects of the internal electromag-
netic structure of the proton to the muonic hydrogen Lamb
shift. They point to a contribution of the order of -10µeV,
which is one order of magnitude smaller than needed to recon-
cile the electronic and muonic hydrogen measurements. Re-
cently, it was suggested that this difference could be accounted
for by effects of the proton magnetic polarizability at large vir-
tualities in the two photon exchange diagrams [4].

In this letter we investigate the contribution of the hadronic
structure of the proton to the muonic hydrogen Lamb shift.
They enter in the two photon exchange diagrams and are
related to the forward double virtual Compton scattering
(VVCS) on the proton. These contributions to the Lamb shift
can be parametrized in terms of the Compton tensor Tµ⌫ . This
embodies the information on the response of the proton due
to electromagnetic probes. For forward scattering, the spin-
averaged Compton tensor takes the form [5]

(b) (c)(a)

(d) (e) (f )

(g) (h) (j)

(k)

�

FIG. 1: Diagrams considered for the calculation of T1 and T2. Only
the direct process in the VVCS is shown. Double line represents the
�(1232) propagator.

Tµ⌫(P, q) =
i

8⇡m
N

Z
d4 eiq·xhp|Tjµ(x)j⌫(0)|pi

=

✓
�gµ⌫ +

qµq⌫

q2

◆
T1(⌫, Q

2)

+
1

m2
N

✓
Pµ � P · q

q2
qµ

◆✓
P ⌫ � P · q

q2
q⌫
◆
T2(⌫, Q

2), (1)

where m
N

is the nucleon mass, P and q are the proton and
photon momenta, respectively , ⌫ = P ·q/m

N

and Q2 = �q2

is the virtuality of the photons.
On the other hand, since we are interested in the O(↵5

em

)
contributions, we considered that the external muon and pro-
ton lines have zero three-momentum, which implies that ⌫ =
P · q/m

N

= q0. Corrections due to finite three-momenta are
higher orders in ↵

em

.
From this consideration, one can derive a very simple sum

rule to connect T1 and T2 to the Lamb shift correction �E
nS

[5]
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Soft effects in FFs

COMMENTS PHYSICAL REVIEW A 93, 026502 (2016)
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FIG. 1. Plot of GE(Q2) − 1 and GE(Q2) − 1 as a function of Q.
The solid black curve shows the empirical FF from Ref. [2]. The
dashed red curve shows the modified FF from Ref. [1]. The dotted
blue curve is the modified FF of this work.

in the desired matching to the experimental Lamb shifts given
in Eq. (24).

We emphasize that the magnitude of the change in the FF
is extremely tiny,

|G̃E/GE| < 3 × 10−6, (25)

for any positive Q2. The Comment suggests that a comparison
of our correction to the deviation of the FF from unity is more
fair. For our newly proposed G̃E , we find this ratio to be

|G̃E/(GE − 1)| < 0.57,

which does not seem unreasonable either. Furthermore, our
new FF modification satisfies another criteria put forward in
the Comment, namely, GE(Q2) < 1 for Q2 > 0.

Nevertheless, the modification obviously has a profound
effect on the µH Lamb shift. Its effect on the second and third
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FIG. 2. Correction G̃E(Q2) for Q0 = 1.6 MeV, A = 1.2 ×
10−4 MeV2, and ϵ = 0.143 MeV (solid green curve) and the
weighting function w(Q) for eH (blue dotted curve) and µH (red
dashed curve) as functions of Q. The dash-dotted line indicates the
onset of electron-proton scattering data.
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FIG. 3. Parameters of G̃E for which the eH and µH Lamb shifts
of Eq. (24) are reproduced. For fixed Q0 = 1.6 MeV, we chose A =
1.2 × 10−4 MeV2 and ϵ = 0.143 MeV, as indicated by the dashed
lines.

moments is given by

⟨̃r2⟩E ≡ −6
d

dQ2
G̃E(Q2)

∣∣∣∣
Q2=0

= −6Aϵ2

Q6
0

, (26)

⟨̃r3⟩E ≡ 48
π

∫ ∞

0

dQ

Q4

{
G̃E(Q2) + 1

6
⟨̃r2⟩EQ2

}

= 15A
(
Q2

0 − 7ϵ2)/2Q7
0. (27)

The numerical values of these moments, together with their
desired effect on the Lamb shift and the nonexpanded Lamb
result, are given in Table I. One can see that the expansion
in moments breaks down for the modified FF contribution
to µH.

In conclusion, we have reworked the low-Q modifica-
tion of the empirical proton FF GE such that it complies
with the criteria put forward in the Comment. The original
(“old”) and the reworked (“new”) modifications are shown

TABLE I. Lamb shift and moments corresponding to our
model FF, with Q0 = 1.6 MeV, A = 1.2 × 10−4 MeV2, and ϵ =
0.143 MeV.

Eq. GE G̃E GE

⟨r2⟩E (fm2) (6a) (0.9014)2 −(0.1849)2 (0.8823)2

⟨r3⟩E (fm3) (12) (1.052)3 (8.539)3 (8.544)3

Lamb shift, expanded (11)

E
FF(1)
2P−2S(eH) (neV) −0.6569 0.0371 −0.6198

E
FF(1)
2P−2S(µH) (µeV) −4202 11542 7340

Lamb shift, exact (19a)

E
FF(1)
2P−2S(eH) (neV) −0.6569 0.0370 −0.6200

E
FF(1)
2P−2S(µH) (µeV) −4202 552 −3650
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Reply to “Comment on ‘Breakdown of the expansion of finite-size corrections to the hydrogen Lamb
shift in moments of charge distribution’ ”

Franziska Hagelstein and Vladimir Pascalutsa
Institut für Kernphysik, Cluster of Excellence PRISMA, Johannes Gutenberg-Universität Mainz, D-55128 Mainz, Germany

(Received 22 January 2016; published 23 February 2016)

To comply with the critique of the preceding Comment [J. Arrington, Phys. Rev. A 93, 026501 (2016)], we
consider another modification of the proton electric form factor, which resolves the proton-radius puzzle. The
proposed modification satisfies all the consistency criteria put forward in the Comment and yet has an impact on
the puzzle similar to that of the original paper [F. Hagelstein and V. Pascalutsa, Phys. Rev. A 91, 040502 (2015)].
We thus disagree with the concluding statement of the Comment: To the contrary, it is not difficult to find an
ad hoc modification of the form factor at low Q that resolves the discrepancy and is consistent with analyticity
constraints. We emphasize once again that we do not consider such an ad hoc modification of the proton form
factor to be a solution of the puzzle until a physical mechanism for it is found.

DOI: 10.1103/PhysRevA.93.026502

The formalism developed in Ref. [1] was illustrated by a
modification of the proton electric form factor (FF) GE , which
could reconcile the discrepancy in the various proton-radius
extractions. As is correctly pointed out in the Comment, this
modification is inconsistent with the analyticity constraints.
The latter require that all the singularities of GE(Q2) lie on
the negative Q2 axis, whereas the modification has a pole
near the positive axis resulting in a resonancelike structure, as
shown in Fig. 1 (red dashed curve) as well as in the figure of
the Comment.

Here we present a modified GE , shown in Fig. 1 (blue dotted
curve), that complies with the consistency requirements put
forward in the Comment and is yet resolving the discrepancy
in exactly the same way as described in the original paper.
The rest of this Reply can be viewed as the revised Sec. III of
Ref. [1].

III. RESOLVING THE PUZZLE

We assume the electric FF to separate into a smooth GE

and a nonsmooth part G̃E such that

GE(Q2) = GE(Q2) + G̃E(Q2). (20)

For the smooth part we take a well-known parametrization that
fits the ep data, while for the nonsmooth one we take

G̃E(Q2) =
AQ2

0Q
2[Q2 + ϵ2]

[
Q2

0 + Q2
]4 , (21)

where A, ϵ, and Q0 are real parameters. The poles of this
function are at negative Q2 (timelike region) and hence it
obeys the analyticity constraint.

According to Fig. 2, in order to make a maximal impact on
the puzzle, the fluctuation G̃E must be located at the extrema
of w(Q) in Eq. (19a)1 around either the eH or µH inverse Bohr
radius. Here we only consider the latter case and set one of the

1Equation numbers below (20) refer to the equations in Ref. [1].

position parameters to the MeV scale:

Q0 = 1.6 MeV. (22)

This choice conditions the choice of the smooth part GE , in
case one wants to solve the puzzle. Indeed, since with this Q0
the nonsmooth part affects mostly the µH result, the smooth
part must have a radius consistent with the eH value. We
therefore adopt the chain-fraction fit of Arrington and Sick
[2]:

GE(Q2) = 1

1 + 3.478Q2

1− 0.140Q2

1− 1.311Q2

1+ 1.128Q2

1−0.233Q2

. (23)

Fixing Q0, the other two parameters of G̃E , A and ϵ, are
fitted by requiring our FF to yield the empirical Lamb shift
contribution, in both normal and muonic hydrogen, i.e.,

E
FF(empir.)
2P−2S (eH) = −0.620(11) neV, (24a)

E
FF(empir.)
2P−2S (µH) = −3650(2) µeV. (24b)

Note that these are not the experimental Lamb shifts, but
only the finite-size contributions, described by Eqs. (2) and (4),
with the corresponding empirical values for the radii. In the eH
case we have taken the CODATA value of the proton radius,
Eq. 3(a), which is obtained as an weighted average over several
hydrogen spectroscopy measurements, and RE(2) = 2.78(14)
fm [3]. In the µH case we have taken the values from Ref. [4],
hence Eq. 3(b) for the radius and the same value as the above
for RE(2).

Figure 3 shows at which A and ϵ our FF complies with either
the eH (blue dot-dashed curve) or µH (red solid curve) Lamb
shift. For A = 1.2 × 10−4 MeV2 and ϵ = 0.143 MeV, our FF
describes them both, thus resolving the puzzle (the description
of the ep data by GE is not affected by the addition of G̃E).

Figure 2 shows the fitted G̃E , and the weighting function
(17) for eH and µH. The modification thus enhances the FF
in the region below the onset of ep data (Q < 63 MeV). The
overlap between the correction and the positive contribution
of the µH weighting function is clearly dominating, resulting

2469-9926/2016/93(2)/026502(3) 026502-1 ©2016 American Physical Society
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FIG. 1. Plot of GE(Q2) − 1 and GE(Q2) − 1 as a function of Q.
The solid black curve shows the empirical FF from Ref. [2]. The
dashed red curve shows the modified FF from Ref. [1]. The dotted
blue curve is the modified FF of this work.

in the desired matching to the experimental Lamb shifts given
in Eq. (24).

We emphasize that the magnitude of the change in the FF
is extremely tiny,

|G̃E/GE| < 3 × 10−6, (25)

for any positive Q2. The Comment suggests that a comparison
of our correction to the deviation of the FF from unity is more
fair. For our newly proposed G̃E , we find this ratio to be

|G̃E/(GE − 1)| < 0.57,

which does not seem unreasonable either. Furthermore, our
new FF modification satisfies another criteria put forward in
the Comment, namely, GE(Q2) < 1 for Q2 > 0.

Nevertheless, the modification obviously has a profound
effect on the µH Lamb shift. Its effect on the second and third
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FIG. 2. Correction G̃E(Q2) for Q0 = 1.6 MeV, A = 1.2 ×
10−4 MeV2, and ϵ = 0.143 MeV (solid green curve) and the
weighting function w(Q) for eH (blue dotted curve) and µH (red
dashed curve) as functions of Q. The dash-dotted line indicates the
onset of electron-proton scattering data.
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FIG. 3. Parameters of G̃E for which the eH and µH Lamb shifts
of Eq. (24) are reproduced. For fixed Q0 = 1.6 MeV, we chose A =
1.2 × 10−4 MeV2 and ϵ = 0.143 MeV, as indicated by the dashed
lines.

moments is given by

⟨̃r2⟩E ≡ −6
d

dQ2
G̃E(Q2)

∣∣∣∣
Q2=0

= −6Aϵ2

Q6
0

, (26)

⟨̃r3⟩E ≡ 48
π

∫ ∞

0

dQ

Q4

{
G̃E(Q2) + 1

6
⟨̃r2⟩EQ2

}

= 15A
(
Q2

0 − 7ϵ2)/2Q7
0. (27)

The numerical values of these moments, together with their
desired effect on the Lamb shift and the nonexpanded Lamb
result, are given in Table I. One can see that the expansion
in moments breaks down for the modified FF contribution
to µH.

In conclusion, we have reworked the low-Q modifica-
tion of the empirical proton FF GE such that it complies
with the criteria put forward in the Comment. The original
(“old”) and the reworked (“new”) modifications are shown

TABLE I. Lamb shift and moments corresponding to our
model FF, with Q0 = 1.6 MeV, A = 1.2 × 10−4 MeV2, and ϵ =
0.143 MeV.

Eq. GE G̃E GE

⟨r2⟩E (fm2) (6a) (0.9014)2 −(0.1849)2 (0.8823)2

⟨r3⟩E (fm3) (12) (1.052)3 (8.539)3 (8.544)3

Lamb shift, expanded (11)

E
FF(1)
2P−2S(eH) (neV) −0.6569 0.0371 −0.6198

E
FF(1)
2P−2S(µH) (µeV) −4202 11542 7340

Lamb shift, exact (19a)

E
FF(1)
2P−2S(eH) (neV) −0.6569 0.0370 −0.6200

E
FF(1)
2P−2S(µH) (µeV) −4202 552 −3650
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Separation of Proton Polarizabilities with the Beam Asymmetry of Compton Scattering

Nadiia Krupina and Vladimir Pascalutsa
PRISMA Cluster of Excellence Institut für Kernphysik, Johannes Gutenberg–Universität Mainz, 55128 Mainz, Germany

(Received 3 April 2013; published 25 June 2013)

We propose to determine the magnetic dipole polarizability of the proton from the beam asymmetry of

low-energy Compton scattering based on the fact that the leading non-Born contribution to the asymmetry

is given by the magnetic polarizability alone; the electric polarizability cancels out. The beam asymmetry

thus provides a simple and clean separation of the magnetic polarizability from the electric one.

Introducing polarizabilities in a Lorentz-invariant fashion, we compute the higher-order (recoil) effects

of polarizabilities on beam asymmetry and show that these effects are suppressed in forward kinematics.

With the prospects of precision Compton experiments at the Mainz Microtron and High Intensity Gamma

Source facilities in mind, we argue why the beam asymmetry could be the best way to measure the elusive

magnetic polarizability of the proton.

DOI: 10.1103/PhysRevLett.110.262001 PACS numbers: 13.60.Fz, 14.20.Dh, 25.20.Dc

The current Particle Data Group (PDG) [1] values of the
electric- and magnetic-dipole polarizabilities of the proton
[2,3], i.e.,

!E1 ¼ ð12:0# 0:6Þ % 10&4 fm3; (1a)

"M1 ¼ ð1:9# 0:5Þ % 10&4 fm3 (1b)

are in significant disagreement with the most recent post-
dictions of chiral effective field theory [4,5], as can be seen
in Fig. 1. The state-of-the-art chiral effective field theory
calculations, based on either the baryon (B) or heavy-
baryon (HB) chiral perturbation theory (ChPT) with octet
and decuplet fields [6], are in excellent agreement with the
experimental Compton-scattering cross sections, but not
necessarily in agreement with the polarizabilities extracted
from these data by the experimental groups, cf. [7] for
review. The situation is becoming more acute as the
demand for precise knowledge of nucleon polarizabilities
is growing; they are for instance the main source of uncer-
tainty in the extraction of the proton charge radius from the
muonic hydrogen Lamb shift (see [8] for a recent review).

A likely source of these discrepancies is an underesti-
mate of model dependence in the extraction of polarizabil-
ities from Compton-scattering data. In principle, one
should opt for a model-independent extraction, based on
the low-energy expansion (LEX) of Compton-scattering
observables, where the leading-order terms, beyond the
Born term, are expressed through polarizabilities. For ex-
ample, the non-Born part of the unpolarized differential
cross section for Compton scattering off a target with mass
M and charge Ze is given by [2]

d#ðNBÞ

d!L
¼ &Z2!em

M

!
$0

$

"
2
$$0½!E1ð1þ cos2%LÞ

þ 2"M1 cos%L) þOð$4Þ; (2)

where $ ¼ ðs&M2Þ=2M and $0 ¼ ð&uþM2Þ=2M are,
respectively, the energies of the incident and scattered

photon in the lab frame, %L (d!L ¼ 2& sin%Ld%L) is the
scattering (solid) angle; s, u, and t ¼ 2Mð$0 & $Þ are the
Mandelstam variables; and !em ¼ e2=4& is the fine-
structure constant. Hence, given the exactly known Born
contribution [9] and the experimental angular distribution
at very low energy, one could in principle extract the
polarizabilities with a negligible model dependence. In
reality, however, in order to resolve the small polarizability
effect in the tiny Compton cross sections, most of the
measurements are done at energies exceeding 100 MeV,
i.e., not small compared to the pion mass m&. It is m&, the
onset of the pion-production branch cut, that severely
limits the applicability of a polynomial expansion in
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FIG. 1 (color online). The scalar polarizabilities of the proton.
Magenta blob represents the PDG summary [1]. Experimental
results are from Federspiel et al. [15], Zieger et al. [16],
MacGibbon et al. [17], and TAPS [18]. ‘‘Sum Rule’’ indicates
the Baldin sum rule evaluations of !E1 þ "M1 [18] (broader
band) and [19]. ChPT calculations are from [4] (B'PT—red
blob) and the ‘‘unconstrained fit’’ of [5] (HB'PT—blue ellipse).
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energy such as LEX. At the energies around the pion-
production threshold one obtains a very substantial
sensitivity to polarizabilities but needs to resort to a
model-dependent approach in order to extract them (see
[10,11] for reviews).

The magnetic polarizability !M1 seems to be affected
the most: the central value of the BChPT calculation is a
factor of 2 larger than the PDG value. This is attributed to
the dominance of "E1 in the unpolarized cross section.
(The problem is quite similar to the case of proton form
factors, where the angular (Rosenbluth) separation from
unpolarized scattering did not yield the correct result for
the electric form factor, due to the dominance of the
magnetic contribution, and only separating the electric
form factor from the magnetic one by using polarization
has yielded a break through. See [12,13] for reviews.) It is
desirable to find an observable sensitive to !M1 alone, such
that the latter could be determined independently of "E1.
According to the leading-order LEX for cross sections
involving linearly polarized photons [14], the difference
of cross sections for photons polarized perpendicular or
parallel to the scattering plane,

ðd#? " d#jjÞ=d! (3)

depends only on "E1, while the combination

ðcos2$d#? " d#jjÞ=d! (4)

only on !M1. New experiments at the Mainz Microtron
(MAMI) and the High Intensity Gamma Source (HIGS) are
planned to measure these two combinations in order to
extract "E1 and !M1 independently. This Letter aims to
show that !M1 can directly be extracted from the beam
asymmetry,

"3 $
d#jj " d#?
d#jj þ d#?

; (5)

and that such extraction is potentially more accurate than
the one based on the observable given by Eq. (4).

Indeed, applying the LEX for the beam asymmetry of
proton Compton scattering, we arrive at the following
result:

"3 ¼ "ðBÞ
3 " 4M!2 cos$ sin2$

"emð1þ cos2$Þ2 !M1 þOð!4Þ; (6)

where "ðBÞ
3 is the exact Born contribution, while

! ¼ s"M2 þ 1
2 tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4M2 " t
p ; $ ¼ arccos

"
1þ t

2!2

#
(7)

are the photon energy and scattering angle in the Breit
(brick-wall) reference frame. In fact, to this order in the
LEX, the formula is valid for! and $ being the energy and
angle in the lab or center-of-mass frame.

Equation (6) shows that the leading (in LEX) effect of
the electric polarizability cancels out, while the magnetic

polarizability remains. Hence, our first claim is that a low-
energy measurement of "3 can in principle be used to
extract !M1 independently of "E1, just as it was proposed
for the combination of polarized cross sections given in
Eq. (4).
In reality the low-energy Compton experiments on the

proton are difficult because of small cross sections and
overwhelming QED backgrounds. Precision measurement
only becomes feasible for photon-beam energies above
60 MeV and scattering angles greater than 40 degrees.
The upcoming experiments at HIGS and MAMI are
planned for the energies between 80 and 150 MeV. As
mentioned above, at these energies the effect of higher-
order terms may become substantial. One way to see it is to
compare the LEX result with the dispersion-relation cal-
culations or calculations based on chiral perturbation
theory.
Figures 2 and 3 demonstrate such a comparison of the

leading-LEX result to the next-next-to-leading order
(NNLO) BChPT result of Ref. [4] for the two observables
defined in Eqs. (4) and (5). The observables are plotted for
the case of proton Compton scattering as a function of
magnetic polarizability of the proton. From Fig. 2 one sees
that for the beam energy of 100 MeV the LEX is in a good
agreement with the BChPT result, especially for the
forward directions (left panels).
As expected we observe a significant sensitivity of these

observables to !M1. However, the conventional observable
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FIG. 2 (color online). Beam asymmetry "3—upper panel, and
the linear combination of polarized cross sections defined in
Eq. (4)—lower panel, shown as function of !M1 for fixed photon
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120 (right panels) degrees. The curves are as follows: dashed
green—Born contribution; dash-dotted magenta—the leading
LEX formula Eq. (6); red solid—NNLO BChPT [4].
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energy such as LEX. At the energies around the pion-
production threshold one obtains a very substantial
sensitivity to polarizabilities but needs to resort to a
model-dependent approach in order to extract them (see
[10,11] for reviews).

The magnetic polarizability !M1 seems to be affected
the most: the central value of the BChPT calculation is a
factor of 2 larger than the PDG value. This is attributed to
the dominance of "E1 in the unpolarized cross section.
(The problem is quite similar to the case of proton form
factors, where the angular (Rosenbluth) separation from
unpolarized scattering did not yield the correct result for
the electric form factor, due to the dominance of the
magnetic contribution, and only separating the electric
form factor from the magnetic one by using polarization
has yielded a break through. See [12,13] for reviews.) It is
desirable to find an observable sensitive to !M1 alone, such
that the latter could be determined independently of "E1.
According to the leading-order LEX for cross sections
involving linearly polarized photons [14], the difference
of cross sections for photons polarized perpendicular or
parallel to the scattering plane,

ðd#? " d#jjÞ=d! (3)

depends only on "E1, while the combination

ðcos2$d#? " d#jjÞ=d! (4)

only on !M1. New experiments at the Mainz Microtron
(MAMI) and the High Intensity Gamma Source (HIGS) are
planned to measure these two combinations in order to
extract "E1 and !M1 independently. This Letter aims to
show that !M1 can directly be extracted from the beam
asymmetry,

"3 $
d#jj " d#?
d#jj þ d#?

; (5)

and that such extraction is potentially more accurate than
the one based on the observable given by Eq. (4).

Indeed, applying the LEX for the beam asymmetry of
proton Compton scattering, we arrive at the following
result:

"3 ¼ "ðBÞ
3 " 4M!2 cos$ sin2$

"emð1þ cos2$Þ2 !M1 þOð!4Þ; (6)

where "ðBÞ
3 is the exact Born contribution, while
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2 tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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are the photon energy and scattering angle in the Breit
(brick-wall) reference frame. In fact, to this order in the
LEX, the formula is valid for! and $ being the energy and
angle in the lab or center-of-mass frame.

Equation (6) shows that the leading (in LEX) effect of
the electric polarizability cancels out, while the magnetic

polarizability remains. Hence, our first claim is that a low-
energy measurement of "3 can in principle be used to
extract !M1 independently of "E1, just as it was proposed
for the combination of polarized cross sections given in
Eq. (4).
In reality the low-energy Compton experiments on the

proton are difficult because of small cross sections and
overwhelming QED backgrounds. Precision measurement
only becomes feasible for photon-beam energies above
60 MeV and scattering angles greater than 40 degrees.
The upcoming experiments at HIGS and MAMI are
planned for the energies between 80 and 150 MeV. As
mentioned above, at these energies the effect of higher-
order terms may become substantial. One way to see it is to
compare the LEX result with the dispersion-relation cal-
culations or calculations based on chiral perturbation
theory.
Figures 2 and 3 demonstrate such a comparison of the

leading-LEX result to the next-next-to-leading order
(NNLO) BChPT result of Ref. [4] for the two observables
defined in Eqs. (4) and (5). The observables are plotted for
the case of proton Compton scattering as a function of
magnetic polarizability of the proton. From Fig. 2 one sees
that for the beam energy of 100 MeV the LEX is in a good
agreement with the BChPT result, especially for the
forward directions (left panels).
As expected we observe a significant sensitivity of these

observables to !M1. However, the conventional observable
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Breakdown of the expansion of finite-size corrections to the hydrogen Lamb shift
in moments of charge distribution
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We quantify a limitation in the usual accounting of the finite-size effects, where the leading [(Zα)4] and
subleading [(Zα)5] contributions to the Lamb shift are given by the mean-square radius and the third Zemach
moment of the charge distribution. In the presence of any nonsmooth behavior of the nuclear form factor at
scales comparable to the inverse Bohr radius, the expansion of the Lamb shift in the moments breaks down. This
is relevant for some of the explanations of the “proton size puzzle.” We find, for instance, that the de Rújula
toy model of the proton form factor does not resolve the puzzle as claimed, despite the large value of the third
Zemach moment. Without relying on the radii expansion, we show how tiny, milli-percent (pcm) changes in the
proton electric form factor at a MeV scale would be able to explain the puzzle. It shows that one needs to know
all the soft contributions to the proton electric form factor to pcm accuracy for a precision extraction of the proton
charge radius from atomic Lamb shifts.
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I. INTRODUCTION

The proton structure is long known to affect the hydrogen
spectrum, predominantly by an upward shift of the S levels
expressed in terms of the root-mean-square (rms) radius,

RE =
√

⟨r2⟩E, ⟨rN ⟩E ≡
∫

dr⃗ rNρE(r⃗), (1)

of the proton charge distribution ρE . At leading order (LO)
in the fine-structure constant α, the nth S level is shifted by
(cf. [1])

#EnS(LO) = 2(Zα)4m3
r

3n3
R2

E, (2)

where Z = 1 for the proton, mr is the reduced mass. The
proton charge radius has thus been extracted from the hydrogen
(eH) and muonic-hydrogen (µH) Lamb shifts, with rather
contradictory results:

REp(eH) = 0.8758(77) fm [2], (3a)

REp(µH) = 0.84087(39) fm [3,4]. (3b)

The eH value is backed up by the extractions from electron-
proton (ep) scattering [5,6], albeit with a notable exception [7].

The next-to-leading order (NLO) effect of the nuclear
charge distribution is given by [8]

#EnS(NLO) = − (Zα)5m4
r

3n3
R3

E(2), (4)

with RE(2) = 3
√

⟨r3⟩E(2) the Friar radius and

⟨r3⟩E(2) =
∫

dr⃗ ρE(r⃗ )
∫

dr⃗ ′ |r⃗ − r⃗ ′|3 ρE(r⃗ ′) (5)

the third Zemach moment. Other α5 effects of proton structure,
such as polarizabilities, play a lesser role in both normal and
muonic hydrogen, and are not in anyway of relevance to the
present discussion of finite-size effects.

A Lorentz-invariant definition of the above moments is
given in terms of the electric form factor (FF), GE(Q2), as

⟨r2⟩E = −6
d

dQ2
GE(Q2)

∣∣∣∣
Q2=0

, (6a)

⟨r3⟩E(2) = 48
π

∫ ∞

0

dQ

Q4

{
G2

E(Q2) − 1 + 1
3
Q2⟨r2⟩E

}
. (6b)

At the current level of precision, the eH Lamb shift sees only
the LO term, while in µH the NLO term becomes appreciable.
An immediate resolution of the eH vs µH discrepancy (also
known as the proton size puzzle) was suggested by de
Rújula [9], whose toy model for proton charge distribution
yielded a large Friar radius, capable of providing the observed
µH Lamb shift using the RE value from eH. Shortly after, this
model was shown to be incompatible with the empirical FF
GE extracted from ep scattering [10,11]. In this work we find
that the µH Lamb shift in de Rújula’s model is not described
correctly by the standard formulas of Eqs. (2) and (4). The
correct result involves an infinite series of moments, and it
does not provide any significant reduction of the discrepancy in
that model. We shall consider a different scenario of mending
the discrepancy by a small change in the proton FF, using the
corrected formalism.

II. LAMB SHIFT: TO EXPAND OR NOT

Our main observation is that the standard expansion in the
moments is only valid provided the convergence radius of the
Taylor expansion of GE in Q2 is much larger than the inverse
Bohr radius of the given hydrogen-like system. In other words,
for Q2 ∼ (Zαmr )2, the electric FF must be representable by a
quickly convergent power series.

To see this we write the electric FF correction to the
Coulomb potential (−Zα/r) as follows:

VFF(r) = Zα

πr

∫ ∞

t0

dt

t
e−r

√
t Im GE(t), (7)

where Im GE is the discontinuity in the FF across the branch
cuts in the time-like region. This potential is derived by taking
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Z 1

0
dQw(Q)GE(Q

2)
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3
⇡(Z↵)4m3

r

Z 1

0
dr r4e�r/a⇢E(r)

w(Q) = � 4

⇡
(Z↵)5m4

r Q
2 (Z↵mr)2 �Q2

[(Z↵mr)2 +Q2]4
,     with

alternatively:

EFF(1)
2P�2S = �1

3
⇡(Z↵)4m3

r

Z 1

0
dr r4e�r/a⇢E(r)

⇢E(r) =
1

(2⇡)2 r

Z 1

t0

dt Im GE(t) e
�r

p
t
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r Q
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FIG. 3. (color online). The cutoff-dependence of leading-order loop
contributions to various nucleon quantities (mass, isovector AMM,
and proton’s magnetic polarizability) calculated in HBχPT (blue
dashed curves) and BχPT (red solid curves).

2. The HB- and BχPT results are guaranteed to be the
same at small values of Λ, as can be seen by taking
derivatives of Eq. (8) with respect to Λ2, at Λ = 0.
However, at finite values of Λ the differences are appre-

ciable. Observing significant differences for Λ of order
mπ, as in the case of βp, indicates that the size of the
1/M̂N terms is largely underestimated in HBχPT.

V. MATCHING: CONFRONTING THE DATA

Eventually, the χPT results must be matched to the under-
lying theory – or in practice – fitted to experimental and lattice
QCD simulation results.
The case of magnetic polarizability is interesting. Since

there are no unknown LECs at leading order, it constitutes a
genuine prediction. Unfortunately, there are no lattice results
for this quantity, while the experimental data are largely un-
certain (see Ref. [33] for a recent discussion). One thing that
the data indisputably show is that βp is small compared to the
electric polarizability, and positive, which seems to be more
consistent with the HBχPT result. However, it is well known
that βp must have a large positive contribution from the ex-
citation of the ∆(1232) resonance [33], which can only be
accommodated if the chiral loops are negative and partially
cancel it out. Thus, the natural explanation of βp in the the-
ory with explicit ∆ baryons is provided by BχPT, rather than
HBχPT.
For the nucleon mass, one does not expect much difference

between HB- and BχPT around the physical pion mass, based
on Fig. 3. For larger pion masses, however, the difference
becomes significant, and may affect the fit to lattice results as
is shown in what follows.
In Figs. 4 and 5, chiral extrapolations of recent lattice re-

sults from PACS-CS [28] and JLQCD [29] are presented. The
different panels correspond to different values of the cutoff
Λ, while the dashed and solid curves correspond to HB- and
BχPT fit at order p3. The values of the fit parameters obtained
using PACS-CS and JLQCD results are shown in Tables I and
II, respectively.
The PACS-CS results were generated using non-

perturbatively O(a)-improved Wilson quark action at a
lattice box size of ∼ 2.9 fm, but the set only contains five
points, and there is a large statistical error in the smallest
m2

π point. The JLQCD results were generated using overlap
fermions in Nf = 2 QCD. The lattice box length for each
simulation result is ∼ 1.9 fm, with a corresponding lattice
spacing is 0.118 fm. The box size is small compared to that
of the PACS-CS simulations, but the statistical uncertainties
in each point are also smaller. For simplicity, the fits also
neglect possible finite-volume corrections.

Previous studies in HBχPT have indicated that, for lattice
results extending outside the chiral power-counting regime,
the optimal value of the FRR scale Λ is of the order Λ ≈ 1
GeV [32]. Clearly, Fig. 4 shows agreement that the best
heavy-baryon result is obtained for Λ ≈ 1 GeV. The heavy-
baryon extrapolation is much more sensitive to changes in the

FRR scaleΛ comparedwith the BχPT extrapolation, in agree-
ment with Fig. 3.
For small values of Λ, the HBχPT and BχPT results are

similar, since the chiral loops are suppressed. An almost-
linear fit eventuates in both cases. This is not ideal, as Fig. 4
indicates that neglecting the chiral curvature leads to a poor 37
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same at small values of Λ, as can be seen by taking
derivatives of Eq. (8) with respect to Λ2, at Λ = 0.
However, at finite values of Λ the differences are appre-

ciable. Observing significant differences for Λ of order
mπ, as in the case of βp, indicates that the size of the
1/M̂N terms is largely underestimated in HBχPT.

V. MATCHING: CONFRONTING THE DATA

Eventually, the χPT results must be matched to the under-
lying theory – or in practice – fitted to experimental and lattice
QCD simulation results.
The case of magnetic polarizability is interesting. Since

there are no unknown LECs at leading order, it constitutes a
genuine prediction. Unfortunately, there are no lattice results
for this quantity, while the experimental data are largely un-
certain (see Ref. [33] for a recent discussion). One thing that
the data indisputably show is that βp is small compared to the
electric polarizability, and positive, which seems to be more
consistent with the HBχPT result. However, it is well known
that βp must have a large positive contribution from the ex-
citation of the ∆(1232) resonance [33], which can only be
accommodated if the chiral loops are negative and partially
cancel it out. Thus, the natural explanation of βp in the the-
ory with explicit ∆ baryons is provided by BχPT, rather than
HBχPT.
For the nucleon mass, one does not expect much difference

between HB- and BχPT around the physical pion mass, based
on Fig. 3. For larger pion masses, however, the difference
becomes significant, and may affect the fit to lattice results as
is shown in what follows.
In Figs. 4 and 5, chiral extrapolations of recent lattice re-

sults from PACS-CS [28] and JLQCD [29] are presented. The
different panels correspond to different values of the cutoff
Λ, while the dashed and solid curves correspond to HB- and
BχPT fit at order p3. The values of the fit parameters obtained
using PACS-CS and JLQCD results are shown in Tables I and
II, respectively.
The PACS-CS results were generated using non-

perturbatively O(a)-improved Wilson quark action at a
lattice box size of ∼ 2.9 fm, but the set only contains five
points, and there is a large statistical error in the smallest
m2

π point. The JLQCD results were generated using overlap
fermions in Nf = 2 QCD. The lattice box length for each
simulation result is ∼ 1.9 fm, with a corresponding lattice
spacing is 0.118 fm. The box size is small compared to that
of the PACS-CS simulations, but the statistical uncertainties
in each point are also smaller. For simplicity, the fits also
neglect possible finite-volume corrections.

Previous studies in HBχPT have indicated that, for lattice
results extending outside the chiral power-counting regime,
the optimal value of the FRR scale Λ is of the order Λ ≈ 1
GeV [32]. Clearly, Fig. 4 shows agreement that the best
heavy-baryon result is obtained for Λ ≈ 1 GeV. The heavy-
baryon extrapolation is much more sensitive to changes in the

FRR scaleΛ comparedwith the BχPT extrapolation, in agree-
ment with Fig. 3.
For small values of Λ, the HBχPT and BχPT results are

similar, since the chiral loops are suppressed. An almost-
linear fit eventuates in both cases. This is not ideal, as Fig. 4
indicates that neglecting the chiral curvature leads to a poor
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Previous studies in HBχPT have indicated that, for lattice
results extending outside the chiral power-counting regime,
the optimal value of the FRR scale Λ is of the order Λ ≈ 1
GeV [32]. Clearly, Fig. 4 shows agreement that the best
heavy-baryon result is obtained for Λ ≈ 1 GeV. The heavy-
baryon extrapolation is much more sensitive to changes in the

FRR scaleΛ comparedwith the BχPT extrapolation, in agree-
ment with Fig. 3.
For small values of Λ, the HBχPT and BχPT results are

similar, since the chiral loops are suppressed. An almost-
linear fit eventuates in both cases. This is not ideal, as Fig. 4
indicates that neglecting the chiral curvature leads to a poor
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FIG. 3. (color online). The cutoff-dependence of leading-order loop
contributions to various nucleon quantities (mass, isovector AMM,
and proton’s magnetic polarizability) calculated in HBχPT (blue
dashed curves) and BχPT (red solid curves).

2. The HB- and BχPT results are guaranteed to be the
same at small values of Λ, as can be seen by taking
derivatives of Eq. (8) with respect to Λ2, at Λ = 0.
However, at finite values of Λ the differences are appre-

ciable. Observing significant differences for Λ of order
mπ, as in the case of βp, indicates that the size of the
1/M̂N terms is largely underestimated in HBχPT.

V. MATCHING: CONFRONTING THE DATA

Eventually, the χPT results must be matched to the under-
lying theory – or in practice – fitted to experimental and lattice
QCD simulation results.
The case of magnetic polarizability is interesting. Since

there are no unknown LECs at leading order, it constitutes a
genuine prediction. Unfortunately, there are no lattice results
for this quantity, while the experimental data are largely un-
certain (see Ref. [33] for a recent discussion). One thing that
the data indisputably show is that βp is small compared to the
electric polarizability, and positive, which seems to be more
consistent with the HBχPT result. However, it is well known
that βp must have a large positive contribution from the ex-
citation of the ∆(1232) resonance [33], which can only be
accommodated if the chiral loops are negative and partially
cancel it out. Thus, the natural explanation of βp in the the-
ory with explicit ∆ baryons is provided by BχPT, rather than
HBχPT.
For the nucleon mass, one does not expect much difference

between HB- and BχPT around the physical pion mass, based
on Fig. 3. For larger pion masses, however, the difference
becomes significant, and may affect the fit to lattice results as
is shown in what follows.
In Figs. 4 and 5, chiral extrapolations of recent lattice re-

sults from PACS-CS [28] and JLQCD [29] are presented. The
different panels correspond to different values of the cutoff
Λ, while the dashed and solid curves correspond to HB- and
BχPT fit at order p3. The values of the fit parameters obtained
using PACS-CS and JLQCD results are shown in Tables I and
II, respectively.
The PACS-CS results were generated using non-

perturbatively O(a)-improved Wilson quark action at a
lattice box size of ∼ 2.9 fm, but the set only contains five
points, and there is a large statistical error in the smallest
m2

π point. The JLQCD results were generated using overlap
fermions in Nf = 2 QCD. The lattice box length for each
simulation result is ∼ 1.9 fm, with a corresponding lattice
spacing is 0.118 fm. The box size is small compared to that
of the PACS-CS simulations, but the statistical uncertainties
in each point are also smaller. For simplicity, the fits also
neglect possible finite-volume corrections.

Previous studies in HBχPT have indicated that, for lattice
results extending outside the chiral power-counting regime,
the optimal value of the FRR scale Λ is of the order Λ ≈ 1
GeV [32]. Clearly, Fig. 4 shows agreement that the best
heavy-baryon result is obtained for Λ ≈ 1 GeV. The heavy-
baryon extrapolation is much more sensitive to changes in the

FRR scaleΛ comparedwith the BχPT extrapolation, in agree-
ment with Fig. 3.
For small values of Λ, the HBχPT and BχPT results are

similar, since the chiral loops are suppressed. An almost-
linear fit eventuates in both cases. This is not ideal, as Fig. 4
indicates that neglecting the chiral curvature leads to a poor
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FIG. 3. (color online). The cutoff-dependence of leading-order loop
contributions to various nucleon quantities (mass, isovector AMM,
and proton’s magnetic polarizability) calculated in HBχPT (blue
dashed curves) and BχPT (red solid curves).

2. The HB- and BχPT results are guaranteed to be the
same at small values of Λ, as can be seen by taking
derivatives of Eq. (8) with respect to Λ2, at Λ = 0.
However, at finite values of Λ the differences are appre-

ciable. Observing significant differences for Λ of order
mπ, as in the case of βp, indicates that the size of the
1/M̂N terms is largely underestimated in HBχPT.

V. MATCHING: CONFRONTING THE DATA

Eventually, the χPT results must be matched to the under-
lying theory – or in practice – fitted to experimental and lattice
QCD simulation results.
The case of magnetic polarizability is interesting. Since

there are no unknown LECs at leading order, it constitutes a
genuine prediction. Unfortunately, there are no lattice results
for this quantity, while the experimental data are largely un-
certain (see Ref. [33] for a recent discussion). One thing that
the data indisputably show is that βp is small compared to the
electric polarizability, and positive, which seems to be more
consistent with the HBχPT result. However, it is well known
that βp must have a large positive contribution from the ex-
citation of the ∆(1232) resonance [33], which can only be
accommodated if the chiral loops are negative and partially
cancel it out. Thus, the natural explanation of βp in the the-
ory with explicit ∆ baryons is provided by BχPT, rather than
HBχPT.
For the nucleon mass, one does not expect much difference

between HB- and BχPT around the physical pion mass, based
on Fig. 3. For larger pion masses, however, the difference
becomes significant, and may affect the fit to lattice results as
is shown in what follows.
In Figs. 4 and 5, chiral extrapolations of recent lattice re-

sults from PACS-CS [28] and JLQCD [29] are presented. The
different panels correspond to different values of the cutoff
Λ, while the dashed and solid curves correspond to HB- and
BχPT fit at order p3. The values of the fit parameters obtained
using PACS-CS and JLQCD results are shown in Tables I and
II, respectively.
The PACS-CS results were generated using non-

perturbatively O(a)-improved Wilson quark action at a
lattice box size of ∼ 2.9 fm, but the set only contains five
points, and there is a large statistical error in the smallest
m2

π point. The JLQCD results were generated using overlap
fermions in Nf = 2 QCD. The lattice box length for each
simulation result is ∼ 1.9 fm, with a corresponding lattice
spacing is 0.118 fm. The box size is small compared to that
of the PACS-CS simulations, but the statistical uncertainties
in each point are also smaller. For simplicity, the fits also
neglect possible finite-volume corrections.

Previous studies in HBχPT have indicated that, for lattice
results extending outside the chiral power-counting regime,
the optimal value of the FRR scale Λ is of the order Λ ≈ 1
GeV [32]. Clearly, Fig. 4 shows agreement that the best
heavy-baryon result is obtained for Λ ≈ 1 GeV. The heavy-
baryon extrapolation is much more sensitive to changes in the

FRR scaleΛ comparedwith the BχPT extrapolation, in agree-
ment with Fig. 3.
For small values of Λ, the HBχPT and BχPT results are

similar, since the chiral loops are suppressed. An almost-
linear fit eventuates in both cases. This is not ideal, as Fig. 4
indicates that neglecting the chiral curvature leads to a poor
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FIG. 3. (color online). The cutoff-dependence of leading-order loop
contributions to various nucleon quantities (mass, isovector AMM,
and proton’s magnetic polarizability) calculated in HBχPT (blue
dashed curves) and BχPT (red solid curves).

2. The HB- and BχPT results are guaranteed to be the
same at small values of Λ, as can be seen by taking
derivatives of Eq. (8) with respect to Λ2, at Λ = 0.
However, at finite values of Λ the differences are appre-

ciable. Observing significant differences for Λ of order
mπ, as in the case of βp, indicates that the size of the
1/M̂N terms is largely underestimated in HBχPT.

V. MATCHING: CONFRONTING THE DATA

Eventually, the χPT results must be matched to the under-
lying theory – or in practice – fitted to experimental and lattice
QCD simulation results.
The case of magnetic polarizability is interesting. Since

there are no unknown LECs at leading order, it constitutes a
genuine prediction. Unfortunately, there are no lattice results
for this quantity, while the experimental data are largely un-
certain (see Ref. [33] for a recent discussion). One thing that
the data indisputably show is that βp is small compared to the
electric polarizability, and positive, which seems to be more
consistent with the HBχPT result. However, it is well known
that βp must have a large positive contribution from the ex-
citation of the ∆(1232) resonance [33], which can only be
accommodated if the chiral loops are negative and partially
cancel it out. Thus, the natural explanation of βp in the the-
ory with explicit ∆ baryons is provided by BχPT, rather than
HBχPT.
For the nucleon mass, one does not expect much difference

between HB- and BχPT around the physical pion mass, based
on Fig. 3. For larger pion masses, however, the difference
becomes significant, and may affect the fit to lattice results as
is shown in what follows.
In Figs. 4 and 5, chiral extrapolations of recent lattice re-

sults from PACS-CS [28] and JLQCD [29] are presented. The
different panels correspond to different values of the cutoff
Λ, while the dashed and solid curves correspond to HB- and
BχPT fit at order p3. The values of the fit parameters obtained
using PACS-CS and JLQCD results are shown in Tables I and
II, respectively.
The PACS-CS results were generated using non-

perturbatively O(a)-improved Wilson quark action at a
lattice box size of ∼ 2.9 fm, but the set only contains five
points, and there is a large statistical error in the smallest
m2

π point. The JLQCD results were generated using overlap
fermions in Nf = 2 QCD. The lattice box length for each
simulation result is ∼ 1.9 fm, with a corresponding lattice
spacing is 0.118 fm. The box size is small compared to that
of the PACS-CS simulations, but the statistical uncertainties
in each point are also smaller. For simplicity, the fits also
neglect possible finite-volume corrections.

Previous studies in HBχPT have indicated that, for lattice
results extending outside the chiral power-counting regime,
the optimal value of the FRR scale Λ is of the order Λ ≈ 1
GeV [32]. Clearly, Fig. 4 shows agreement that the best
heavy-baryon result is obtained for Λ ≈ 1 GeV. The heavy-
baryon extrapolation is much more sensitive to changes in the

FRR scaleΛ comparedwith the BχPT extrapolation, in agree-
ment with Fig. 3.
For small values of Λ, the HBχPT and BχPT results are

similar, since the chiral loops are suppressed. An almost-
linear fit eventuates in both cases. This is not ideal, as Fig. 4
indicates that neglecting the chiral curvature leads to a poor
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FIG. 3. (color online). The cutoff-dependence of leading-order loop
contributions to various nucleon quantities (mass, isovector AMM,
and proton’s magnetic polarizability) calculated in HBχPT (blue
dashed curves) and BχPT (red solid curves).

2. The HB- and BχPT results are guaranteed to be the
same at small values of Λ, as can be seen by taking
derivatives of Eq. (8) with respect to Λ2, at Λ = 0.
However, at finite values of Λ the differences are appre-

ciable. Observing significant differences for Λ of order
mπ, as in the case of βp, indicates that the size of the
1/M̂N terms is largely underestimated in HBχPT.

V. MATCHING: CONFRONTING THE DATA

Eventually, the χPT results must be matched to the under-
lying theory – or in practice – fitted to experimental and lattice
QCD simulation results.
The case of magnetic polarizability is interesting. Since

there are no unknown LECs at leading order, it constitutes a
genuine prediction. Unfortunately, there are no lattice results
for this quantity, while the experimental data are largely un-
certain (see Ref. [33] for a recent discussion). One thing that
the data indisputably show is that βp is small compared to the
electric polarizability, and positive, which seems to be more
consistent with the HBχPT result. However, it is well known
that βp must have a large positive contribution from the ex-
citation of the ∆(1232) resonance [33], which can only be
accommodated if the chiral loops are negative and partially
cancel it out. Thus, the natural explanation of βp in the the-
ory with explicit ∆ baryons is provided by BχPT, rather than
HBχPT.
For the nucleon mass, one does not expect much difference

between HB- and BχPT around the physical pion mass, based
on Fig. 3. For larger pion masses, however, the difference
becomes significant, and may affect the fit to lattice results as
is shown in what follows.
In Figs. 4 and 5, chiral extrapolations of recent lattice re-

sults from PACS-CS [28] and JLQCD [29] are presented. The
different panels correspond to different values of the cutoff
Λ, while the dashed and solid curves correspond to HB- and
BχPT fit at order p3. The values of the fit parameters obtained
using PACS-CS and JLQCD results are shown in Tables I and
II, respectively.
The PACS-CS results were generated using non-

perturbatively O(a)-improved Wilson quark action at a
lattice box size of ∼ 2.9 fm, but the set only contains five
points, and there is a large statistical error in the smallest
m2

π point. The JLQCD results were generated using overlap
fermions in Nf = 2 QCD. The lattice box length for each
simulation result is ∼ 1.9 fm, with a corresponding lattice
spacing is 0.118 fm. The box size is small compared to that
of the PACS-CS simulations, but the statistical uncertainties
in each point are also smaller. For simplicity, the fits also
neglect possible finite-volume corrections.

Previous studies in HBχPT have indicated that, for lattice
results extending outside the chiral power-counting regime,
the optimal value of the FRR scale Λ is of the order Λ ≈ 1
GeV [32]. Clearly, Fig. 4 shows agreement that the best
heavy-baryon result is obtained for Λ ≈ 1 GeV. The heavy-
baryon extrapolation is much more sensitive to changes in the

FRR scaleΛ comparedwith the BχPT extrapolation, in agree-
ment with Fig. 3.
For small values of Λ, the HBχPT and BχPT results are

similar, since the chiral loops are suppressed. An almost-
linear fit eventuates in both cases. This is not ideal, as Fig. 4
indicates that neglecting the chiral curvature leads to a poor
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FIG. 3. (color online). The cutoff-dependence of leading-order loop
contributions to various nucleon quantities (mass, isovector AMM,
and proton’s magnetic polarizability) calculated in HBχPT (blue
dashed curves) and BχPT (red solid curves).

2. The HB- and BχPT results are guaranteed to be the
same at small values of Λ, as can be seen by taking
derivatives of Eq. (8) with respect to Λ2, at Λ = 0.
However, at finite values of Λ the differences are appre-

ciable. Observing significant differences for Λ of order
mπ, as in the case of βp, indicates that the size of the
1/M̂N terms is largely underestimated in HBχPT.

V. MATCHING: CONFRONTING THE DATA

Eventually, the χPT results must be matched to the under-
lying theory – or in practice – fitted to experimental and lattice
QCD simulation results.
The case of magnetic polarizability is interesting. Since

there are no unknown LECs at leading order, it constitutes a
genuine prediction. Unfortunately, there are no lattice results
for this quantity, while the experimental data are largely un-
certain (see Ref. [33] for a recent discussion). One thing that
the data indisputably show is that βp is small compared to the
electric polarizability, and positive, which seems to be more
consistent with the HBχPT result. However, it is well known
that βp must have a large positive contribution from the ex-
citation of the ∆(1232) resonance [33], which can only be
accommodated if the chiral loops are negative and partially
cancel it out. Thus, the natural explanation of βp in the the-
ory with explicit ∆ baryons is provided by BχPT, rather than
HBχPT.
For the nucleon mass, one does not expect much difference

between HB- and BχPT around the physical pion mass, based
on Fig. 3. For larger pion masses, however, the difference
becomes significant, and may affect the fit to lattice results as
is shown in what follows.
In Figs. 4 and 5, chiral extrapolations of recent lattice re-

sults from PACS-CS [28] and JLQCD [29] are presented. The
different panels correspond to different values of the cutoff
Λ, while the dashed and solid curves correspond to HB- and
BχPT fit at order p3. The values of the fit parameters obtained
using PACS-CS and JLQCD results are shown in Tables I and
II, respectively.
The PACS-CS results were generated using non-

perturbatively O(a)-improved Wilson quark action at a
lattice box size of ∼ 2.9 fm, but the set only contains five
points, and there is a large statistical error in the smallest
m2

π point. The JLQCD results were generated using overlap
fermions in Nf = 2 QCD. The lattice box length for each
simulation result is ∼ 1.9 fm, with a corresponding lattice
spacing is 0.118 fm. The box size is small compared to that
of the PACS-CS simulations, but the statistical uncertainties
in each point are also smaller. For simplicity, the fits also
neglect possible finite-volume corrections.

Previous studies in HBχPT have indicated that, for lattice
results extending outside the chiral power-counting regime,
the optimal value of the FRR scale Λ is of the order Λ ≈ 1
GeV [32]. Clearly, Fig. 4 shows agreement that the best
heavy-baryon result is obtained for Λ ≈ 1 GeV. The heavy-
baryon extrapolation is much more sensitive to changes in the

FRR scaleΛ comparedwith the BχPT extrapolation, in agree-
ment with Fig. 3.
For small values of Λ, the HBχPT and BχPT results are

similar, since the chiral loops are suppressed. An almost-
linear fit eventuates in both cases. This is not ideal, as Fig. 4
indicates that neglecting the chiral curvature leads to a poor
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FIG. 3. (color online). The cutoff-dependence of leading-order loop
contributions to various nucleon quantities (mass, isovector AMM,
and proton’s magnetic polarizability) calculated in HBχPT (blue
dashed curves) and BχPT (red solid curves).

2. The HB- and BχPT results are guaranteed to be the
same at small values of Λ, as can be seen by taking
derivatives of Eq. (8) with respect to Λ2, at Λ = 0.
However, at finite values of Λ the differences are appre-

ciable. Observing significant differences for Λ of order
mπ, as in the case of βp, indicates that the size of the
1/M̂N terms is largely underestimated in HBχPT.

V. MATCHING: CONFRONTING THE DATA

Eventually, the χPT results must be matched to the under-
lying theory – or in practice – fitted to experimental and lattice
QCD simulation results.
The case of magnetic polarizability is interesting. Since

there are no unknown LECs at leading order, it constitutes a
genuine prediction. Unfortunately, there are no lattice results
for this quantity, while the experimental data are largely un-
certain (see Ref. [33] for a recent discussion). One thing that
the data indisputably show is that βp is small compared to the
electric polarizability, and positive, which seems to be more
consistent with the HBχPT result. However, it is well known
that βp must have a large positive contribution from the ex-
citation of the ∆(1232) resonance [33], which can only be
accommodated if the chiral loops are negative and partially
cancel it out. Thus, the natural explanation of βp in the the-
ory with explicit ∆ baryons is provided by BχPT, rather than
HBχPT.
For the nucleon mass, one does not expect much difference

between HB- and BχPT around the physical pion mass, based
on Fig. 3. For larger pion masses, however, the difference
becomes significant, and may affect the fit to lattice results as
is shown in what follows.
In Figs. 4 and 5, chiral extrapolations of recent lattice re-

sults from PACS-CS [28] and JLQCD [29] are presented. The
different panels correspond to different values of the cutoff
Λ, while the dashed and solid curves correspond to HB- and
BχPT fit at order p3. The values of the fit parameters obtained
using PACS-CS and JLQCD results are shown in Tables I and
II, respectively.
The PACS-CS results were generated using non-

perturbatively O(a)-improved Wilson quark action at a
lattice box size of ∼ 2.9 fm, but the set only contains five
points, and there is a large statistical error in the smallest
m2

π point. The JLQCD results were generated using overlap
fermions in Nf = 2 QCD. The lattice box length for each
simulation result is ∼ 1.9 fm, with a corresponding lattice
spacing is 0.118 fm. The box size is small compared to that
of the PACS-CS simulations, but the statistical uncertainties
in each point are also smaller. For simplicity, the fits also
neglect possible finite-volume corrections.

Previous studies in HBχPT have indicated that, for lattice
results extending outside the chiral power-counting regime,
the optimal value of the FRR scale Λ is of the order Λ ≈ 1
GeV [32]. Clearly, Fig. 4 shows agreement that the best
heavy-baryon result is obtained for Λ ≈ 1 GeV. The heavy-
baryon extrapolation is much more sensitive to changes in the

FRR scaleΛ comparedwith the BχPT extrapolation, in agree-
ment with Fig. 3.
For small values of Λ, the HBχPT and BχPT results are

similar, since the chiral loops are suppressed. An almost-
linear fit eventuates in both cases. This is not ideal, as Fig. 4
indicates that neglecting the chiral curvature leads to a poor

MN ⇠ m3
⇡

 ⇠ m⇡

�M ⇠ 1

m⇡

Heavy-Baryon expansion fails for 
quantities where

the leading chiral-loop effects scales 
with a negative 

power of pion mass

E.g.: the effective range parameters 
of the NN force

are such quantities -- hope for 
“perturbative pions” (KSW)

in BChPT
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This extends chiral perturbation theory into the #-resonance region. We calculate nucleon Compton scattering
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I. INTRODUCTION

Compton scattering on the proton ($p) and the deuteron
($D) provides a clean and unique probe of nucleon electro-
magnetic structure, revealing information different to that
obtained in electron scattering. During the last decade a
number of excellent experimental programs have been dedi-
cated to these two processes !see Refs. '1–5( and '6–10(,
respectively". At low photon energies, these experiments
probe the static properties of the nucleon, such as its electric
charge, magnetic moment, and polarizabilities. Above the
pion-production threshold, the process becomes dominated
by the excitation of resonances, most prominently the
#(1232) isobar. Many theoretical methods aim at under-
standing this process in both the low-energy and the reso-
nance region. In particular, significant progress has been
made recently using dispersion relations '11,12( and effec-
tive Lagrangian models '13–15(. On the other hand, previ-
ous calculations using chiral perturbation theory ()PT) ap-
pear to work only at low photon energies—energies at or
below the pion-production threshold '16,17(. This present
study attempts to extend these )PT calculations above the
pion threshold and into the #-resonance region.
In the low-energy regime, )PT seems to work extremely

well. At next-to-leading order !NLO", i.e., third order in
small momenta '!O(q3)( , heavy-baryon !HB" )PT for the
electric and magnetic polarizabilities predicts '18,19(:

%p!%n!
5*%

6m*
! gA
4* f*

" 2!12.2"10#4 fm3, !1"

&p!&n!
*%

12m*
! gA
4* f *

" 2!1.2"10#4 fm3, !2"

where %!e2/4*#1/137, gA#1.26, f*#93 MeV, and m*

#139 MeV.1 Since there are no Compton counterterms
present at O(q3), this is a genuine prediction of )PT—a
prediction which, at least for the proton, is in remarkable
agreement with recent extractions of these quantities from
low-energy data, e.g., Ref. '20(:

%p!!12.1$1.1$0.5""10#4 fm3, !3"

&p!!3.2$1.1$0.1""10#4 fm3. !4"

Here the first error is statistical, and the second one repre-
sents the theory error of the fit to data.
However, the agreement of the NLO HB)PT prediction

with the experimental $p cross-section data is good only up
to photon energies +#100 MeV '16(. The recent NNLO
'O(q4)( calculation '17( agrees with experiment to slightly
higher energies, but above +#120 MeV significant discrep-
ancies begin to appear, most notably at backward angles.
This is perhaps not surprising, since the #-isobar excitation
is not included explicitly in this chiral expansion. And, as we
shall argue, the breakdown scale of )PT without an explicit
# is set essentially by the #-nucleon mass difference:

#,M##MN-293 MeV. !5"

Thus, to extend the region of )PT applicability to +.# , the
# must be included as an explicit degree of freedom.
The # contribution for the Compton amplitude had al-

ready been analyzed using chiral effective Lagrangians with
explicit #s in Refs. '21–23(. These studies focused mainly
on nucleon polarizabilities. The predictions made in Refs.
'19,21,22( are obscured by off-shell ambiguities, in particu-
lar by the so-called off-shell parameters that control the in-
famous spin-1/2 sector of the spin-3/2 # field. In a ‘‘reason-
able’’ range for these parameters the # contribution to &p

(#)

varies between 0 and 14"10#4fm3 '22(. In contrast, Hem-
mert et al. '23(, to next-to-leading order in their small scale
expansion !SSE" '24(, found a result which was independent
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1Throughout this paper the designations LO, NLO, etc. refer to the
order in the $N amplitude. These one-loop results are, strictly
speaking, leading-order predictions for %p and &p , but we refer to
them as next-to-leading order !NLO" since Eq. !1" is derived by
considering the NLO result for the nucleon Compton amplitude.

PHYSICAL REVIEW C 67, 055202 !2003"

0556-2813/2003/67!5"/055202!15"/$20.00 ©2003 The American Physical Society67 055202-1

38



Predictions of HBChPT vs 
BChPT

HBChPT@LOBernard, Keiser, 
Meissner Int J 
Mod Phys(1995)

Let us emphasize that we do not include the errors due to the uncertainty in the values
of parameters in Table II, or due to the O(p5/∆2) effects which stem from graphs with two
∆ propagators. Our errors are thus underestimated, however they can directly serve as an
indicator of sensitivity to the polarizability LECs at O(p4).

IV. PROTON POLARIZABILITIES

The chiral-loop contribution to scalar polarizabilities of the proton which arise from the
NNLO calculation of the Compton amplitude is given in the Appendix A. In addition, we
have the tree-level ∆(1232) contribution from graphs (14) in Fig. 4 and its crossed, given
by [43]:

α (∆-excit.) = − 2e2g2
E

4π(MN + M∆)3
≃ −0.1 , (28)

β (∆-excit.) =
2e2g2

M

4π(MN + M∆)2∆
≃ 7.1 . (29)

Here and in what follows the numerical values are given in the units of 10−4 fm3.
The numerical composition of the full result thus looks as follows:

α = 6.8︸︷︷︸
O(p3)

+ (−0.1) + 4.1︸ ︷︷ ︸
O(p4/∆)

= 10.8 , (30)

β = −1.8︸︷︷︸
O(p3)

+ 7.1 − 1.3︸ ︷︷ ︸
O(p4/∆)

= 4.0 . (31)

As explained above, a natural estimate of O(p4) contributions yields an uncertainty of at
least ±0.7 on these values. In Fig. 5 this result, shown by the red blob, is compared with
the empirical information, and with the ∆-less O(p4) HBχPT result of Beane et al. [42].

We can clearly see a few-sigma discrepancy of our result with the TAPS-MAMI deter-
mination of polarizabilities [9]. On the other hand, as shown in the next section, our result
agrees with TAPS data for the Compton differential cross sections. Of course we compare
with the data at the lower energies end (below the pion threshold) where polarizabilities
play the prominent role. The extraction of the polarizabilities in [9] has also been influenced
by data above the ∆-resonance region to which we cannot compare. Clearly an extraction
of scalar polarizabilities based on the data of 400 MeV and higher could be affected by un-
controlled model dependencies and needs to be avoided. Excluding the higher-energy data
from the TAPS analysis could help to resolve the apparent discrepancy between the theory
and experiment in Fig. 5.

In Fig. 6 we show the pion mass dependence of proton polarizabilities in both BχPT
and HBχPT. The difference between the two for the magnetic polarizability (lower panel)
at O(p3) is stunning (compare the blue dashed and violet dotted curves). The region of
applicability of the HB expansion is apparently limited here to essentially the chiral limit,
mπ → 0. For any finite pion mass, the BχPT and HBχPT results come out to be of a similar
magnitude but of the opposite sign. Similar picture is observed for the π∆ loops arising at
O(p4/∆). In fact, we have checked that in the limit of vanishing ∆-nucleon mass splitting
(∆ → 0), the considered πN and π∆ loops give (up to the spin-isospin factors) the same
result.
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I. INTRODUCTION

Compton scattering on the proton ($p) and the deuteron
($D) provides a clean and unique probe of nucleon electro-
magnetic structure, revealing information different to that
obtained in electron scattering. During the last decade a
number of excellent experimental programs have been dedi-
cated to these two processes !see Refs. '1–5( and '6–10(,
respectively". At low photon energies, these experiments
probe the static properties of the nucleon, such as its electric
charge, magnetic moment, and polarizabilities. Above the
pion-production threshold, the process becomes dominated
by the excitation of resonances, most prominently the
#(1232) isobar. Many theoretical methods aim at under-
standing this process in both the low-energy and the reso-
nance region. In particular, significant progress has been
made recently using dispersion relations '11,12( and effec-
tive Lagrangian models '13–15(. On the other hand, previ-
ous calculations using chiral perturbation theory ()PT) ap-
pear to work only at low photon energies—energies at or
below the pion-production threshold '16,17(. This present
study attempts to extend these )PT calculations above the
pion threshold and into the #-resonance region.
In the low-energy regime, )PT seems to work extremely

well. At next-to-leading order !NLO", i.e., third order in
small momenta '!O(q3)( , heavy-baryon !HB" )PT for the
electric and magnetic polarizabilities predicts '18,19(:

%p!%n!
5*%

6m*
! gA
4* f*

" 2!12.2"10#4 fm3, !1"

&p!&n!
*%

12m*
! gA
4* f *

" 2!1.2"10#4 fm3, !2"

where %!e2/4*#1/137, gA#1.26, f*#93 MeV, and m*

#139 MeV.1 Since there are no Compton counterterms
present at O(q3), this is a genuine prediction of )PT—a
prediction which, at least for the proton, is in remarkable
agreement with recent extractions of these quantities from
low-energy data, e.g., Ref. '20(:

%p!!12.1$1.1$0.5""10#4 fm3, !3"

&p!!3.2$1.1$0.1""10#4 fm3. !4"

Here the first error is statistical, and the second one repre-
sents the theory error of the fit to data.
However, the agreement of the NLO HB)PT prediction

with the experimental $p cross-section data is good only up
to photon energies +#100 MeV '16(. The recent NNLO
'O(q4)( calculation '17( agrees with experiment to slightly
higher energies, but above +#120 MeV significant discrep-
ancies begin to appear, most notably at backward angles.
This is perhaps not surprising, since the #-isobar excitation
is not included explicitly in this chiral expansion. And, as we
shall argue, the breakdown scale of )PT without an explicit
# is set essentially by the #-nucleon mass difference:

#,M##MN-293 MeV. !5"

Thus, to extend the region of )PT applicability to +.# , the
# must be included as an explicit degree of freedom.
The # contribution for the Compton amplitude had al-

ready been analyzed using chiral effective Lagrangians with
explicit #s in Refs. '21–23(. These studies focused mainly
on nucleon polarizabilities. The predictions made in Refs.
'19,21,22( are obscured by off-shell ambiguities, in particu-
lar by the so-called off-shell parameters that control the in-
famous spin-1/2 sector of the spin-3/2 # field. In a ‘‘reason-
able’’ range for these parameters the # contribution to &p

(#)

varies between 0 and 14"10#4fm3 '22(. In contrast, Hem-
mert et al. '23(, to next-to-leading order in their small scale
expansion !SSE" '24(, found a result which was independent
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1Throughout this paper the designations LO, NLO, etc. refer to the
order in the $N amplitude. These one-loop results are, strictly
speaking, leading-order predictions for %p and &p , but we refer to
them as next-to-leading order !NLO" since Eq. !1" is derived by
considering the NLO result for the nucleon Compton amplitude.
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Let us emphasize that we do not include the errors due to the uncertainty in the values
of parameters in Table II, or due to the O(p5/∆2) effects which stem from graphs with two
∆ propagators. Our errors are thus underestimated, however they can directly serve as an
indicator of sensitivity to the polarizability LECs at O(p4).

IV. PROTON POLARIZABILITIES

The chiral-loop contribution to scalar polarizabilities of the proton which arise from the
NNLO calculation of the Compton amplitude is given in the Appendix A. In addition, we
have the tree-level ∆(1232) contribution from graphs (14) in Fig. 4 and its crossed, given
by [43]:

α (∆-excit.) = − 2e2g2
E

4π(MN + M∆)3
≃ −0.1 , (28)

β (∆-excit.) =
2e2g2

M

4π(MN + M∆)2∆
≃ 7.1 . (29)

Here and in what follows the numerical values are given in the units of 10−4 fm3.
The numerical composition of the full result thus looks as follows:

α = 6.8︸︷︷︸
O(p3)

+ (−0.1) + 4.1︸ ︷︷ ︸
O(p4/∆)

= 10.8 , (30)

β = −1.8︸︷︷︸
O(p3)

+ 7.1 − 1.3︸ ︷︷ ︸
O(p4/∆)

= 4.0 . (31)

As explained above, a natural estimate of O(p4) contributions yields an uncertainty of at
least ±0.7 on these values. In Fig. 5 this result, shown by the red blob, is compared with
the empirical information, and with the ∆-less O(p4) HBχPT result of Beane et al. [42].

We can clearly see a few-sigma discrepancy of our result with the TAPS-MAMI deter-
mination of polarizabilities [9]. On the other hand, as shown in the next section, our result
agrees with TAPS data for the Compton differential cross sections. Of course we compare
with the data at the lower energies end (below the pion threshold) where polarizabilities
play the prominent role. The extraction of the polarizabilities in [9] has also been influenced
by data above the ∆-resonance region to which we cannot compare. Clearly an extraction
of scalar polarizabilities based on the data of 400 MeV and higher could be affected by un-
controlled model dependencies and needs to be avoided. Excluding the higher-energy data
from the TAPS analysis could help to resolve the apparent discrepancy between the theory
and experiment in Fig. 5.

In Fig. 6 we show the pion mass dependence of proton polarizabilities in both BχPT
and HBχPT. The difference between the two for the magnetic polarizability (lower panel)
at O(p3) is stunning (compare the blue dashed and violet dotted curves). The region of
applicability of the HB expansion is apparently limited here to essentially the chiral limit,
mπ → 0. For any finite pion mass, the BχPT and HBχPT results come out to be of a similar
magnitude but of the opposite sign. Similar picture is observed for the π∆ loops arising at
O(p4/∆). In fact, we have checked that in the limit of vanishing ∆-nucleon mass splitting
(∆ → 0), the considered πN and π∆ loops give (up to the spin-isospin factors) the same
result.
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I. INTRODUCTION

Compton scattering on the proton ($p) and the deuteron
($D) provides a clean and unique probe of nucleon electro-
magnetic structure, revealing information different to that
obtained in electron scattering. During the last decade a
number of excellent experimental programs have been dedi-
cated to these two processes !see Refs. '1–5( and '6–10(,
respectively". At low photon energies, these experiments
probe the static properties of the nucleon, such as its electric
charge, magnetic moment, and polarizabilities. Above the
pion-production threshold, the process becomes dominated
by the excitation of resonances, most prominently the
#(1232) isobar. Many theoretical methods aim at under-
standing this process in both the low-energy and the reso-
nance region. In particular, significant progress has been
made recently using dispersion relations '11,12( and effec-
tive Lagrangian models '13–15(. On the other hand, previ-
ous calculations using chiral perturbation theory ()PT) ap-
pear to work only at low photon energies—energies at or
below the pion-production threshold '16,17(. This present
study attempts to extend these )PT calculations above the
pion threshold and into the #-resonance region.
In the low-energy regime, )PT seems to work extremely

well. At next-to-leading order !NLO", i.e., third order in
small momenta '!O(q3)( , heavy-baryon !HB" )PT for the
electric and magnetic polarizabilities predicts '18,19(:

%p!%n!
5*%

6m*
! gA
4* f*

" 2!12.2"10#4 fm3, !1"

&p!&n!
*%

12m*
! gA
4* f *

" 2!1.2"10#4 fm3, !2"

where %!e2/4*#1/137, gA#1.26, f*#93 MeV, and m*

#139 MeV.1 Since there are no Compton counterterms
present at O(q3), this is a genuine prediction of )PT—a
prediction which, at least for the proton, is in remarkable
agreement with recent extractions of these quantities from
low-energy data, e.g., Ref. '20(:

%p!!12.1$1.1$0.5""10#4 fm3, !3"

&p!!3.2$1.1$0.1""10#4 fm3. !4"

Here the first error is statistical, and the second one repre-
sents the theory error of the fit to data.
However, the agreement of the NLO HB)PT prediction

with the experimental $p cross-section data is good only up
to photon energies +#100 MeV '16(. The recent NNLO
'O(q4)( calculation '17( agrees with experiment to slightly
higher energies, but above +#120 MeV significant discrep-
ancies begin to appear, most notably at backward angles.
This is perhaps not surprising, since the #-isobar excitation
is not included explicitly in this chiral expansion. And, as we
shall argue, the breakdown scale of )PT without an explicit
# is set essentially by the #-nucleon mass difference:

#,M##MN-293 MeV. !5"

Thus, to extend the region of )PT applicability to +.# , the
# must be included as an explicit degree of freedom.
The # contribution for the Compton amplitude had al-

ready been analyzed using chiral effective Lagrangians with
explicit #s in Refs. '21–23(. These studies focused mainly
on nucleon polarizabilities. The predictions made in Refs.
'19,21,22( are obscured by off-shell ambiguities, in particu-
lar by the so-called off-shell parameters that control the in-
famous spin-1/2 sector of the spin-3/2 # field. In a ‘‘reason-
able’’ range for these parameters the # contribution to &p

(#)

varies between 0 and 14"10#4fm3 '22(. In contrast, Hem-
mert et al. '23(, to next-to-leading order in their small scale
expansion !SSE" '24(, found a result which was independent
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1Throughout this paper the designations LO, NLO, etc. refer to the
order in the $N amplitude. These one-loop results are, strictly
speaking, leading-order predictions for %p and &p , but we refer to
them as next-to-leading order !NLO" since Eq. !1" is derived by
considering the NLO result for the nucleon Compton amplitude.
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Let us emphasize that we do not include the errors due to the uncertainty in the values
of parameters in Table II, or due to the O(p5/∆2) effects which stem from graphs with two
∆ propagators. Our errors are thus underestimated, however they can directly serve as an
indicator of sensitivity to the polarizability LECs at O(p4).

IV. PROTON POLARIZABILITIES

The chiral-loop contribution to scalar polarizabilities of the proton which arise from the
NNLO calculation of the Compton amplitude is given in the Appendix A. In addition, we
have the tree-level ∆(1232) contribution from graphs (14) in Fig. 4 and its crossed, given
by [43]:

α (∆-excit.) = − 2e2g2
E

4π(MN + M∆)3
≃ −0.1 , (28)

β (∆-excit.) =
2e2g2

M

4π(MN + M∆)2∆
≃ 7.1 . (29)

Here and in what follows the numerical values are given in the units of 10−4 fm3.
The numerical composition of the full result thus looks as follows:

α = 6.8︸︷︷︸
O(p3)

+ (−0.1) + 4.1︸ ︷︷ ︸
O(p4/∆)

= 10.8 , (30)

β = −1.8︸︷︷︸
O(p3)

+ 7.1 − 1.3︸ ︷︷ ︸
O(p4/∆)

= 4.0 . (31)

As explained above, a natural estimate of O(p4) contributions yields an uncertainty of at
least ±0.7 on these values. In Fig. 5 this result, shown by the red blob, is compared with
the empirical information, and with the ∆-less O(p4) HBχPT result of Beane et al. [42].

We can clearly see a few-sigma discrepancy of our result with the TAPS-MAMI deter-
mination of polarizabilities [9]. On the other hand, as shown in the next section, our result
agrees with TAPS data for the Compton differential cross sections. Of course we compare
with the data at the lower energies end (below the pion threshold) where polarizabilities
play the prominent role. The extraction of the polarizabilities in [9] has also been influenced
by data above the ∆-resonance region to which we cannot compare. Clearly an extraction
of scalar polarizabilities based on the data of 400 MeV and higher could be affected by un-
controlled model dependencies and needs to be avoided. Excluding the higher-energy data
from the TAPS analysis could help to resolve the apparent discrepancy between the theory
and experiment in Fig. 5.

In Fig. 6 we show the pion mass dependence of proton polarizabilities in both BχPT
and HBχPT. The difference between the two for the magnetic polarizability (lower panel)
at O(p3) is stunning (compare the blue dashed and violet dotted curves). The region of
applicability of the HB expansion is apparently limited here to essentially the chiral limit,
mπ → 0. For any finite pion mass, the BχPT and HBχPT results come out to be of a similar
magnitude but of the opposite sign. Similar picture is observed for the π∆ loops arising at
O(p4/∆). In fact, we have checked that in the limit of vanishing ∆-nucleon mass splitting
(∆ → 0), the considered πN and π∆ loops give (up to the spin-isospin factors) the same
result.
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I. INTRODUCTION

Compton scattering on the proton ($p) and the deuteron
($D) provides a clean and unique probe of nucleon electro-
magnetic structure, revealing information different to that
obtained in electron scattering. During the last decade a
number of excellent experimental programs have been dedi-
cated to these two processes !see Refs. '1–5( and '6–10(,
respectively". At low photon energies, these experiments
probe the static properties of the nucleon, such as its electric
charge, magnetic moment, and polarizabilities. Above the
pion-production threshold, the process becomes dominated
by the excitation of resonances, most prominently the
#(1232) isobar. Many theoretical methods aim at under-
standing this process in both the low-energy and the reso-
nance region. In particular, significant progress has been
made recently using dispersion relations '11,12( and effec-
tive Lagrangian models '13–15(. On the other hand, previ-
ous calculations using chiral perturbation theory ()PT) ap-
pear to work only at low photon energies—energies at or
below the pion-production threshold '16,17(. This present
study attempts to extend these )PT calculations above the
pion threshold and into the #-resonance region.
In the low-energy regime, )PT seems to work extremely

well. At next-to-leading order !NLO", i.e., third order in
small momenta '!O(q3)( , heavy-baryon !HB" )PT for the
electric and magnetic polarizabilities predicts '18,19(:
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5*%

6m*
! gA
4* f*

" 2!12.2"10#4 fm3, !1"

&p!&n!
*%

12m*
! gA
4* f *

" 2!1.2"10#4 fm3, !2"

where %!e2/4*#1/137, gA#1.26, f*#93 MeV, and m*

#139 MeV.1 Since there are no Compton counterterms
present at O(q3), this is a genuine prediction of )PT—a
prediction which, at least for the proton, is in remarkable
agreement with recent extractions of these quantities from
low-energy data, e.g., Ref. '20(:

%p!!12.1$1.1$0.5""10#4 fm3, !3"

&p!!3.2$1.1$0.1""10#4 fm3. !4"

Here the first error is statistical, and the second one repre-
sents the theory error of the fit to data.
However, the agreement of the NLO HB)PT prediction

with the experimental $p cross-section data is good only up
to photon energies +#100 MeV '16(. The recent NNLO
'O(q4)( calculation '17( agrees with experiment to slightly
higher energies, but above +#120 MeV significant discrep-
ancies begin to appear, most notably at backward angles.
This is perhaps not surprising, since the #-isobar excitation
is not included explicitly in this chiral expansion. And, as we
shall argue, the breakdown scale of )PT without an explicit
# is set essentially by the #-nucleon mass difference:

#,M##MN-293 MeV. !5"

Thus, to extend the region of )PT applicability to +.# , the
# must be included as an explicit degree of freedom.
The # contribution for the Compton amplitude had al-

ready been analyzed using chiral effective Lagrangians with
explicit #s in Refs. '21–23(. These studies focused mainly
on nucleon polarizabilities. The predictions made in Refs.
'19,21,22( are obscured by off-shell ambiguities, in particu-
lar by the so-called off-shell parameters that control the in-
famous spin-1/2 sector of the spin-3/2 # field. In a ‘‘reason-
able’’ range for these parameters the # contribution to &p

(#)

varies between 0 and 14"10#4fm3 '22(. In contrast, Hem-
mert et al. '23(, to next-to-leading order in their small scale
expansion !SSE" '24(, found a result which was independent
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considering the NLO result for the nucleon Compton amplitude.
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Let us emphasize that we do not include the errors due to the uncertainty in the values
of parameters in Table II, or due to the O(p5/∆2) effects which stem from graphs with two
∆ propagators. Our errors are thus underestimated, however they can directly serve as an
indicator of sensitivity to the polarizability LECs at O(p4).

IV. PROTON POLARIZABILITIES

The chiral-loop contribution to scalar polarizabilities of the proton which arise from the
NNLO calculation of the Compton amplitude is given in the Appendix A. In addition, we
have the tree-level ∆(1232) contribution from graphs (14) in Fig. 4 and its crossed, given
by [43]:

α (∆-excit.) = − 2e2g2
E

4π(MN + M∆)3
≃ −0.1 , (28)

β (∆-excit.) =
2e2g2

M

4π(MN + M∆)2∆
≃ 7.1 . (29)

Here and in what follows the numerical values are given in the units of 10−4 fm3.
The numerical composition of the full result thus looks as follows:

α = 6.8︸︷︷︸
O(p3)

+ (−0.1) + 4.1︸ ︷︷ ︸
O(p4/∆)

= 10.8 , (30)

β = −1.8︸︷︷︸
O(p3)

+ 7.1 − 1.3︸ ︷︷ ︸
O(p4/∆)

= 4.0 . (31)

As explained above, a natural estimate of O(p4) contributions yields an uncertainty of at
least ±0.7 on these values. In Fig. 5 this result, shown by the red blob, is compared with
the empirical information, and with the ∆-less O(p4) HBχPT result of Beane et al. [42].

We can clearly see a few-sigma discrepancy of our result with the TAPS-MAMI deter-
mination of polarizabilities [9]. On the other hand, as shown in the next section, our result
agrees with TAPS data for the Compton differential cross sections. Of course we compare
with the data at the lower energies end (below the pion threshold) where polarizabilities
play the prominent role. The extraction of the polarizabilities in [9] has also been influenced
by data above the ∆-resonance region to which we cannot compare. Clearly an extraction
of scalar polarizabilities based on the data of 400 MeV and higher could be affected by un-
controlled model dependencies and needs to be avoided. Excluding the higher-energy data
from the TAPS analysis could help to resolve the apparent discrepancy between the theory
and experiment in Fig. 5.

In Fig. 6 we show the pion mass dependence of proton polarizabilities in both BχPT
and HBχPT. The difference between the two for the magnetic polarizability (lower panel)
at O(p3) is stunning (compare the blue dashed and violet dotted curves). The region of
applicability of the HB expansion is apparently limited here to essentially the chiral limit,
mπ → 0. For any finite pion mass, the BχPT and HBχPT results come out to be of a similar
magnitude but of the opposite sign. Similar picture is observed for the π∆ loops arising at
O(p4/∆). In fact, we have checked that in the limit of vanishing ∆-nucleon mass splitting
(∆ → 0), the considered πN and π∆ loops give (up to the spin-isospin factors) the same
result.
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I. INTRODUCTION

Compton scattering on the proton ($p) and the deuteron
($D) provides a clean and unique probe of nucleon electro-
magnetic structure, revealing information different to that
obtained in electron scattering. During the last decade a
number of excellent experimental programs have been dedi-
cated to these two processes !see Refs. '1–5( and '6–10(,
respectively". At low photon energies, these experiments
probe the static properties of the nucleon, such as its electric
charge, magnetic moment, and polarizabilities. Above the
pion-production threshold, the process becomes dominated
by the excitation of resonances, most prominently the
#(1232) isobar. Many theoretical methods aim at under-
standing this process in both the low-energy and the reso-
nance region. In particular, significant progress has been
made recently using dispersion relations '11,12( and effec-
tive Lagrangian models '13–15(. On the other hand, previ-
ous calculations using chiral perturbation theory ()PT) ap-
pear to work only at low photon energies—energies at or
below the pion-production threshold '16,17(. This present
study attempts to extend these )PT calculations above the
pion threshold and into the #-resonance region.
In the low-energy regime, )PT seems to work extremely

well. At next-to-leading order !NLO", i.e., third order in
small momenta '!O(q3)( , heavy-baryon !HB" )PT for the
electric and magnetic polarizabilities predicts '18,19(:

%p!%n!
5*%

6m*
! gA
4* f*

" 2!12.2"10#4 fm3, !1"

&p!&n!
*%

12m*
! gA
4* f *

" 2!1.2"10#4 fm3, !2"

where %!e2/4*#1/137, gA#1.26, f*#93 MeV, and m*

#139 MeV.1 Since there are no Compton counterterms
present at O(q3), this is a genuine prediction of )PT—a
prediction which, at least for the proton, is in remarkable
agreement with recent extractions of these quantities from
low-energy data, e.g., Ref. '20(:

%p!!12.1$1.1$0.5""10#4 fm3, !3"

&p!!3.2$1.1$0.1""10#4 fm3. !4"

Here the first error is statistical, and the second one repre-
sents the theory error of the fit to data.
However, the agreement of the NLO HB)PT prediction

with the experimental $p cross-section data is good only up
to photon energies +#100 MeV '16(. The recent NNLO
'O(q4)( calculation '17( agrees with experiment to slightly
higher energies, but above +#120 MeV significant discrep-
ancies begin to appear, most notably at backward angles.
This is perhaps not surprising, since the #-isobar excitation
is not included explicitly in this chiral expansion. And, as we
shall argue, the breakdown scale of )PT without an explicit
# is set essentially by the #-nucleon mass difference:

#,M##MN-293 MeV. !5"

Thus, to extend the region of )PT applicability to +.# , the
# must be included as an explicit degree of freedom.
The # contribution for the Compton amplitude had al-

ready been analyzed using chiral effective Lagrangians with
explicit #s in Refs. '21–23(. These studies focused mainly
on nucleon polarizabilities. The predictions made in Refs.
'19,21,22( are obscured by off-shell ambiguities, in particu-
lar by the so-called off-shell parameters that control the in-
famous spin-1/2 sector of the spin-3/2 # field. In a ‘‘reason-
able’’ range for these parameters the # contribution to &p

(#)

varies between 0 and 14"10#4fm3 '22(. In contrast, Hem-
mert et al. '23(, to next-to-leading order in their small scale
expansion !SSE" '24(, found a result which was independent
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1Throughout this paper the designations LO, NLO, etc. refer to the
order in the $N amplitude. These one-loop results are, strictly
speaking, leading-order predictions for %p and &p , but we refer to
them as next-to-leading order !NLO" since Eq. !1" is derived by
considering the NLO result for the nucleon Compton amplitude.
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Let us emphasize that we do not include the errors due to the uncertainty in the values
of parameters in Table II, or due to the O(p5/∆2) effects which stem from graphs with two
∆ propagators. Our errors are thus underestimated, however they can directly serve as an
indicator of sensitivity to the polarizability LECs at O(p4).

IV. PROTON POLARIZABILITIES

The chiral-loop contribution to scalar polarizabilities of the proton which arise from the
NNLO calculation of the Compton amplitude is given in the Appendix A. In addition, we
have the tree-level ∆(1232) contribution from graphs (14) in Fig. 4 and its crossed, given
by [43]:

α (∆-excit.) = − 2e2g2
E

4π(MN + M∆)3
≃ −0.1 , (28)

β (∆-excit.) =
2e2g2

M

4π(MN + M∆)2∆
≃ 7.1 . (29)

Here and in what follows the numerical values are given in the units of 10−4 fm3.
The numerical composition of the full result thus looks as follows:

α = 6.8︸︷︷︸
O(p3)

+ (−0.1) + 4.1︸ ︷︷ ︸
O(p4/∆)

= 10.8 , (30)

β = −1.8︸︷︷︸
O(p3)

+ 7.1 − 1.3︸ ︷︷ ︸
O(p4/∆)

= 4.0 . (31)

As explained above, a natural estimate of O(p4) contributions yields an uncertainty of at
least ±0.7 on these values. In Fig. 5 this result, shown by the red blob, is compared with
the empirical information, and with the ∆-less O(p4) HBχPT result of Beane et al. [42].

We can clearly see a few-sigma discrepancy of our result with the TAPS-MAMI deter-
mination of polarizabilities [9]. On the other hand, as shown in the next section, our result
agrees with TAPS data for the Compton differential cross sections. Of course we compare
with the data at the lower energies end (below the pion threshold) where polarizabilities
play the prominent role. The extraction of the polarizabilities in [9] has also been influenced
by data above the ∆-resonance region to which we cannot compare. Clearly an extraction
of scalar polarizabilities based on the data of 400 MeV and higher could be affected by un-
controlled model dependencies and needs to be avoided. Excluding the higher-energy data
from the TAPS analysis could help to resolve the apparent discrepancy between the theory
and experiment in Fig. 5.

In Fig. 6 we show the pion mass dependence of proton polarizabilities in both BχPT
and HBχPT. The difference between the two for the magnetic polarizability (lower panel)
at O(p3) is stunning (compare the blue dashed and violet dotted curves). The region of
applicability of the HB expansion is apparently limited here to essentially the chiral limit,
mπ → 0. For any finite pion mass, the BχPT and HBχPT results come out to be of a similar
magnitude but of the opposite sign. Similar picture is observed for the π∆ loops arising at
O(p4/∆). In fact, we have checked that in the limit of vanishing ∆-nucleon mass splitting
(∆ → 0), the considered πN and π∆ loops give (up to the spin-isospin factors) the same
result.
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I. INTRODUCTION

Compton scattering on the proton ($p) and the deuteron
($D) provides a clean and unique probe of nucleon electro-
magnetic structure, revealing information different to that
obtained in electron scattering. During the last decade a
number of excellent experimental programs have been dedi-
cated to these two processes !see Refs. '1–5( and '6–10(,
respectively". At low photon energies, these experiments
probe the static properties of the nucleon, such as its electric
charge, magnetic moment, and polarizabilities. Above the
pion-production threshold, the process becomes dominated
by the excitation of resonances, most prominently the
#(1232) isobar. Many theoretical methods aim at under-
standing this process in both the low-energy and the reso-
nance region. In particular, significant progress has been
made recently using dispersion relations '11,12( and effec-
tive Lagrangian models '13–15(. On the other hand, previ-
ous calculations using chiral perturbation theory ()PT) ap-
pear to work only at low photon energies—energies at or
below the pion-production threshold '16,17(. This present
study attempts to extend these )PT calculations above the
pion threshold and into the #-resonance region.
In the low-energy regime, )PT seems to work extremely

well. At next-to-leading order !NLO", i.e., third order in
small momenta '!O(q3)( , heavy-baryon !HB" )PT for the
electric and magnetic polarizabilities predicts '18,19(:

%p!%n!
5*%

6m*
! gA
4* f*

" 2!12.2"10#4 fm3, !1"

&p!&n!
*%

12m*
! gA
4* f *

" 2!1.2"10#4 fm3, !2"

where %!e2/4*#1/137, gA#1.26, f*#93 MeV, and m*

#139 MeV.1 Since there are no Compton counterterms
present at O(q3), this is a genuine prediction of )PT—a
prediction which, at least for the proton, is in remarkable
agreement with recent extractions of these quantities from
low-energy data, e.g., Ref. '20(:

%p!!12.1$1.1$0.5""10#4 fm3, !3"

&p!!3.2$1.1$0.1""10#4 fm3. !4"

Here the first error is statistical, and the second one repre-
sents the theory error of the fit to data.
However, the agreement of the NLO HB)PT prediction

with the experimental $p cross-section data is good only up
to photon energies +#100 MeV '16(. The recent NNLO
'O(q4)( calculation '17( agrees with experiment to slightly
higher energies, but above +#120 MeV significant discrep-
ancies begin to appear, most notably at backward angles.
This is perhaps not surprising, since the #-isobar excitation
is not included explicitly in this chiral expansion. And, as we
shall argue, the breakdown scale of )PT without an explicit
# is set essentially by the #-nucleon mass difference:

#,M##MN-293 MeV. !5"

Thus, to extend the region of )PT applicability to +.# , the
# must be included as an explicit degree of freedom.
The # contribution for the Compton amplitude had al-

ready been analyzed using chiral effective Lagrangians with
explicit #s in Refs. '21–23(. These studies focused mainly
on nucleon polarizabilities. The predictions made in Refs.
'19,21,22( are obscured by off-shell ambiguities, in particu-
lar by the so-called off-shell parameters that control the in-
famous spin-1/2 sector of the spin-3/2 # field. In a ‘‘reason-
able’’ range for these parameters the # contribution to &p

(#)

varies between 0 and 14"10#4fm3 '22(. In contrast, Hem-
mert et al. '23(, to next-to-leading order in their small scale
expansion !SSE" '24(, found a result which was independent

*Email address: vlad@phy.ohiou.edu
†Email address: phillips@phy.ohiou.edu

1Throughout this paper the designations LO, NLO, etc. refer to the
order in the $N amplitude. These one-loop results are, strictly
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them as next-to-leading order !NLO" since Eq. !1" is derived by
considering the NLO result for the nucleon Compton amplitude.
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Let us emphasize that we do not include the errors due to the uncertainty in the values
of parameters in Table II, or due to the O(p5/∆2) effects which stem from graphs with two
∆ propagators. Our errors are thus underestimated, however they can directly serve as an
indicator of sensitivity to the polarizability LECs at O(p4).

IV. PROTON POLARIZABILITIES

The chiral-loop contribution to scalar polarizabilities of the proton which arise from the
NNLO calculation of the Compton amplitude is given in the Appendix A. In addition, we
have the tree-level ∆(1232) contribution from graphs (14) in Fig. 4 and its crossed, given
by [43]:

α (∆-excit.) = − 2e2g2
E

4π(MN + M∆)3
≃ −0.1 , (28)

β (∆-excit.) =
2e2g2

M

4π(MN + M∆)2∆
≃ 7.1 . (29)

Here and in what follows the numerical values are given in the units of 10−4 fm3.
The numerical composition of the full result thus looks as follows:

α = 6.8︸︷︷︸
O(p3)

+ (−0.1) + 4.1︸ ︷︷ ︸
O(p4/∆)

= 10.8 , (30)

β = −1.8︸︷︷︸
O(p3)

+ 7.1 − 1.3︸ ︷︷ ︸
O(p4/∆)

= 4.0 . (31)

As explained above, a natural estimate of O(p4) contributions yields an uncertainty of at
least ±0.7 on these values. In Fig. 5 this result, shown by the red blob, is compared with
the empirical information, and with the ∆-less O(p4) HBχPT result of Beane et al. [42].

We can clearly see a few-sigma discrepancy of our result with the TAPS-MAMI deter-
mination of polarizabilities [9]. On the other hand, as shown in the next section, our result
agrees with TAPS data for the Compton differential cross sections. Of course we compare
with the data at the lower energies end (below the pion threshold) where polarizabilities
play the prominent role. The extraction of the polarizabilities in [9] has also been influenced
by data above the ∆-resonance region to which we cannot compare. Clearly an extraction
of scalar polarizabilities based on the data of 400 MeV and higher could be affected by un-
controlled model dependencies and needs to be avoided. Excluding the higher-energy data
from the TAPS analysis could help to resolve the apparent discrepancy between the theory
and experiment in Fig. 5.

In Fig. 6 we show the pion mass dependence of proton polarizabilities in both BχPT
and HBχPT. The difference between the two for the magnetic polarizability (lower panel)
at O(p3) is stunning (compare the blue dashed and violet dotted curves). The region of
applicability of the HB expansion is apparently limited here to essentially the chiral limit,
mπ → 0. For any finite pion mass, the BχPT and HBχPT results come out to be of a similar
magnitude but of the opposite sign. Similar picture is observed for the π∆ loops arising at
O(p4/∆). In fact, we have checked that in the limit of vanishing ∆-nucleon mass splitting
(∆ → 0), the considered πN and π∆ loops give (up to the spin-isospin factors) the same
result.
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I. INTRODUCTION

Compton scattering on the proton ($p) and the deuteron
($D) provides a clean and unique probe of nucleon electro-
magnetic structure, revealing information different to that
obtained in electron scattering. During the last decade a
number of excellent experimental programs have been dedi-
cated to these two processes !see Refs. '1–5( and '6–10(,
respectively". At low photon energies, these experiments
probe the static properties of the nucleon, such as its electric
charge, magnetic moment, and polarizabilities. Above the
pion-production threshold, the process becomes dominated
by the excitation of resonances, most prominently the
#(1232) isobar. Many theoretical methods aim at under-
standing this process in both the low-energy and the reso-
nance region. In particular, significant progress has been
made recently using dispersion relations '11,12( and effec-
tive Lagrangian models '13–15(. On the other hand, previ-
ous calculations using chiral perturbation theory ()PT) ap-
pear to work only at low photon energies—energies at or
below the pion-production threshold '16,17(. This present
study attempts to extend these )PT calculations above the
pion threshold and into the #-resonance region.
In the low-energy regime, )PT seems to work extremely

well. At next-to-leading order !NLO", i.e., third order in
small momenta '!O(q3)( , heavy-baryon !HB" )PT for the
electric and magnetic polarizabilities predicts '18,19(:
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" 2!12.2"10#4 fm3, !1"

&p!&n!
*%

12m*
! gA
4* f *

" 2!1.2"10#4 fm3, !2"

where %!e2/4*#1/137, gA#1.26, f*#93 MeV, and m*

#139 MeV.1 Since there are no Compton counterterms
present at O(q3), this is a genuine prediction of )PT—a
prediction which, at least for the proton, is in remarkable
agreement with recent extractions of these quantities from
low-energy data, e.g., Ref. '20(:

%p!!12.1$1.1$0.5""10#4 fm3, !3"

&p!!3.2$1.1$0.1""10#4 fm3. !4"

Here the first error is statistical, and the second one repre-
sents the theory error of the fit to data.
However, the agreement of the NLO HB)PT prediction

with the experimental $p cross-section data is good only up
to photon energies +#100 MeV '16(. The recent NNLO
'O(q4)( calculation '17( agrees with experiment to slightly
higher energies, but above +#120 MeV significant discrep-
ancies begin to appear, most notably at backward angles.
This is perhaps not surprising, since the #-isobar excitation
is not included explicitly in this chiral expansion. And, as we
shall argue, the breakdown scale of )PT without an explicit
# is set essentially by the #-nucleon mass difference:

#,M##MN-293 MeV. !5"

Thus, to extend the region of )PT applicability to +.# , the
# must be included as an explicit degree of freedom.
The # contribution for the Compton amplitude had al-

ready been analyzed using chiral effective Lagrangians with
explicit #s in Refs. '21–23(. These studies focused mainly
on nucleon polarizabilities. The predictions made in Refs.
'19,21,22( are obscured by off-shell ambiguities, in particu-
lar by the so-called off-shell parameters that control the in-
famous spin-1/2 sector of the spin-3/2 # field. In a ‘‘reason-
able’’ range for these parameters the # contribution to &p

(#)

varies between 0 and 14"10#4fm3 '22(. In contrast, Hem-
mert et al. '23(, to next-to-leading order in their small scale
expansion !SSE" '24(, found a result which was independent

*Email address: vlad@phy.ohiou.edu
†Email address: phillips@phy.ohiou.edu

1Throughout this paper the designations LO, NLO, etc. refer to the
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them as next-to-leading order !NLO" since Eq. !1" is derived by
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Let us emphasize that we do not include the errors due to the uncertainty in the values
of parameters in Table II, or due to the O(p5/∆2) effects which stem from graphs with two
∆ propagators. Our errors are thus underestimated, however they can directly serve as an
indicator of sensitivity to the polarizability LECs at O(p4).

IV. PROTON POLARIZABILITIES

The chiral-loop contribution to scalar polarizabilities of the proton which arise from the
NNLO calculation of the Compton amplitude is given in the Appendix A. In addition, we
have the tree-level ∆(1232) contribution from graphs (14) in Fig. 4 and its crossed, given
by [43]:

α (∆-excit.) = − 2e2g2
E

4π(MN + M∆)3
≃ −0.1 , (28)

β (∆-excit.) =
2e2g2

M

4π(MN + M∆)2∆
≃ 7.1 . (29)

Here and in what follows the numerical values are given in the units of 10−4 fm3.
The numerical composition of the full result thus looks as follows:

α = 6.8︸︷︷︸
O(p3)

+ (−0.1) + 4.1︸ ︷︷ ︸
O(p4/∆)

= 10.8 , (30)

β = −1.8︸︷︷︸
O(p3)

+ 7.1 − 1.3︸ ︷︷ ︸
O(p4/∆)

= 4.0 . (31)

As explained above, a natural estimate of O(p4) contributions yields an uncertainty of at
least ±0.7 on these values. In Fig. 5 this result, shown by the red blob, is compared with
the empirical information, and with the ∆-less O(p4) HBχPT result of Beane et al. [42].

We can clearly see a few-sigma discrepancy of our result with the TAPS-MAMI deter-
mination of polarizabilities [9]. On the other hand, as shown in the next section, our result
agrees with TAPS data for the Compton differential cross sections. Of course we compare
with the data at the lower energies end (below the pion threshold) where polarizabilities
play the prominent role. The extraction of the polarizabilities in [9] has also been influenced
by data above the ∆-resonance region to which we cannot compare. Clearly an extraction
of scalar polarizabilities based on the data of 400 MeV and higher could be affected by un-
controlled model dependencies and needs to be avoided. Excluding the higher-energy data
from the TAPS analysis could help to resolve the apparent discrepancy between the theory
and experiment in Fig. 5.

In Fig. 6 we show the pion mass dependence of proton polarizabilities in both BχPT
and HBχPT. The difference between the two for the magnetic polarizability (lower panel)
at O(p3) is stunning (compare the blue dashed and violet dotted curves). The region of
applicability of the HB expansion is apparently limited here to essentially the chiral limit,
mπ → 0. For any finite pion mass, the BχPT and HBχPT results come out to be of a similar
magnitude but of the opposite sign. Similar picture is observed for the π∆ loops arising at
O(p4/∆). In fact, we have checked that in the limit of vanishing ∆-nucleon mass splitting
(∆ → 0), the considered πN and π∆ loops give (up to the spin-isospin factors) the same
result.
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We formulate a new power-counting scheme for a chiral effective-field theory of nucleons, pions, and #s.
This extends chiral perturbation theory into the #-resonance region. We calculate nucleon Compton scattering
up to next-to-leading order in this theory. The resultant description of existing $p cross-section data is very
good for photon energies up to about 300 MeV. We also find reasonable numbers for the spin-independent
polarizabilities %p and &p .
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I. INTRODUCTION

Compton scattering on the proton ($p) and the deuteron
($D) provides a clean and unique probe of nucleon electro-
magnetic structure, revealing information different to that
obtained in electron scattering. During the last decade a
number of excellent experimental programs have been dedi-
cated to these two processes !see Refs. '1–5( and '6–10(,
respectively". At low photon energies, these experiments
probe the static properties of the nucleon, such as its electric
charge, magnetic moment, and polarizabilities. Above the
pion-production threshold, the process becomes dominated
by the excitation of resonances, most prominently the
#(1232) isobar. Many theoretical methods aim at under-
standing this process in both the low-energy and the reso-
nance region. In particular, significant progress has been
made recently using dispersion relations '11,12( and effec-
tive Lagrangian models '13–15(. On the other hand, previ-
ous calculations using chiral perturbation theory ()PT) ap-
pear to work only at low photon energies—energies at or
below the pion-production threshold '16,17(. This present
study attempts to extend these )PT calculations above the
pion threshold and into the #-resonance region.
In the low-energy regime, )PT seems to work extremely

well. At next-to-leading order !NLO", i.e., third order in
small momenta '!O(q3)( , heavy-baryon !HB" )PT for the
electric and magnetic polarizabilities predicts '18,19(:

%p!%n!
5*%

6m*
! gA
4* f*

" 2!12.2"10#4 fm3, !1"

&p!&n!
*%

12m*
! gA
4* f *

" 2!1.2"10#4 fm3, !2"

where %!e2/4*#1/137, gA#1.26, f*#93 MeV, and m*

#139 MeV.1 Since there are no Compton counterterms
present at O(q3), this is a genuine prediction of )PT—a
prediction which, at least for the proton, is in remarkable
agreement with recent extractions of these quantities from
low-energy data, e.g., Ref. '20(:

%p!!12.1$1.1$0.5""10#4 fm3, !3"

&p!!3.2$1.1$0.1""10#4 fm3. !4"

Here the first error is statistical, and the second one repre-
sents the theory error of the fit to data.
However, the agreement of the NLO HB)PT prediction

with the experimental $p cross-section data is good only up
to photon energies +#100 MeV '16(. The recent NNLO
'O(q4)( calculation '17( agrees with experiment to slightly
higher energies, but above +#120 MeV significant discrep-
ancies begin to appear, most notably at backward angles.
This is perhaps not surprising, since the #-isobar excitation
is not included explicitly in this chiral expansion. And, as we
shall argue, the breakdown scale of )PT without an explicit
# is set essentially by the #-nucleon mass difference:

#,M##MN-293 MeV. !5"

Thus, to extend the region of )PT applicability to +.# , the
# must be included as an explicit degree of freedom.
The # contribution for the Compton amplitude had al-

ready been analyzed using chiral effective Lagrangians with
explicit #s in Refs. '21–23(. These studies focused mainly
on nucleon polarizabilities. The predictions made in Refs.
'19,21,22( are obscured by off-shell ambiguities, in particu-
lar by the so-called off-shell parameters that control the in-
famous spin-1/2 sector of the spin-3/2 # field. In a ‘‘reason-
able’’ range for these parameters the # contribution to &p

(#)

varies between 0 and 14"10#4fm3 '22(. In contrast, Hem-
mert et al. '23(, to next-to-leading order in their small scale
expansion !SSE" '24(, found a result which was independent

*Email address: vlad@phy.ohiou.edu
†Email address: phillips@phy.ohiou.edu

1Throughout this paper the designations LO, NLO, etc. refer to the
order in the $N amplitude. These one-loop results are, strictly
speaking, leading-order predictions for %p and &p , but we refer to
them as next-to-leading order !NLO" since Eq. !1" is derived by
considering the NLO result for the nucleon Compton amplitude.
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accompanied	by	

“promoted”	LECs,	hence	
not	predictive	

Griesshammer & Hemmert (2004) 
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Figure B.4: One- and two-loop chiral contributions to the nucleon self-energy.
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