

FORWARD DETECTION PHYSICS PROJECTS

 Neutron Structure and the quark-gluon dynamics of the NN force

- JLab LDRD FY2014/2015 (Ch.Weiss)
- https://www.jlab.org/theory/tag/
- 4 Conference Proceedings /Technical Reports
- 35 Conference presentations
- Publicly released simulation code

LDRD FY2017 (V. Morozov)

FORWARD DETECTION REGIONS: After iFFQ

- Ultra-Forward: Dipole $3 < z \rightarrow 43m < z < 47m$ (approx)
 - 3-D imaging of proton: $ep \rightarrow ep \gamma$. Goals:
 - Hermetic detection for protons outside 10σ L⊗T beam emittance
 - Momentum resolution = beam rms = $\delta p/p \approx 3 \cdot 10^{-4}$ (L&T)
 - Large angular acceptance (±8 mrad)
 - Dispersion \sim 1000 mm/100% at secondary focus, Magnification = -0.5
 - 10σ Beam-Stay-Clear (BSC) (Roman Pots!)
 - 100 GeV/c: 3 mm radius
 - 20 GeV/c: 7 mm radius
 - Desired (position, angle resolution) ≤ (0.3 mm, 0.3 mrad)

FORWARD DETECTION REGIONS After FFQ Triplet

- Far-Forward: Dipole2< z < Dipole3 → z>20 m
 - ep \rightarrow ep γ for $x_B > 0.1$
 - Neutron structure and dynamics: $eD \rightarrow epX$, $eD \rightarrow epnX$...
 - p, n each have momentum $\approx P_D/2 = 50 \text{ GeV/c}$
 - Large aperture D2 (40 cm radius = HMS Dipole)
 - Large aperture 0° Line-of-sight to ZDC for neutron detection
 - Desired ZDC Hcal resolution 30%[1GeV/E_n]^{1/2} ⊕ 1 cm transverse
- Estimated nominal beam pipe size = 4 cm radius
 - Roman Pot Detectors to achieve full acceptance post tuning/cooling
 - Single stations ~2 m long?
 - Paired stations each ≤ 20 cm long?

FAR-FORWARD REGION: SAMPLE TRACKING

 $P_0 = 100 \, \text{GeV/c}$

- $\delta > -1\%$ tracks converging towards downstream focus:
 - Detect large angle tracks before focal point
- $-0.5 < \delta < 0.05$: Focal point moves through drift space

FORWARD REGION: DIPOLE-1

2Tesla•m

"Target Fragmentation Jet"

"Current Jet"

- Projectile Fragmentation Region
 - ep \rightarrow eX, ep \rightarrow epX, ep \rightarrow eN*X
 - $N^* \rightarrow N\pi$, $p_{\pi} \approx P_0 m_{\pi} / M_p \approx P_0 / 7$,
 - $p_{\pi,T}/p_{\pi} \approx (0.3 \text{ GeV})/(15 \text{ GeV}) = 20 \text{ mrad (outside FFQ acceptance)}$
 - Track deflection in Dipole-1 (6mrad) 7 ≈ 42 mrad

PERFORMANCE CHARACTERISTICS OF FAR/ULTRA FORWARD ROMAN-POT TRACKERS

- Assumptions:
 - Vacuum window 1mm Al
 - $X_0(AI) = 8.9 \text{ cm}$
 - Two stations, 2m apart, each 20 cm long with 4 μstrip layers
 - Each layer is 300 μm Si (DEPFET could be 50 μm)
 - $X_0(Si) = 9.4 \text{ cm}$

MULTIPLE SCATTERING AND RESOLUTION

Roman Pot Thickness:

$$rac{X}{X_0} = rac{1.2 \, \mathrm{mm(Si)}}{94 \, \mathrm{mm}} + rac{2.0 \, \mathrm{mm(Al)}}{88 \, \mathrm{mm}} = 3.5\%$$

Multiple Scattering

$$egin{aligned} heta_{ms} &= rac{14 \; ext{MeV/c}}{p} \sqrt{rac{X}{X_0}} \ &= \left\{ egin{aligned} 30 \, \mu ext{rad} & ext{for} & p = 100 \; ext{GeV/c} \ 130 \, \mu ext{rad} & ext{for} & p = 20 \; ext{GeV/c} \end{array}
ight. \end{aligned}$$

- Resolution at IP: θ_{ms} /M $\approx 2\theta_{ms} < \sigma_{\vartheta}$ (emittance) = 300 µrad
- Momentum Resolution:
 - $\sigma(p)/p \approx L \theta_{\rm ms}/D \approx 2\theta_{\rm ms} < 3 \cdot 10^{-4} = {\rm beam \ rms \ momentum \ spread}$

ACCEPTANCE GAPS

- Roman Pots:
 - The beam-facing edges of the Roman Pots will create dead-areas of large multiple scattering
 - The gap between the Si μStrip and the RP window creates a gap in the acceptance
 - These need to be optimized with optics and realistic RP designs.
- We have done acceptance studies for protons from 3 He (δ =-66%)
- Currently, there is a gap in acceptance for δ <–50% if θ <10 mrad (relative to ion beam)

CENTRAL BEAM PIPE DESIGN

- All particles in FFQ acceptance stay in vacuum
- All particles in Dipole-1 Tracker acceptance exit thin window at θ_{Normal} < 60°
- All particles in ion EndCap exit central Be pipe
- Minimal beam pipe radii 2 cm

BEAM PIPE DESIGN STUDY

- https://eic.jlab.org/internal/index.php/Detector Working Group Meetings
 - 4/6/2016: Revised beam pipe with 0 synchronization offsets
 - https://eic.jlab.org/internal/images/8/85/RevisedBeamPipe Synch=0.png
 - 12/30/2015: Beam Pipe Concept in IP region
 - https://eic.jlab.org/internal/images/9/97/BeamPipe_EIC@40JLab-IP.pdf
 - 10/14/2015: Beam Pipe design after feedback from M. Sullivan
 - https://eic.jlab.org/internal/images/b/b2/VacuumPipe_14Oct2015.pdf
 - 6/24/2015: Ideas and Constraints for a beam pipe design
 - https://eic.jlab.org/internal/images/2/23/BeamPipe_MEIC-IP.pdf

C.Hyde

VERTEX BEAM PIPE

- Central cylinder radius = 2.71 cm,
 - z ∈ [-28.5cm, 28.5cm] (at -0.025 rad)
- Total length from z = -84 cm to +200 cm
 - Flare angle (adjust to Dipole-1 aperture)
 - Endcap taper = 30° from -0.025 rad axis
 - Length constrained by requirement that separate beam pipes are ≥ 2 cm radius and accept full ~10 mrad acceptance of FFQ:
 - 20 mm = (2.0 m) (10 mrad)
 - 16 mm = (2.0 m) (8 mrad) (with 6T max field FFQ)

OUTLOOK

- The present design is well matched to our physics goals
- We need engineering constraints on Roman Pot designs, Beam Pipe materials and thickness
 - This will enable more quantitative evaluation of realistic resolution and acceptance.

MORE PHYSICS SPECULATIONS

- High Resolution EMCal in front of ZDC
 - Measure boosted decay gamma-rays from nuclear bound state:
 - 208 Pb(e,e' γ) 208 Pb* $\rightarrow \gamma...^{208}$ Pb
 - $E_{\gamma} \ge 2.6 \text{ MeV} \rightarrow \text{Boosted to Detector frame, } 50\% > 144 \text{ MeV}$
- 1m³ high granularity (1x1x100 cm³) scintillator array
 - Measure polarized neutron electron elastic scattering:
 - $\overrightarrow{e} \overrightarrow{d} \rightarrow (e) \overrightarrow{p} \overrightarrow{n}$ tag proton
 - Measure neutron scattering off atomic electron, with detection of forward neutron and recoil electron
 - $Q^2 \le 10^{-3} \text{ GeV}^2$, $E_e' < 10 \text{ GeV}$
 - Neutron energy resolution = 30%*sqrt(50GeV²) = 2GeV