Pion and Kaon Structure Functions

... beyond the science of ...

Collaboration with Ian Cloet, Roy Holt, Paul Reimer, Rolf Ent Thanks to: Craig Roberts, Yulia Furletova and Steve Wood

Large or Non-Small x Structure Function Workshop 2016 Jefferson Laboratory, VA, 4 October 2016

QCD Science Questions

- How are the gluons and sea quarks, and their intrinsic spins distributed in space & momentum inside the nucleon?
 - Role of Orbital Angular Momentum?

What happens to the gluon density in nuclei at high energy? Does it saturate into a gluonic form of matter of universal properties?

How about the distributions of quarks and gluons in the lightest mesons - pions and kaons?

Why should you be interested in pions and kaons?

Protons, neutrons, pions and kaons are the main building blocks of nuclear matter

- 1) The pion, or a meson cloud, explains light-quark asymmetry in the nucleon sea
- 2) Pions are the Yukawa particles of the nuclear force but no evidence for excess of nuclear pions or anti-quarks
- Kaon exchange is similarly related to the ΛN interaction correlated with the Equation of State and astrophysical observations
- 4) Mass is enigma cannibalistic gluons vs massless Goldstone bosons

Equations of state and neutron star mass-radius relations

At some level an old story...

A model for nucleon, pion and kaon structure functions F. Martin, CERN-TH 2845 (1980)

 \succ

World Data on pion structure function F_2^{π}

Pion Drell-Yan Data: CERN NA3 ($\pi^{+/-}$) NA10 (π^{-})

NA3 200 GeV π^- data (also have 150 and 180 GeV π^- and 200 GeV π^+ data). Can determine pion sea!

$$Q_{\pi}^{\text{sea}} \equiv \int_{0}^{1} x q_{\pi}^{\text{sea}}(x) dx = 0.01$$

NA10 194 GeV π^- data

quark sea in pion is small – few %

The role of gluons in pions

Pion mass is enigma – cannibalistic gluons vs massless Goldstone bosons

$$f_{\pi} E_{\pi}(p^2) = B(p^2)$$

Adapted from Craig Roberts:

- The most fundamental expression of Goldstone's Theorem and DCSB in the SM
- Pion exists if, and only if, mass is dynamically generated
- This is why m_π =0 in the absence of a Higgs mechanism

What is the impact of this for gluon parton distributions in pions vs nucleons? One would anticipate a different mass budget for the pion and the proton

Quarks and gluons in pions and kaons

Talk @ ANL EIC UG Meeting: how about the distributions of quarks and gluons in the lightest mesons - pions and kaons?

At low x to moderate x, both the quark sea and the gluons are very interesting.

- Are the sea in pions and kaons the same in magnitude and shape?
- Is the origin of mass encoded in differences of gluons in pions, kaons and protons, or do they in the end all become universal?

At moderate x, compare pionic Drell-Yan to DIS from the pion cloud

- test of the assumptions used in the extraction of the structure function and similar assumptions in the pion and kaon form factors.
- □ At high x, the shapes of valence u quark distributions in pion, kaon and proton are different, and so are their asymptotic $x \rightarrow 1$ limits
 - Some of these effects are due to the comparison of a two- versus three-quark system, and a meson with a heavier s quark embedded versus a lighter quark
 - However, effects of gluons come in as well. To measure these differences would be fantastic.

At high x, a long-standing issue has been the shape of the pion structure function as given by Drell-Yan data versus QCD expectations. However, this may be a solved case based on gluon resummation, and this may be confirmed with 12-GeV Jefferson Lab data. Nonetheless, soft gluon resummation is a sizable effect for Drell Yan, but expected to be a small effect for DIS, so additional data are welcome.

Landscape for p, π , K structure function after EIC

Proton: much existing from HERA

EIC will add:

- Better constraints at large-x
- > Precise F_2^n neutron SF data

Pion and kaon: only limited data from:

- Pion and kaon Drell-Yan experiments
- Some pion SF data from HERA

EIC will add large (x,Q²) landscape for both pion and kaon!

EIC Needs Good Acceptance for Forward Physics!

Example: acceptance for p' in $e + p \rightarrow e' + p' + X$

Huge gain in acceptance for forward tagging to measure F₂ⁿ and diffractive physics!!!

Good Acceptance for n, Λ , Σ detection

Simulations assume: 5 GeV e⁻ and 50 GeV p @ luminosity 10³⁴ s⁻¹cm⁻²

Sullivan process for pion SF

And similar process for kaon SF

Process	Forward Particle	Geometric Detection Efficiency (at small –t)
¹ H(e,e'π ⁺)n	Ν	> 20%
¹ H(e,e'K⁺)∧	Λ	50%
¹ H(e,e'K ⁺)Σ	Σ	17%

Pion Structure Function Projections

- Counts assume roughly one year of running (26 weeks at 50% efficiency) with 5 GeV electrons and 50 GeV protons at luminosity of 10³⁴ s⁻¹cm⁻².
- Counts here still need to be multiplied with geometric detection efficiency ~ 20%.

World Data on pion structure function F_2^{π}

HERA

EIC

roughly x_{min} for EIC projections

Kaon structure function - valence quarks

[C.D. Roberts et al, arXiv:1602.01502 [nucl-th]]

- Pointwise results obtained via reconstruction from (arbitrarily many) computed PDF moments.
- Peak in kaon PDFs shifted 17% away from x=½, *i.e.* the scale of flavor symmetry breaking is set by DCSB (M_s/M_u=1.2).
- [u_K(x)+s_K^{bar}(x)]/2 must be symmetric, owing to momentum sum rule. Similar, but not identical to u_π(x)

The bulk of this effect may be somewhat trivial and expected since the massive s quark carries most of the momentum of the kaon. *Nevertheless, the effects of gluons will make changes to this effect (see next slide).* This may turn this ratio into an excellent example for textbooks.

u_{K}/u_{π} ratios from K/ π Drell-Yan Ratios

Predictions of the K/ π Drell-Yan ratio based on Bethe-Salpeter Equations (BSE) work well – 1st fully numerical DSE analysis

Gluon content of the kaon

T. Nguyen, A. Bashir, C.D. Roberts and P.C. Tandy, Phys. Rev. C**83** (2011) 062201 Data: Badier *et al.* Phys. Lett. **B93** 354 (1980)

Kaon structure functions – gluon pdfs

Based on Lattice QCD calculations and DSE calculations:

- Valence quarks carry 52% of the pion's momentum at the light front, at the scale used for Lattice QCD calculations, or roughly 65% at the perturbative hadronic scale
- □ At the same scale, valence-quarks carry ⅔ of the kaon's light-front momentum, or roughly 95% at the perturbative hadronic scale

Thus, at a given scale, there is far less glue in the kaon than in the pion:

- heavier quarks radiate less readily than lighter quarks
- heavier quarks radiate softer gluons than do lighter quarks
- Landau-Pomeranchuk effect: softer gluons have longer wavelength and multiple scatterings are suppressed by interference.
- Momentum conservation communicates these effects to the kaon's u-quark.

Calculable Limits for Parton Distributions

□ Calculable limits for ratios of PDFs at x = 1, same as predictive power of x → 1 limits for spin-averaged and spin-dependent proton structure functions (asymmetries)

$$\frac{u_V^K(x)}{u_V^\pi(x)}\Big|_{x \to 1} = 0.37, \quad \frac{u_V^\pi(x)}{\bar{s}_V^K(x)}\Big|_{x \to 1} = 0.29$$

□ On the other hand, inexorable growth in both pions' and kaons' gluon and seaquark content at asymptotic Q² should only be driven by pQCD splitting mechanisms. Hence, also calculable limits for ratios of PDFs at x = 0, *e.g.*,

$$\lim_{x \to 0} \frac{u^K(x;\zeta)}{u^\pi(x;\zeta)} \stackrel{\Lambda_{\rm QCD}/\zeta \simeq 0}{\to} 1$$

The inexorable growth in both pions' and kaons' gluon content at asymptotic Q² provides connection to gluon saturation.

Towards Kaon Structure Functions

To determine projected kaon structure function data from pion structure function projections, we scaled the pion to the kaon case with the *coupling constants* and taking the geometric detection efficiencies into account

S. Goloskokov and P. Kroll, Eur.Phys.J. A47 (2011) 112:

 $g_{\pi NN} = 13.1$ $g_{Kp\Lambda} = -13.3$ $g_{Kp\Sigma} = -3.5$

(these values can vary depending on what model one uses, so sometimes a range is used, *e.g.*, 13.1-13.5 for $g_{\pi NN}$)

Folding this together: kaon projected structure function data will be roughly of similar quality as the projected pion structure function data for the small-t geometric forward particle detection acceptances at JLEIC – to be checked for eRHIC.

Process	Forward Particle	Geometric Detection Efficiency (at small –t)
¹ H(e,e'π+)n	Ν	> 20%
¹ H(e,e'K⁺)∧	Λ	50%
¹ H(e,e'K ⁺)Σ	Σ	17%

Pion vs. Kaon parton distributions

Flavor-dependence of DCSB modulates the strength of SU(3)-flavor symmetry breaking in meson PDFs

 \Box At perturbative hadronic scale ζ_{H} :

valence dressed-quarks carry roughly two-thirds of pion's light-front carried by glue ... sea-quarks carry roughly 5%

- valence dressed-quarks carry approximately 95% of the kaon's light-front momentum, with the remainder lying in the gluon distribution ... sea-quarks carry ~ 0 %
- heavier s-quarks radiate soft gluons less readily than lighter quarks and momentum conservation subsequently constrains gluons associated with the kaon's u-quark
- Evolving distributions to scale characteristic of meson-nucleon Drell-Yan experiments, ζ =5.2 GeV
 - > ratio $u_{K}(x)/u_{\pi}(x)$ explained by vastly different gluon content of $\pi \& K$
- □ Distributions evolved the distributions to $\zeta_2 = 2$ GeV, which is typically used in numerical simulations of lattice-regularised QCD:
 - Valence-quarks carry roughly half the pion's light-front momentum but two-thirds of the kaon's momentum

From: Craig Roberts et al.

Electroweak Pion and Kaon Structure Functions

- The Sullivan Process will be sensitive to u and dbar for the pion, and likewise u and sbar for the kaon.
- Logarithmic scaling violations may give insight on the role of gluon pdfs

Could we make further progress towards a flavor decomposition?

- 1) Using the Neutral-Current Parity-violating asymmetry APV
- 2) Determine xF₃ through neutral/charged-current interactions

$$F_2^{\gamma} = \sum_q e_q^2 x \left(q + \bar{q} \right)$$

In the parton model: $F_2^{\gamma Z} = 2 \sum_q e_q g_V^q x (q + \bar{q})$

longitudinally polarized e^{γ} , Z^0

Use different couplings/weights

 $x F_3^{\gamma Z} = 2 \sum e_q g_A^q x (q - \bar{q})$ Use isovector response

 $F_2^{W^+} = 2 x \left(\bar{u} + d + s + \bar{c} \right) \quad F_3^{W^+} = 2 \left(-\bar{u} + d + s - \bar{c} \right) \quad F_2^{W^-} = 2 x \left(u + \bar{d} + \bar{s} + c \right) \quad F_3^{W^-} = 2 \left(u - \bar{d} - \bar{s} + c \right)$

3) Or charged-current through comparison of electron versus positron interactions

$$A = \frac{\sigma_R^{\text{CC},e^+} \pm \sigma_L^{\text{CC},e^-}}{\sigma_R^{\text{NC}} + \sigma_L^{\text{NC}}} \qquad A = \frac{G_F^2 Q^4}{32 \pi^2 \alpha_e^2} \left[\frac{F_2^{W^+} \pm F_2^{W^-}}{F_2^{\gamma}} - \frac{1 - (1 - y)^2}{1 + (1 - y)^2} \frac{x F_3^{W^+} \mp x F_3^{W^-}}{F_2^{\gamma}} \right]$$
²⁰

Disentangling the Flavor-Dependence

1) Using the Neutral-Current Parity-violating asymmetry Apv
e.g., at Q² << M_Z² (such that M_Z²/(Q²+M_Z²) ~ 1)

$$A_{PV} = -e\left(\frac{G_F Q^2}{2\sqrt{2}\pi\alpha_e}\right) \left[g_A^e \frac{F_2^{\gamma Z}}{F_2^{\gamma}} + \frac{1 - (1 - y)^2}{1 + (1 - y)^2} \frac{eg_V^e x F_3^{\gamma Z}}{F_2^{\gamma}}\right] = \frac{e G_F Q^2}{4\sqrt{2}\pi\alpha_e} \left[a_2(x) + \frac{1 - (1 - y)^2}{1 + (1 - y)^2} a_3(x)\right]$$

$$a_2(x_A) \equiv -2 g_A^e \frac{F_2^{\gamma Z}}{F_2^{\gamma}} \quad \text{and} \quad a_3(x) \equiv -2 e g_V^e \frac{x F_3^{\gamma Z}}{F_2^{\gamma}}$$
In the parton model:

$$a_2(x_A) \equiv -2 g_A^e \frac{F_2^{\gamma Z}}{F_2^{\gamma}} \simeq \frac{2 \sum_q e_q g_V^q (q + \bar{q})}{\sum_q e_q^2 (q + \bar{q})}$$

$$a_3(x_A) \equiv -2 g_V^e \frac{x F_3^{\gamma Z}}{F_2^{\gamma}} \simeq (1 - 4 \sin^2 \theta_W) \frac{2 \sum_q e_q g_A^q (q - \bar{q})}{\sum_q e_q^2 (q + \bar{q})}.$$

 a_3 is suppressed since $(1 - 4 \sin^2 \Theta_W) \sim 0$

e

Disentangling the Flavor-Dependence

1) Using the Neutral-Current Parity-violating asymmetry A_{PV}

Summary

- Nucleons and the lightest mesons pions and kaons, are the basic building blocks of nuclear matter. We should know their structure functions.
- The distributions of quarks and gluons in pions, kaons, and nucleons will be different.
- Is the origin of mass encoded in differences of gluons in pions, kaons and nucleons (at non-asymptotic Q²)?
- Some effects may be trivial the heavier-mass quark in the kaon "robs" more of the momentum, and the structure functions of pions, kaons and protons at large-x should be different, but confirming these would provide textbook material.
- Using electroweak processes, e.g., through parity-violating probes or neutral vs. charged-current interactions, disentangling flavor dependence seems achievable

The issue at large-x: solved by resummation?

- □ Large x_{Bi} structure of the pion is interesting and relevant
 - Pion cloud & antiquark flavor asymmetry
 - Nuclear Binding
 - Simple QCD state & Goldstone Boson
- Even with NLO fit and modern parton distributions, pion did not agree with pQCD and Dyson-Schwinger

Soft Gluon Resummation saves the day!

- JLab 12 GeV experiment can check at high-x
- ➤ Resummation effects less prominent at DIS → EIC's role here may be more consistency checks of assumptions made in extraction
- Additional Bethe-Salpeter predictions to check in π/K Drell-Yan ratio

Origin of mass of QCD's pseudoscalar Goldstone modes

□ Exact statements from QCD in terms of current quark masses due to PCAC: [Phys. Rep. 87 (1982) 77; Phys. Rev. C 56 (1997) 3369; Phys. Lett. B420 (1998) 267]

$$f_{\pi}m_{\pi}^2 = (m_u^{\zeta} + m_d^{\zeta})\rho_{\pi}^{\zeta}$$
$$f_K m_K^2 = (m_u^{\zeta} + m_s^{\zeta})\rho_K^{\zeta}$$

□ Pseudoscalar masses are generated dynamically – If $\rho_p \neq 0$, $m_{\pi}^2 \sim \sqrt{m_q}$

- > The mass of bound states increases as \sqrt{m} with the mass of the constituents
- In contrast, in quantum mechanical models, e.g., constituent quark models, the mass of bound states rises linearly with the mass of the constituents
- ► *E.g.*, in models with constituent quarks Q: in the nucleon $m_Q \sim \frac{1}{3}m_N \sim 310$ MeV, in the pion $m_Q \sim \frac{1}{2}m_\pi \sim 70$ MeV, in the kaon (with s quark) $m_Q \sim 200$ MeV This is not real.
- In both DSE and LQCD, the mass function of quarks is the same, regardless what hadron the quarks reside in – This is real. It is the Dynamical Chiral Symmetry Breaking (D_χSB) that makes the pion and kaon masses light.

Assume D_{χ}SB similar for light particles: If $f_{\pi} = f_{K} \approx 0.1$ and $\rho_{\pi} = \rho_{K} \approx (0.5 \text{ GeV})^{2}$ @ scale $\zeta = 2 \text{ GeV}$

- \succ m_π² = 2.5 × (m_u^ζ + m_d^ζ); m_K² = 2.5 × (m_u^ζ + m_s^ζ)
- Experimental evidence: mass splitting between the current s and d quark masses $m_K^2 - m_\pi^2 = (m_s^{\zeta} - m_d^{\zeta}) \frac{\rho^{\zeta}}{f} = 0.225 \,\text{GeV}^2 = (0.474 \,\text{GeV})^2$ $m_s^{\zeta} = 0.095 \,\text{GeV}, m_d^{\zeta} = 0.005 \,\text{GeV}$ In good agreement with experimental values

World Data on proton structure function F₂^p

Pion DIS: Musings about the pion structure function

The Structure of the Pion and Nucleon, and Leading Neutron Production at HERA

Gary Levman, Nucl.Phys. B642 (2002) 3-10

The ZEUS Collaboration has observed that the relative rate of neutron production in photo-production at HERA is *half* that of *pp* collisions. It follows from Eqn. 5 that $\sigma(\gamma \pi)/\sigma(\gamma p)$ is half $\sigma(\pi p)/\sigma(pp)$. Therefore, as ZEUS deduces directly,

 $\sigma(\gamma\pi) \simeq \sigma(\gamma p)/3$

rather than two-thirds as expected from Regge factorization or the counting of valence quarks (the Additive Quark Model).

If accepted, some conjectures (per G. Levman article):

- the x dependence of F₂ for all hadrons is similar at low x and is determined mainly by the QCD evolution equations, only weakly by the valence structure.
- the number of partons at low x in the pion is 1/3 that of the proton; since the charged radius of the pion is 2/3 the proton's, the volume density of partons in the pion is approximately the same as in the proton.
- the quark-antiquark sea of a hadron is generated mainly by valence-valence interactions (three for the proton and one for the pion), and not by self interactions.

the number of partons at low x in the pion is 1/3 that of the proton - since the charge radius of the pion is only a little smaller than the proton's (R = 0.66 vs 0.84 or 0.88), the volume density of partons in the pion is *smaller* than in the proton.

Isn't this what we expect from the pion being the Goldstone boson???

World Data on kaon structure function F_2^{κ}

HERA

EIC

roughly x_{min} for EIC projections

