Charge Symmetry Violation at an Electron Ion Collider

Seamus Riordan Stony Brook University seamus.riordan@stonybrook.edu

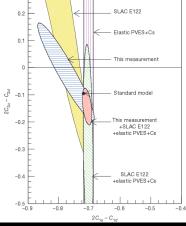
October 4, 2016

Seamus Riordan — EIC High-x EIC CSV 1/8

Parity Violating DIS

Sensitive to different effective charge couplings in PDFs...

$$A_{\rm PV} \sim \frac{\left| \begin{array}{c} \searrow^{\gamma} & \\ \end{array} \right|^{\ast} \left| \begin{array}{c} \searrow^{\gamma} & \\ \end{array} \right|^{\ast} \left| \begin{array}{c} \searrow^{\gamma} & \\ \end{array} \right|^{2} \\ \approx -\frac{G_{F}Q^{2}}{4\sqrt{2}\pi\alpha} \left[a_{1}(x) + \frac{1 - (1 - y)^{2}}{1 + (1 - y)^{2}} a_{3}(x) \right], y = 1 - \frac{E'}{E} \\ a_{1}(x) = 2 \frac{\sum C_{1q}e_{q}(q + \bar{q})}{\sum e_{q}^{2}(q + \bar{q})}, a_{3}(x) = 2 \frac{\sum C_{2q}e_{q}(q - \bar{q})}{\sum e_{q}^{2}(q + \bar{q})} \end{array}$$

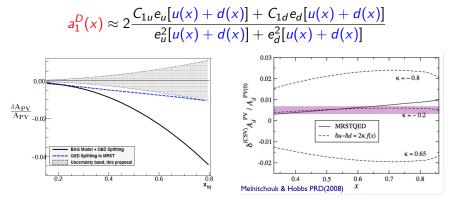

New Effective Weak Couplings

$C_{1u} = -\frac{1}{2} + \frac{4}{3}\sin^2\theta_W = -0.19$	$C_{2u} = -\frac{1}{2} + 2\sin^2\theta_W = -0.03$
$C_{1d} = \frac{1}{2} - \frac{2}{3}\sin^2\theta_W = 0.34$	$C_{2u} = -\frac{1}{2} + 2\sin^2\theta_W = -0.03$ $C_{2d} = \frac{1}{2} - 2\sin^2\theta_W = 0.03$

Parity Violating DIS - 6 GeV JLab

• Deuterium powerful, since q(x) cancel for large x

$$a_1^D(x) \approx 2 \frac{C_{1u} e_u[u(x) + d(x)] + C_{1d} e_d[u(x) + d(x)]}{e_u^2[u(x) + d(x)] + e_d^2[u(x) + d(x)]}$$



- LD₂ data taken in 2010 at $Q^2 \sim 1.2 \ {\rm GeV}^2$ at $\sim 4\%$ level
- \bullet Corresponds to new physics in $\sim 5-6$ TeV range at 95% CL Jefferson Lab PVDIS Collaboration, Nature 506, 67-70 (2014)

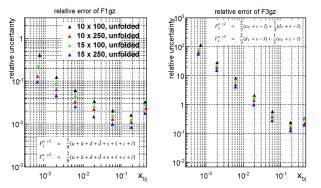
3/8

Seamus Riordan — EIC High-x EIC CSV

Charge Symmetry Violation - $u \leftrightarrow d$?

- Differences in distributions would be present in deviation in x dependence from constant
- Lattice in agreement with MRST fits and 1 σ of NuTeV

Shanahan, Phys. Rev. D 87, 094515 (2013)

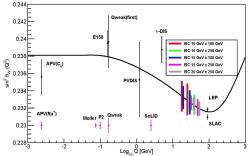

EIC Calculations - Yuxiang Zhao, SBU

Luminosity and polarization table (e-p collisions)

e-p collisions	10x100, 10x250, 15x100, 15x250
Run time luminosity	10 ³⁴ /cm ² /s
Detector efficiency	70%
Beam efficiency	70%
Beam time for running	2.5 years 5 months per year = 12.5 months
luminosity after all efficiencies	40 fb ⁻¹ per month
Integrated luminosity	500 fb ⁻¹
Proton (electron) beam polarization	70% (80%)
Uncertainty of proton (electron) beam polarization	5% (2%)

• 500 fb¹ gives...

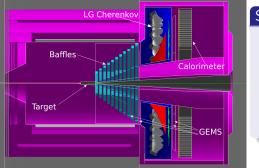
Unpol. SFs projections after unfolding



11

• Few percent (wide bins) at moderate x

EIC Calculations - Yuxiang Zhao, SBU


World data of $sin^2 \Theta_w$ including EIC projections

- 200 days of dedicated run
- Can reach similar precision to SoLID measurement
- Interesting Q² region never been measured or planned

PVDIS Measurements - SoLID Proposed Setup

Solenoidal Large Intensity Device - 12 GeV Hall A at JLab More than 200 collaborators at over 60 institutions

SoLID provides large acceptance • 2 $• <math>2 < Q^2 < 10 \text{ GeV}^2$ • $0.2 < x_{bj} < 1$

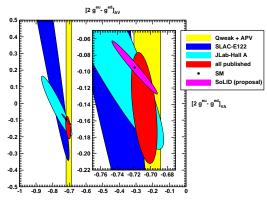
- $\bullet~$ Acceptance $\sim 40\%$
- $\bullet~Lumin \sim 5 \times 10^{38}~{\rm Hz/cm^2}$

- Parity-violation requires lots of statistics need high rate
- Want to cover broad kinematic range need large acceptance
- \bullet High impact \$ ${\sim}50M$ project, 2020+ in the future
- Program also includes SIDIS, J/ψ at threshold, TCS, SSA, possible w/ EMC PVDIS, DDVCS, PV polarized PDFs...

Something else: *eA* Isovector Dependence? Partitioned Fits

- Existing fits to world data show controversy
- Studies partitioning data between lepton/Drell Yan and ν show significant incompatibilites in nuclear corrections using common PDFs

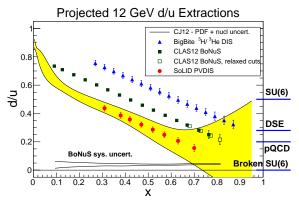
 $R = F_2^A / F_2^N$ I. Schienbein et *al.* PRD77 054013 (2008); I. Schienbein et *al.* PRD80 094004 (2009)


Seamus Riordan — EIC High-x EIC CSV 9/8

BACKUP

PVDIS Physics - Precision

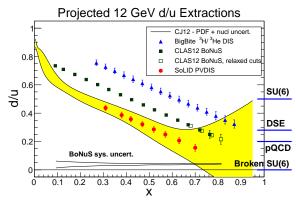
• Deuterium powerful, since q(x) cancel for large x


$$a_1^D(x) \approx 2 \frac{C_{1u} e_u[u(x) + d(x)] + C_{1d} e_d[u(x) + d(x)]}{e_u^2[u(x) + d(x)] + e_d^2[u(x) + d(x)]}$$

- Sub 1% data at $Q^2 \sim 6 7 \text{ GeV}^2$ range dramatically improves constraints
- New contact interactions $1/\Lambda^2$ contrained into ~ 10 TeV range

Clean Measurement of d/u with PVDIS

- d/u as $x \to 1$ gives information on valence quark dynamics models give varying predictions on behavior
- Flavor extraction difficult at high x because no free neutrons


- Three JLab 12 GeV experiments:
 - CLAS12 BoNuS spectator tagging
 - BigBite DIS ³H/³He Ratio
 - SoLID PVDIS ep
- The SoLID extraction of d/u is made directly from *ep* DIS: *no nuclear corrections*
- Disagreement would also signal CSV

DSE - Wilson et al., Phys Rev C89, 025205 (2012)

Clean Measurement of d/u with PVDIS

For high x on proton target:

$$a_1^p(x) = \left[\frac{12C_{1u}u(x) - 6C_{1d}d(x)}{4u(x) + d(x)}\right] \approx \left[\frac{1 - 0.91d(x)/u(x)}{1 + 0.25d(x)/u(x)}\right]$$

- Three JLab 12 GeV experiments:
 - CLAS12 BoNuS spectator tagging
 - BigBite DIS ${}^{3}\mathrm{H}/{}^{3}\mathrm{He}$ Ratio
 - SoLID PVDIS ep
 - The SoLID extraction of d/u is made directly from *ep* DIS: *no nuclear corrections*
- Disagreement would also signal CSV

DSE - Wilson et al., Phys Rev C89, 025205 (2012)