F2(p,n,d) at the EIC

- flavor separation at largish x -

Alberto Accardi

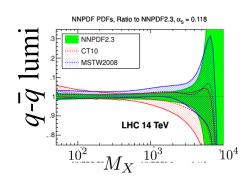
Hampton U. and Jefferson Lab

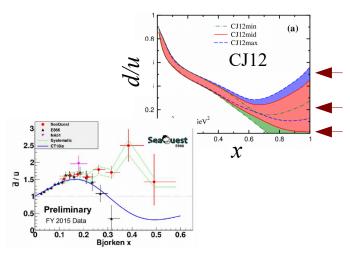
Large-x at the EIC

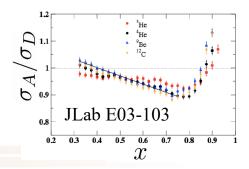
JLab, October 4th, 2016

Overview

- A PDF landscape
- ☐ State of the art at large *x*: the CJ15 fit
 - NUCL/HEP symbiosi
- Why EIC?
- Simulations with F2(p) F2(d) and F2n(p-tagged)
 - u/d flavor separation
 - Bound nucleon structure
 - Gluons
- ☐ Final thoughts
 - What else can we do at EIC?

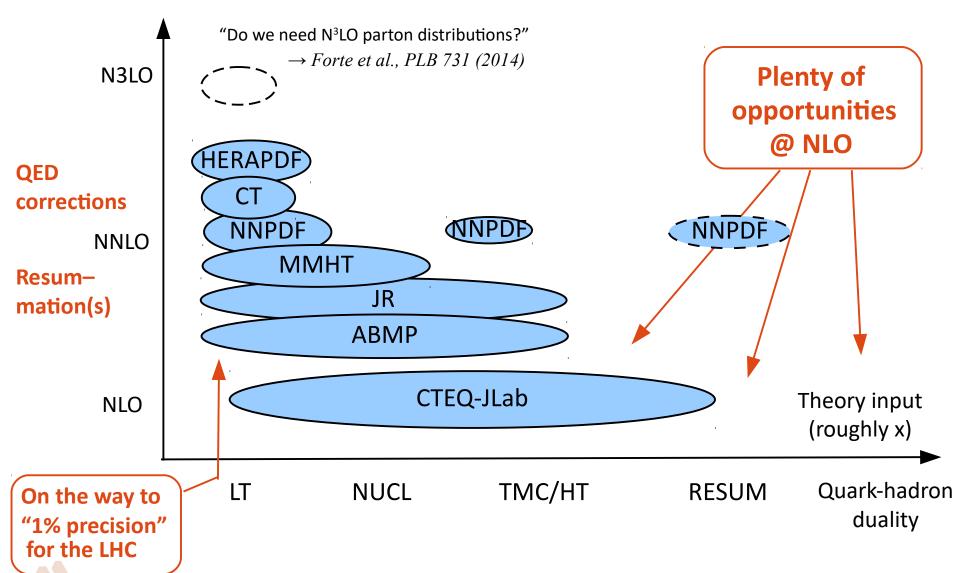

A PDF landscape

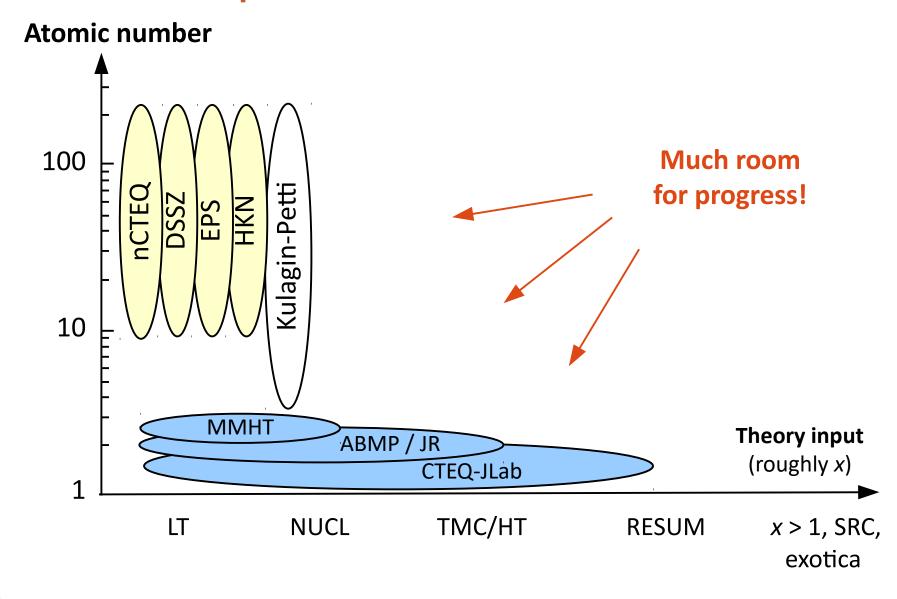

Accardi, PoS DIS2015 001 – "PDFs from protons to nuclei"


Why PDFs?

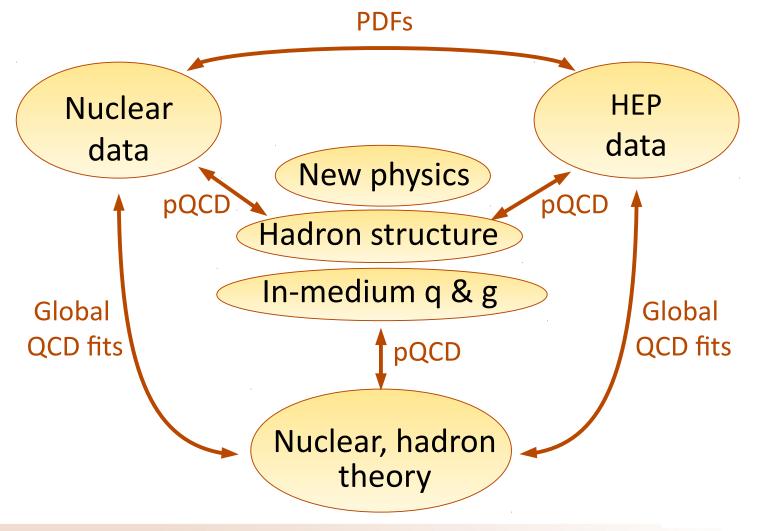
Accardi – Mod.Phys.Lett. A28 (2013) 35 Forte and Watt – Ann.Rev.Nucl.Part.Sci. 63 (2013) 291

- ☐ **High-energy** (large to small x)
 - Beyond the Standard Model searches
 - Precision (Higgs) physics
 - NuTeV weak mixing angle
 - Small-x and gluonic "matter"
- Hadron structure (large to medium x)
 - Effects of confinement on valence quarks
 - q qbar asymmetries; isospin asymmetry
 - Strangeness, intrinsic charm
- Nuclear Physics
 - Bound nucleons, EMC effect, SRC
 - p+A and A+A collisions at RHIC / LHC
 - Color propagation in nuclear matter





A PDF landscape



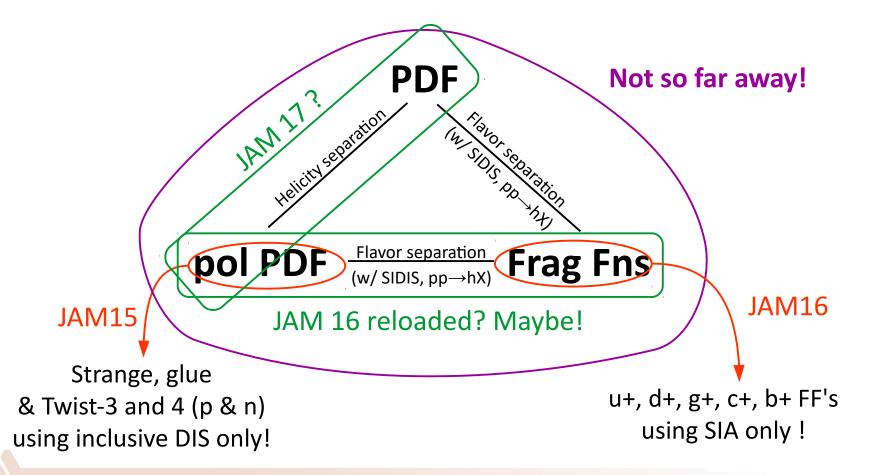
A nPDF landscape

Needs the betrothal of HEP and NUCL

A global approach across subfields

New fitting methods

- More computing power, efficient implementations
 - New fitting, analysis methods
- Traditonal fits:
 - Detailed χ^2 scans, refined statistical analysis
- Monte carlo fitting methods:
 - NNPDF: bootstrap + neural network fit
 - JAM: bootstrap + Iterative Monte Carlo (IMC) approach
 → Sato, Ethier, et al. (2015 & 2016)


Large number of parameters, trustable uncertainty estimates

 \square Self organizing maps \rightarrow Liuti et al.

Iterative Monte Carlo approach

N.Sato at al [JAM], **PRD93 (2016) 074005** and **arXiv:1609.00899**

- Provides control over large number of parameters
- Maximizes extraction of physics information from data

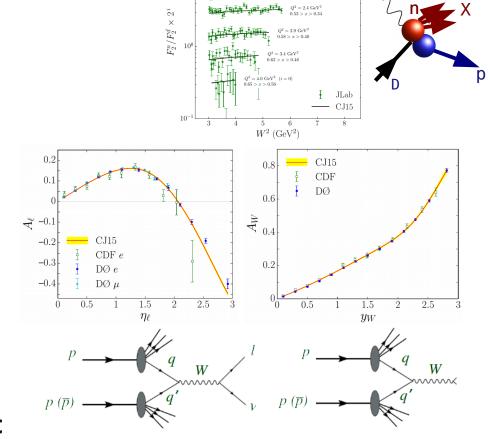
Proton and neutron PDFs - the CJ15 global fit -

Accardi, Brady, Melnitchouk, Owens, Sato PRD93 (2016) 114017

PDFs available on: www.jlab.org/cj & LHAPDF

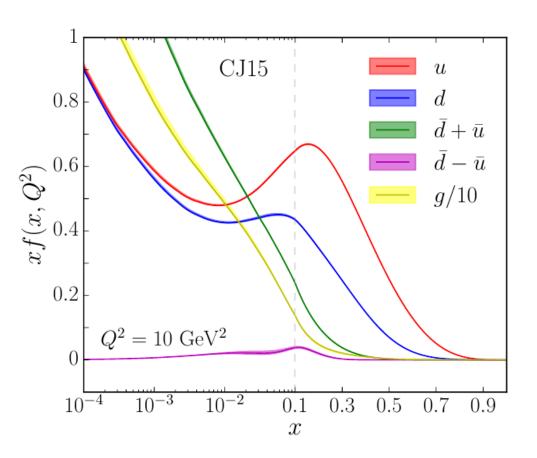
The CJ15 fit at a glance

							Large-x treatment			
	JLab & BONUS	HER MES	HERA I+II	Tevatron new W,Z	LHC	ν+Α di-μ	Nucl.	HT TMC	Flex d	low-W DIS
CJ15 *	✓	✓	✓	\checkmark	in prog.	×	√ ✓	✓	√	√
CT14			DIS 2016	√ ¤¤	✓	✓			√	
MMHT14			ддд	√ ¤¤	\checkmark	\checkmark	√			
NNPDF3.0					✓	✓		TMC only		
JR14	√				✓	✓	\checkmark	√		
ABM15 **				√ ¤¤	✓	✓	√	√		✓
HERAPDF2.0			\checkmark	Д						


^{*} NLO only ** No jet data * see 1503.05221 *** see 1508.06621 ** no reconstructed W

New in CJ15

s-ACOT scheme for heavy flavors

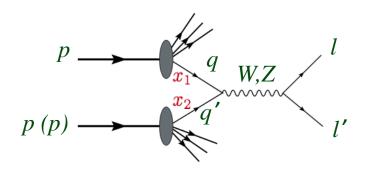

New data:

- BONUS spectator tagged DIS
- HERA I+II combination
- HERMES F2
- High-statistics W-boson charge asymmetries from D0

- New off-shell nucleon treatment in deuteron targets (DIS and DY)
 - Parametrized vs. modeled → absorbs wave function uncertainty

CJ15 - PDFs

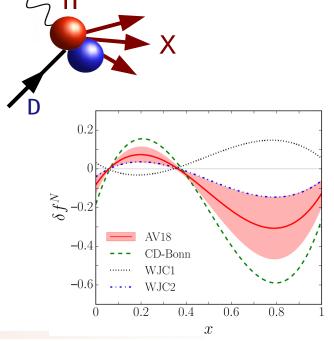
- Hessian error analysis
 - Correlated errors where available
- Error bands displayed for


$$\Delta \chi^2 = 2.71$$

(90% confidence level in a perfect, Gaussian world)

- \square NLO fit gives $\chi^2/{
 m datum} = 1.04$
- ☐ LO fit much worse cannot accommodate Q² dependence of data

NUCL / HEP symbiosis

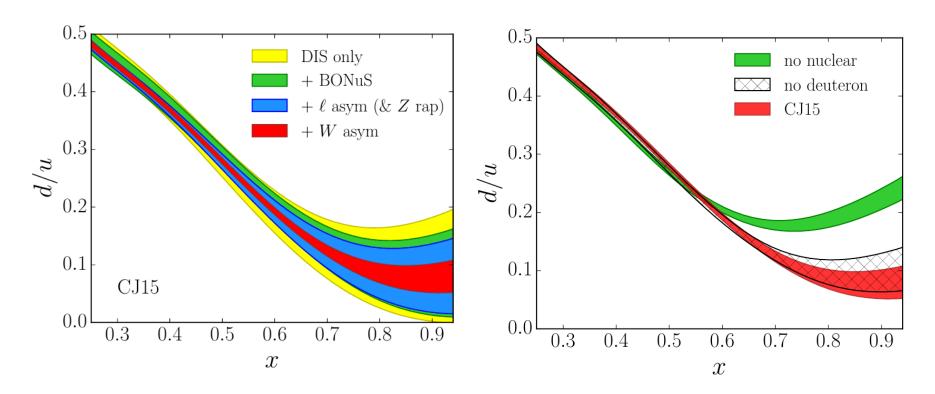

 \square W and $Z \rightarrow$ constrain d-quark at largest x on proton targets

$$W,Z$$

$$A_W(y) \approx \frac{d/u(x_2) - d/u(x_1)}{d/u(x_2) + d/u(x_1)}$$

- Compare to deuteron DIS
 - → constrain deuteron corrections
 - → Off shell correction first time in Deuteron!
- Abundant DIS deuteron data
 - \rightarrow precise *u*, *d* flavor separation

NUCL / HEP symbiosis


Observable	Experiment	# points			χ^2		
			LO	NLO	NLO	NLO	
					(OCS)	(no nucl)	
DIS F_2	BCDMS (p) [81]	351	430	438	436	440	
	BCDMS (d) [81]	254	297	292	289	301	
	SLAC (p) [82]	564	488	434	435	441	
	SLAC (d) [82]	582	396	376	380	507	
DIS F_2 tagged	Jefferson Lab (n/d) [21]	191	218	214	213	219	
$W/{\rm charge}$ asymmetry	CDF (e) [88]	11	11	12	12	13	
	$D\emptyset$ (μ) [17]	10	37	20	19	29	
	$D\emptyset (e) [18]$	13	20	29	29	14	
	CDF (W) [89]	13	16	16	16	14	
	$D\emptyset(W)$ [19]	14	39	14	15	82	
Z rapidity	CDF (Z) [90]	28	100	27	27	26	
	$D\emptyset(Z)$ [91]	28	25	16	16	16	
	•		•				
Drell-Yan	E866 (pp) [29]	121	148	133	139	145	
	E866 (pd) [29]	129	207	$\left(145\right)$	143	158	
•	•	•	•		•	:	
$\chi^2/{ m datum}$			1.33	1.04	1.04	1.09	

NUCL / HEP symbiosis

Observable	Experiment	# points		χ^2		
			LO	NLO	NLO	NLO
					(OCS)	(no nucl)
DIS F_2	BCDMS (p) [81]	351	430	438	436	440
	BCDMS (d) [81]	254	297	292	289	301
	SLAC (p) [82]	564	488	434	435	441
	SLAC (d) [82]	582	396	376	380	507
DIS F_2 tagged	Jefferson Lab (n/d) [21]	191	218	214	213	219
W/charge asymmetry	CDF (e) [88]	11	11	12	12	13
	$D\emptyset$ (μ) [17]	10	37	20	19	29
	$D\emptyset(e)$ [18]	13	20	29	29	14
	CDF(W)[89]	13	16	16	16	14
	$D\emptyset(W)$ [19]	14	39	14	15	82
Z rapidity	CDF(Z)[90]	28	100	27	27	26

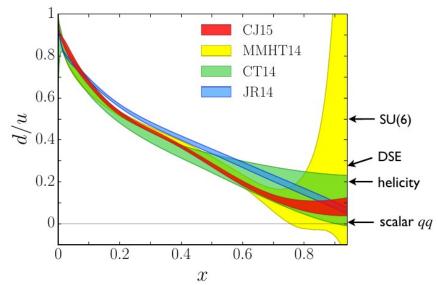
- ☐ If one ignores nuclear dynamics, SLAC(d) and D0(W) pull d quark in opposite directions
 - D0 (W) data determine nuclear corrections !!
 - other asymmetries inconclusive by themselves
 - BONUS data validate DO(W) analysis

Hadronic physics output: d/u ratio

- □ d-quark determined by p+p→W+X
- Nuclear corrections dominant at large x
 - SLAC(d)'s statistical power used to fit the off-shell function...
 - ... and to improve d/u flavor separation, esp. at x<0.3 (see backup)

Hadronic physics output: d/u ratio

d/u ratio at high x
 of interest for
 nonperturbative
 models of nucleon


→ CJ15:

more flexible parametrization

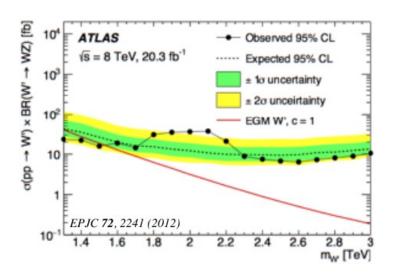
$$d \rightarrow d + b x^c u$$

allows finite, nonzero x = 1 limit

(standard PDF form gives 0 or ∞ unless $a_2^d = a_2^u$)

MMHT14: fitted deuteron corrections standard d parametrization
→ "UNDERCONSTRAINED"

JR14 (and ABM12):

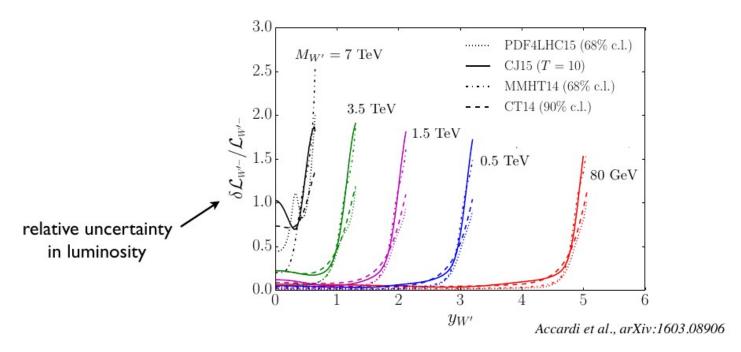

Similar deuteron corrections standard *d*; no lepton/W asym.

→ "OVERCONSTRAINED"

CT14: $\beta_u = \beta_d \implies d/u$ finite No nuclear corrections

HEP output: BSM searches

- Observation of new physics signals requires accurate determination of QCD backgrounds, which depend on PDFs
 - e.g., heavy W' boson production at LHC



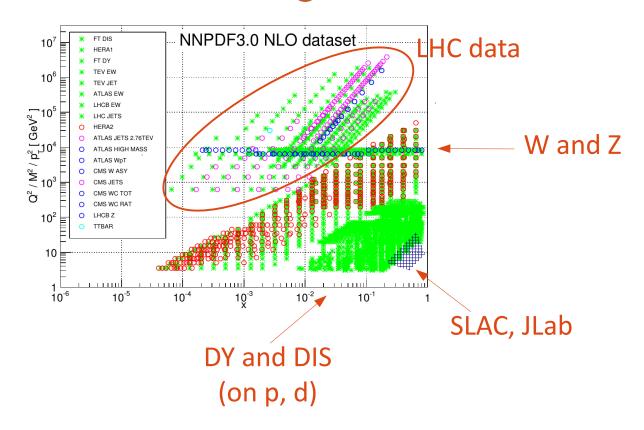
- 3.4σ excess in WZ diboson channel at $\sim 2 \text{ TeV}$
- extended gauge model $W' \rightarrow WZ$ with M < 1.5 TeV excluded at 95% c.l.
- For W'^- production the parton luminosity is

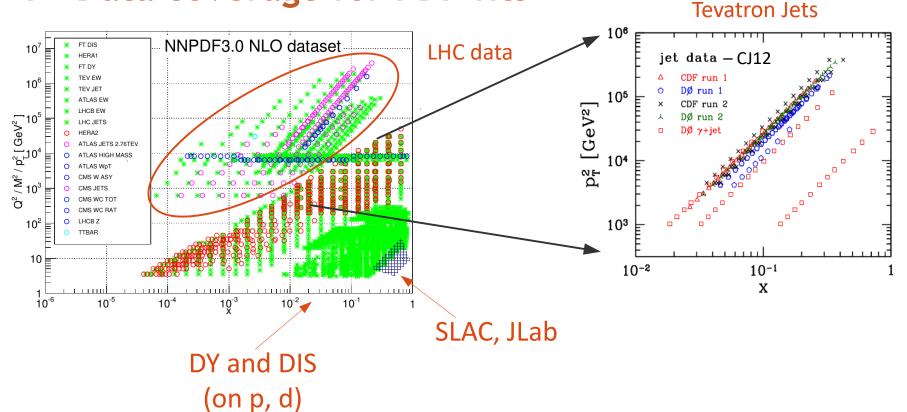
$$\mathcal{L}_{W'^{-}} \sim x_1 x_2 \big[\cos^2 \theta_C \big(d(x_1) \bar{u}(x_2) + s(x_1) \bar{c}(x_2) \big) \\ + \sin^2 \theta_C \big(s(x_1) \bar{u}(x_2) + d(x_1) \bar{c}(x_2) \big) \big] + (x_1 \leftrightarrow x_2)$$

$$\sim d(x_1) \bar{u}(x_2) \quad \text{at large rapidity } y_{W'}$$

$$x_{1,2} = \frac{M_{W'}}{\sqrt{s}} e^{\pm y_{W'}}$$

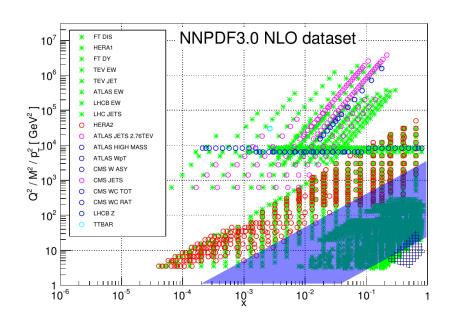
HEP output: BSM searches


- Observation of new physics signals requires accurate determination of QCD backgrounds, which depend on PDFs
 - Large-x uncertainties scale with masses


- PDF uncertainty is small at low x, rises dramatically at large y for all $M_{w'}$

Why EIC?

1 - Data coverage for PDF fits


1 - Data coverage for PDF fits

1 - Data coverage for PDF fits

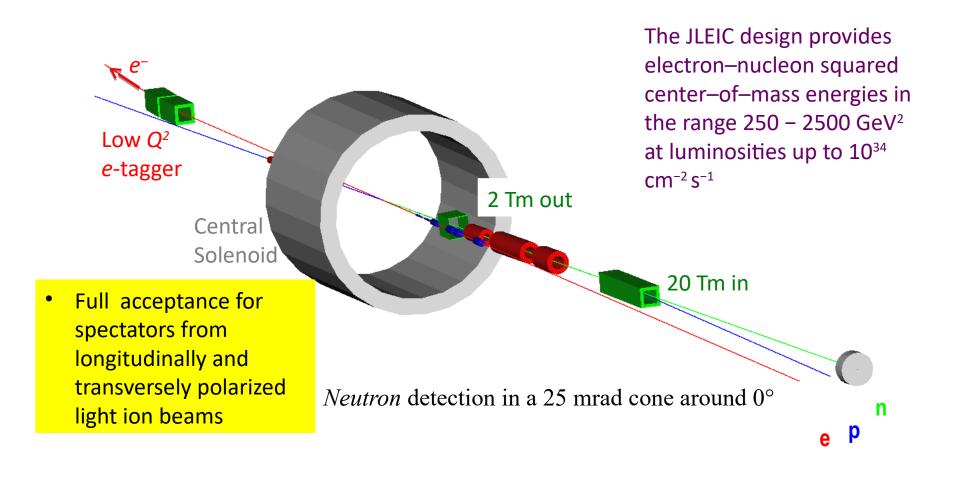
Enters the EIC

- Interpolates fixed target and HERA
- ☐ Large *Q*² leverage
 - More evolution at large x
 - Better separation of LT and HT
- \square High luminosity \rightarrow large x capabilities

Unique at the EIC

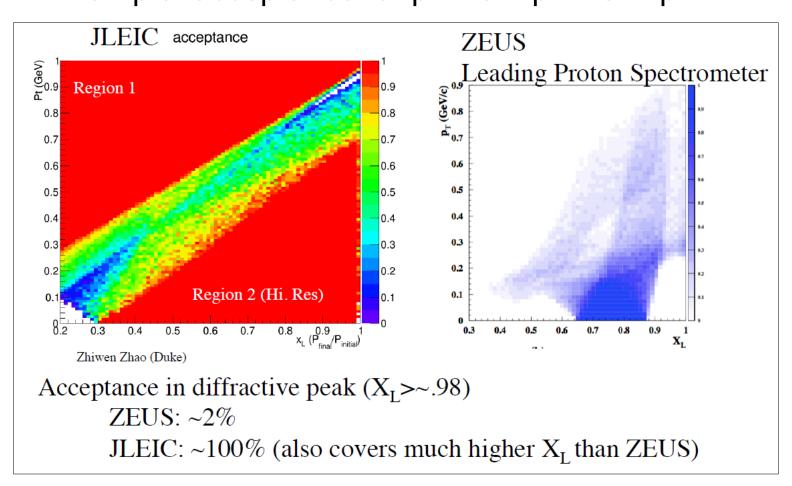
- "Easy" spectator tagging in DIS
 - Quasi-free neutron targets ← this talk
- Strong PID capabilities $\rightarrow F_2^c, F_2^{cc}, ...$
- High luminosity \rightarrow CC, PVDIS \rightarrow d/u, strange quarks, dbar/ubar, ...
- Unpolarized & polarized scattering (also light ions)

Preliminary simulations - impact of EIC on d,u,g -


In collaboration with:

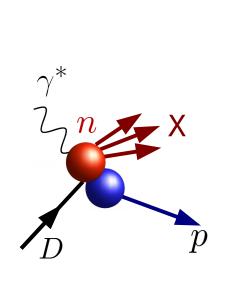
- R. Ent, C. Keppel, K. Park, R. Yoshida (JLab),
- M. Wing (UC London)

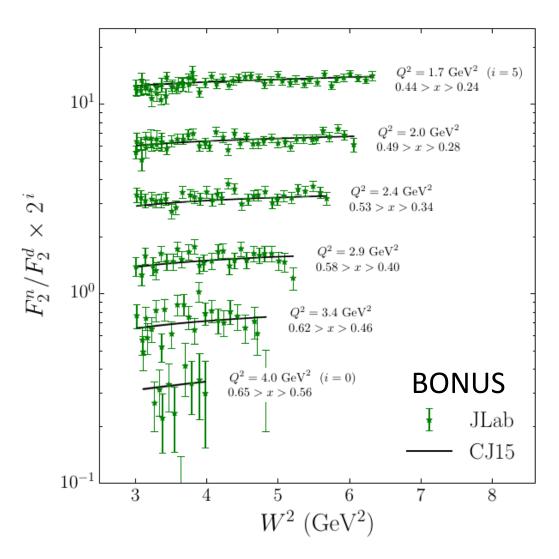
Can EIC help?


- Flavor separation, nuclear corrections with F2(p) and F2(d)
 - "bread and butter", but: how large in x, what precision?
 - What impact on PDFs ?
- d-quarks wtithout nuclear corrections: F2(n)
 - possible with planned EIC spectator tagging capabilities
- Gluons through scaling violation
 - require range in both x, Q2
 - not currently possible at large x without the EIC
 - Don't forget jets!
- ☐ To begin investigating possibilities, we used rough projected data kinematics and uncertainties, and the "CJ" global PDF fit...

Tagged structure functions at the EIC

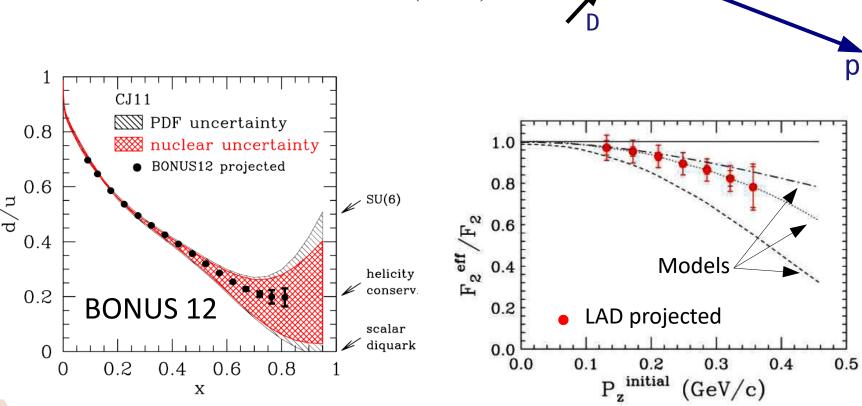
EIC: full acceptance for forward physics


Example: acceptance for p' in e + p \rightarrow e' + p' + X

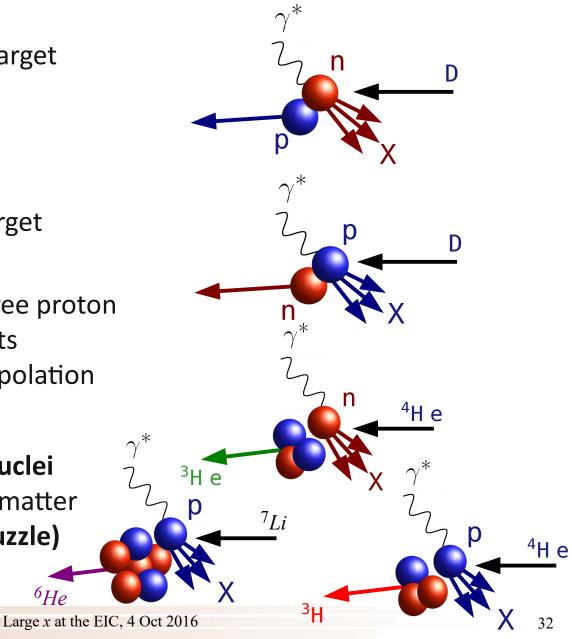


Huge gain in acceptance for forward tagging to measure F₂ⁿ and diffractive physics!!!

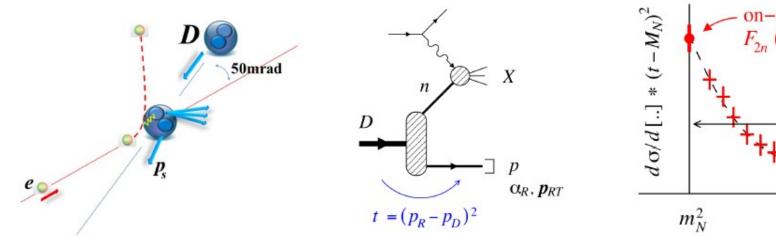
Spectator tagging at Jlab: quasi-free neutrons

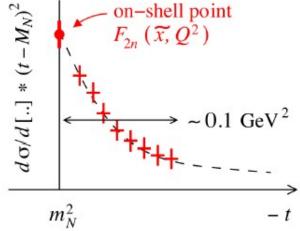

N.Baillie et al., PRL 108 (2012) 199902

Spectator tagging at JLab12


- Neutron off-shellness depends on on spectator momentum:
 - Slow: nearly on-shell (BONUS12)
 - Fast: more and more off-shell (LAD)

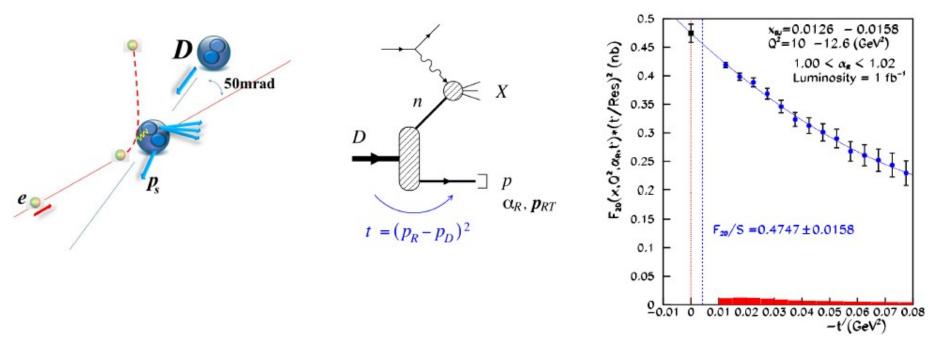
Spectator tagging at EIC: even better!


- measure **neutron F**, in D target
 - flavor separation


- measure **proton F₂** in D target
 - Unique at colliders
 - Compare off-shell to free proton
 - Establish nuclear effects
 - Validate on-shell extrapolation techniques
- proton, neutron in light nuclei
 - embedding in nuclear matter
 (a piece of the EMC puzzle)

(Tagged) neutron structure extrapolation in t

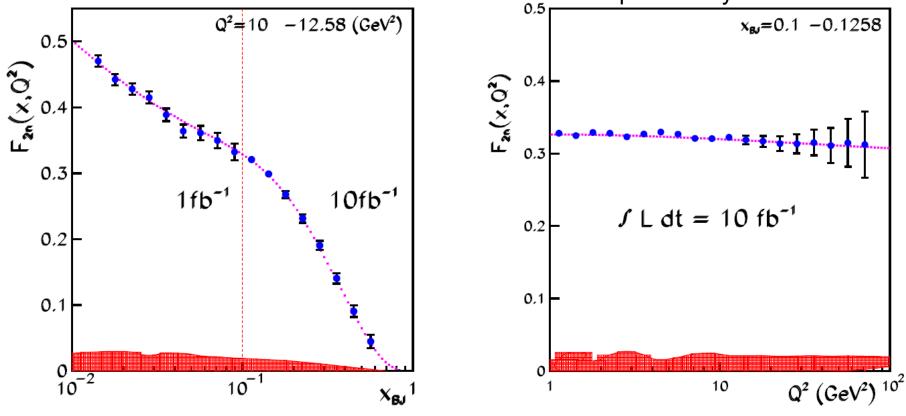
JLab LDRD project 2014/15 – C. Weiss et al. – www.jlab.org/theory/tag/



- t resolution better than 20 MeV, < fermi momentum</p>
 - Resolution limited/given by ion momentum spread
 - Allows precision extraction of F2n neutron structure function

(Tagged) neutron structure extrapolation in t

JLab LDRD project 2014/15 - C. Weiss et al. - www.jlab.org/theory/tag/


- t resolution better than 20 MeV, < fermi momentum</p>
 - Resolution limited/given by ion momentum spread
 - Allows precision extraction of F2n neutron structure function

(Tagged) neutron structure extrapolation in t

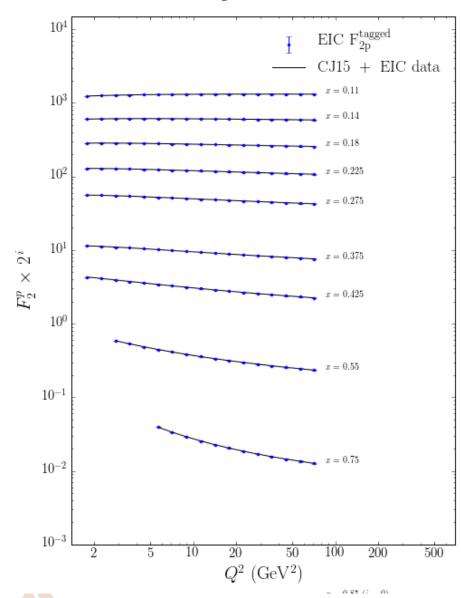
JLab LDRD project 2014/15 – C. Weiss et al. – www.jlab.org/theory/tag/

Preliminary examples (courtesy Kijun Park)

Uncertainties include on-shell neutron extrapolation systematics

- 1 year of EIC @ luminosity of 10³² gives about 1 fb⁻¹
- 1 year of EIC @ luminosity of 10³³ gives about 10 fb⁻¹
- 1 year of EIC @ luminosity of 10³⁴ gives about 100 fb⁻¹

Projected data (so far) and impact on PDFs

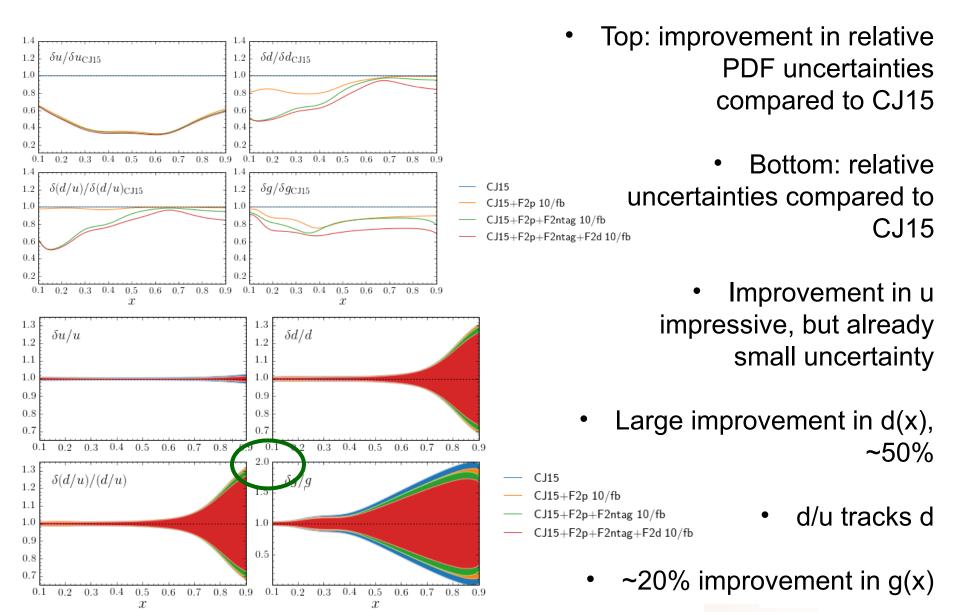

So far, JLEIC $10x100 \text{ GeV}^2$ projections in bins 0.1 < x < 0.9 for:

- $\checkmark F_2^p$
- ✓ F₂ⁿ from deuterium with tagged proton spectator
- $\checkmark F_2^d$
- Assume 1% systematic uncertainty
- W² > 3.5 GeV² and Q² > 1.69 GeV² (standard CJ15 cuts)

Finally,

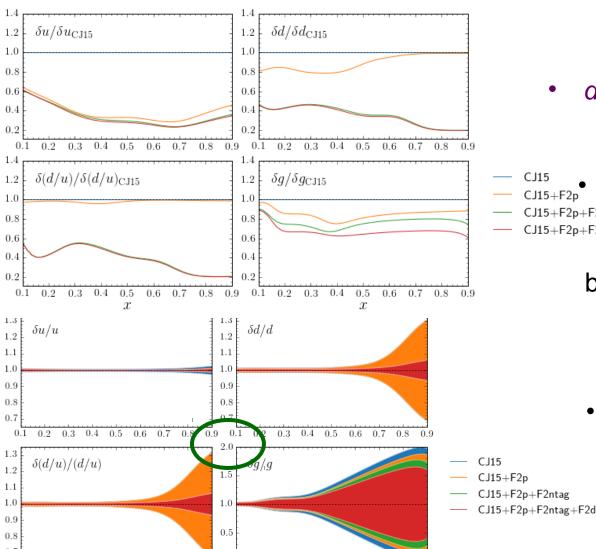
- fit projected data along rest of CJ15 data sets
- examine impact on d, u, g
- A simple study so far (first results from this summer)...

Can EIC help?


Compressed scale makes it somewhat difficult to see the experimental and fit uncertainties

Currently no cut in y:

- would loose a little bit in the high Q² range from y<ymax,
- would loose some low Q²
 at large x from a y_min cut,
 → impact on gluon fits ?
- requires more careful simulations, evaluation of systematic uncertainties


10/fb luminosity

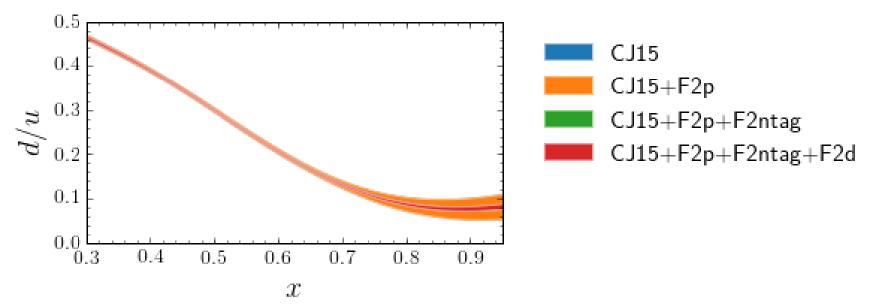
accardi(a)11ab.org

Large x at the EIC, 4 Oct 2016

100/fb luminosity

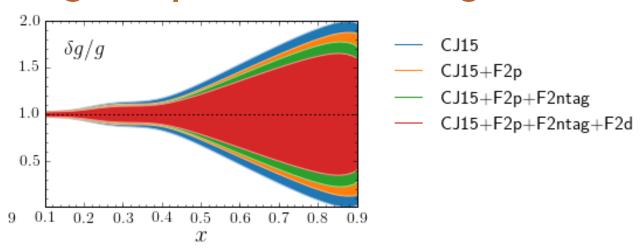
0.7 0.8 0.9 0.1 0.2 0.3 0.4

- d quark precision will become comparable to current u!!
- similar improvement in g(x)CJ15+F2p
- CJ15+F2p+F2ntag CJ15+F2p+F2ntag+F2d
 - The u quark uncertainty becomes less than ~1%; may be important for large mass BSM new particles.
 - With d quark nailed by F_2^n , fitting F₂^d data will explore details of nuclear effects


0.50.6

 $0.2 \quad 0.3 \quad 0.4$

 $0.6 \quad 0.7 \quad 0.8$


0.5

Improved d/u precision is good news

- The d-quark goes from a few 10% to ~1% percent level
- Resolve long-standing mystery of d/u at large x,
 - → Can explore in detail fundamental models nucleon structure
- D/(p+n) in one experiment for the first time
 - → unprecedented handle on nuclear medium modifications
 - → can quantitatively address interplay of hard scattering and (soft) nucleon dynamics
- Facilitate accurate neutron excess/isoscalar corrections
 - Important also for neutrino physics and nuclear PDFs

Improved gluon precision is also good news

- Gluons improve by a bit less than 10% per data set included, seemingly independent of luminosity
 - Gluons are accessed by the F₂ shape in Q², so precision of each data point is not very important; lever arm in Q² matters most
- Energy scans at, say, 3+100 and 6+100 may improve up to 80%
 - and also provide direct access of gluons thorugh F_L.
- Need more work to confirm above

Some final thoughts

EIC has big potential

- EIC has excellent potential for
 - u, d, g flavor determination at large $x \leftarrow \rightarrow$ hadronic structure, BSM
 - Revolutionizing nuclear structure studies using hard probes

Needs more work, realistic systematics, grid optimization, y cuts, ...

- For discussion later: what's best to use in a QCD fit:
 - QCD cross sections at many energies
 - or, experimental extraction and fit of FL?
- How much glue and strange can one get from QCD evolution w/o utilizing directly sensitive data (i.e., on day 0, before E-scan?)
 - IMC analysis by JAM indicates non negligible info can be etracted if advanced techniques utilized in fits

What else can we dream of doing at the EIC?

- Isospin violations
 - Play free n from BONUS/EIC vs. free p from D0, RHIC W-asym.
- Strangeness from PVDIS
 - Strange quarks are quaint: LHC vs fixed target; HERMES SIDIS; ...
- Intrinsics charm
 - Positive signal only from (contested) EMC data
 - Take new and better data with EIC!
- Large leverage in A from light to heavy
 - Combined PDF / nPDF fits
 - Study propagation of charm in cold nuclei using nu+A dimuon data
- Polarized and unpolarized data at large Q2 from same machine
 - Another combined fit \longleftrightarrow helicity separation
- ...

Time for discussion!