Energy dependence of azimuthal asymmetries

H. Avakian (Jlab)

Deep Processes Working Group Meeting 2016, Nov 3, 2016

•EVA framework

- •Structure Function $F_{UU}^{cos\phi}$ in SIDIS
- Sensitivity to kinematical cuts
- Summary & Conclusions

Partonic distributions from LC to real life

In the frame with fast moving hadron, with "frozen" interactions study longitudinal momentum distributions

q(x) - Probability to find a quark with a fraction x of proton momentum P, extended to $q(x.k_T)$

real life

quark momentum in the $\gamma^* p$ CM frame (on shell quarks)

$$k = \left(xP_0 + \frac{k_{\perp}^2}{4xP_0}, \mathbf{k}_{\perp}, -xP_0 + \frac{k_{\perp}^2}{4xP_0}\right)$$

x and k_T not independent!

Azimuthal distributions in SIDIS

Understanding of $cos\phi$ modulations observed by EMC, COMPASS and HERMES is crucial for interpretation of $cos2\phi$ and multiplicities

$$\mathcal{C}[w, fD] = x \sum_{a} e_{a}^{2} \int_{0}^{k_{\perp max}} k_{\perp} dk_{\perp} \int_{0}^{2\pi} d\phi \, w(k_{\perp}, p_{\perp}(k_{\perp})) f^{a}(x, k_{\perp}^{2}) \, D^{a}(z, (P_{h\perp} - zk_{\perp})^{2})$$

 Possible solution: define grids for TMDs, then integrate numerically with interpolation

 Jefferson Lab
 H. Avakian, DeepPWG

SIDIS cross-section

Expanding the contraction and integrating over ψ and the beam polarization, the cross-section for an unpolarized target can be written as $d^5\sigma$ $\frac{d}{dx \ dQ^2 \ dz \ d\phi_h \ dP_{h\perp}^2} =$ $\frac{2\pi\alpha^2}{xyQ^2}\frac{y^2}{2(1-\epsilon)}\left(1+\frac{\gamma^2}{2x}\right)\left(F_{UU,T}+\epsilon F_{UU,L}\right)\left\{1+\frac{\sqrt{2\epsilon(1+\epsilon)}F_{UU}^{\cos\phi_h}}{\left(F_{UU,T}+\epsilon F_{UU,L}\right)}\cos\phi_h+\frac{\epsilon F_{UU}^{\cos2\phi_h}}{\left(F_{UU,T}+\epsilon F_{UU,L}\right)}\cos2\phi_h\right\}$ $A_{UU}^{\cos\phi_h}$ $A_{UU}^{\cos 2\phi_h}$ A_0 Bjorken Limit: According the the factorization theorem, $Q^2 \to \infty$ structure functions can, in the Bjorken $2P \cdot q \to \infty$ limit, be written as convolutions of TMDs and FFs $F = \sum \text{TMD} \otimes \text{FF}$ $P \cdot P_h \to \infty$ fixed $\begin{cases} x = Q^2/2P \cdot q \\ z = P \cdot P_h/P \cdot q \end{cases}$

Measuring SIDIS cross section

Fit with $a(1+b\cos\phi_h+c\cos 2\phi_h)$

N. Harrison

Simetric behaviour indicates large BM contribution

H. Avakian, DeepPWG

SIDIS cross section: simple test

H. Avakian, DeepPWG

Extracting the average transverse momenta

Jefferson Lab

Corrections from "real life" limited phase space

M. Boglione, S. Melis & A. Prokudin Phys. Rev. D 84, 034033 2011

Extraction and validation of 3D PDFs

Development of a reliable techniques for the extraction of 3D PDFs and fragmentation functions from the multidimensional experimental observables with controlled systematics requires close collaboration of experiment, theory and computing

Corrections from "real life" limited phase space

10

H. A

0.2

M. Boglione, S. Melis & A. Prokudin Phys. Rev. D 84, 034033 2011

- 1. Energy of the parton less than the energy of the parent hadron
- 2. Parton moves forward with respect to the parent hadron direction

0.6

0.8

0

0.2 0.4

0.6

$$f_{q/p}(x) = \int_0^{2\pi} d\varphi \int_0^{k_\perp^{\text{max}}} k_\perp dk_\perp f_{q/p}(x, k_\perp).$$

multiplicities are also sensitive to kinematic limitations

Jefferson Lab

k_T-max: Effect on BM vs Cahn

Comparing with HERMES

SUMMARY

Kinematic limitations due to finite beam energies may change significantly all spin-azimuthal asymmetries (smaller the beam energy, higher affected x-values)!

- Define correct kinematical space for current fragmentation hadrons
- Use MC to test the program for x-section calculations
- Use CLAS data to choose reasonable constants for MC
- Analyze <cos> and extract Cahn and BM contributions from MC and data.
- Define the data input (x-sections, normalized counts in ϕ -bins)
- A self consistent procedure for extraction of TMDs with validation should be used to test the sensitivity of different observables to k_T structure of nucleon.

Support slides....

Hadron production in hard scattering

Correlations of the spin of the target or/and the momentum and the spin of quarks, combined with final state interactions define the azimuthal distributions of produced particles

Model predictions for $cos\phi$

 $F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)} \cos \phi_h F_{UU}^{\cos \phi_h}$

$$F_{UU}^{\cos\phi_h} = \frac{2M}{Q} \mathcal{C} \left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T}{M_h} \left(xh H_1^{\perp} + \frac{M_h}{M} f_1 \frac{\tilde{D}^{\perp}}{z} \right) - \frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T}{M} \left(xf^{\perp} D_1 + \frac{M_h}{M} h_1^{\perp} \frac{\tilde{H}}{z} \right) \right]$$

Extracting the average transverse momenta

$$F_{UU}^{\cos\phi}|_{\text{Cahn}} = -2\sum_{q} e_q^2 x \int d^2 \mathbf{k}_{\perp} \frac{(\mathbf{k}_{\perp} \cdot \mathbf{h})}{Q} f_q(x, \mathbf{k}_{\perp}) D_q(z, p_{\perp}),$$
(9)
$$V. \text{ Barone, M. Boglione, J. O. Gonzalez Hernandez, S. Melis}$$

$$\frac{\left(F_{UU}^{\cos\phi_h}\right)_{Cahn}}{F_{UU}} \propto \frac{\left\langle k_{\perp}^2 \right\rangle}{\left\langle P_T^2 \right\rangle} \qquad \langle \cos(\phi) \rangle \propto \frac{\left(F_{UU}^{\cos\phi_h}\right)_{Cahn}}{F_{UU}} + \frac{\left(F_{UU}^{\cos\phi_h}\right)}{F_{UU}}$$

$$F_{UU}^{\cos\phi}|_{BM} = \sum_{q} e_{q}^{2} x \int d^{2} \mathbf{k}_{\perp} \frac{k_{\perp}}{Q} \frac{P_{T} - z(\mathbf{k}_{\perp} \cdot \mathbf{h})}{p_{\perp}}$$
$$\times \Delta f_{q^{\uparrow}/p}(x, k_{\perp}) \Delta D_{h/q^{\uparrow}}(z, p_{\perp}). \tag{10}$$

 P_{π} ____

$$\frac{\left(F_{UU}^{\cos\phi_{h}}\right)_{Cahn}}{F_{UU}} \propto \frac{\left\langle k_{\perp}^{2}\right\rangle}{\left\langle P_{T}^{2}\right\rangle} \qquad \langle cos(\phi)\rangle \propto \frac{\left(F_{UU}^{\cos\phi_{h}}\right)_{Cahn}}{F_{UU}} + \frac{\left(F_{UU}^{\cos\phi_{h}}\right)_{BM}}{F_{UU}}$$

$$\Delta f_{q^{\uparrow}/p}(x,k_{\perp}) = \Delta f_{q^{\uparrow}/p}(x)\sqrt{2e}\frac{k_{\perp} e^{-k_{\perp}^2/\langle k_{\perp}^2 \rangle_{\rm BM}}}{M_{\rm BM} \pi \langle k_{\perp}^2 \rangle}$$

 $\cos \phi$ has much greater sensitivity to $\langle k_T \rangle$

$$F_{UU}^{\cos\phi}|_{\text{Cahn}} = -2\frac{T}{Q}\sum_{q}e_{q}^{2}x_{B}f_{q/p}(x_{B})D_{h/q}(z_{h})\frac{z_{h}\langle\kappa_{\perp}\rangle}{\langle P_{T}^{2}\rangle}\frac{c_{L}\langle\nu_{\perp}\rangle}{\pi\langle P_{T}^{2}\rangle},$$

$$F_{UU}^{\cos\phi}|_{\text{BM}} = 2e\frac{P_{T}}{Q}\sum_{q}e_{q}^{2}x_{B}\frac{\Delta f_{q^{\dagger}/p}(x_{B})}{M_{\text{BM}}}\frac{\Delta D_{h/q^{\dagger}}(z_{h})}{M_{C}}\frac{e^{-P_{T}^{2}/\langle P_{T}^{2}\rangle}_{\text{BM}}}{\pi\langle P_{T}^{2}\rangle_{\text{BM}}}$$

 $F_{UU} = \sum_{q} e_q^2 x_B f_{q/p}(x_B) D_{h/q}(z_h) \frac{e^{-P_T^2/\langle P_T^2 \rangle}}{\pi \langle P_T^2 \rangle},$

$$\times \frac{\langle k_{\perp}^2 \rangle_{\rm BM}^2 \langle p_{\perp}^2 \rangle_C^2}{\langle k_{\perp}^2 \rangle \langle p_{\perp}^2 \rangle} [z_h^2 \langle k_{\perp}^2 \rangle_{\rm BM} (P_T^2 - \langle P_T^2 \rangle_{\rm BM}) + \langle p_{\perp}^2 \rangle_C \langle P_T^2 \rangle_{\rm BM}],$$

 $(7, 1 + 2) = -P_T^2/\langle P_T^2 \rangle$

Example of a EBC table

5D tables (counts in bins of x, Q², z, PT², \phi_h):

N. Harrison (e1f:CLAS@5.5)

column 1: x bin number (0-4) column 2: Q^2 bin number (0-1) column 3: z bin number (0-17) column 4: PT^2 bin number (0-19) column 5: phi bin number (0-35) column 6: <x> column 7: <Q^2> (GeV^2) column 8: <z> column 9: <PT^2> (GeV^2)

column 10: <phi> (degrees)

column 11: <y>

column 12: number of counts, corrected for acceptance and radiative effects column 13: statistical error on the the number of counts column 14: the radiative correction factor

 $\begin{array}{c} 0 \ 0 \ 2 \ 3 \ 19 \ 0.147459 \ 1.16316 \ 0.126884 \ 0.171938 \ 15 \ 0.770322 \ 20528 \ 472.849 \ 1.06035 \\ 0 \ 0 \ 2 \ 3 \ 20 \ 0.147459 \ 1.16316 \ 0.126884 \ 0.171938 \ 25 \ 0.770322 \ 19958.1 \ 619.905 \ 1.06123 \\ 0 \ 0 \ 2 \ 3 \ 21 \ 0.147459 \ 1.16316 \ 0.126884 \ 0.171938 \ 35 \ 0.770322 \ 20775.6 \ 541.396 \ 1.06257 \\ 0 \ 0 \ 2 \ 3 \ 22 \ 0.147459 \ 1.16316 \ 0.126884 \ 0.171938 \ 45 \ 0.770322 \ 19948.5 \ 434.023 \ 1.06435 \\ 0 \ 0 \ 2 \ 3 \ 23 \ 0.147459 \ 1.16316 \ 0.126884 \ 0.171938 \ 45 \ 0.770322 \ 21764.5 \ 465.939 \ 1.06671 \\ 0 \ 0 \ 2 \ 3 \ 24 \ 0.147459 \ 1.16316 \ 0.126884 \ 0.171938 \ 45 \ 0.770322 \ 20714.1 \ 495.978 \ 1.06951 \\ 0 \ 0 \ 2 \ 3 \ 25 \ 0.147459 \ 1.16316 \ 0.126884 \ 0.171938 \ 45 \ 0.770322 \ 20714.1 \ 495.978 \ 1.07289 \\ 0 \ 0 \ 2 \ 3 \ 25 \ 0.147459 \ 1.16316 \ 0.126884 \ 0.171938 \ 85 \ 0.770322 \ 20714.1 \ 495.978 \ 1.07289 \\ 0 \ 0 \ 2 \ 3 \ 26 \ 0.147459 \ 1.16316 \ 0.126884 \ 0.171938 \ 85 \ 0.770322 \ 20714.1 \ 495.978 \ 1.07689 \\ 0 \ 0 \ 2 \ 3 \ 26 \ 0.147459 \ 1.16316 \ 0.126884 \ 0.171938 \ 85 \ 0.770322 \ 20714.1 \ 495.978 \ 1.07689 \\ 0 \ 0 \ 2 \ 3 \ 27 \ 0.147459 \ 1.16316 \ 0.126884 \ 0.171938 \ 85 \ 0.770322 \ 21371.5 \ 523.387 \ 1.08116 \\ 0 \ 0 \ 2 \ 3 \ 28 \ 0.147459 \ 1.16316 \ 0.126884 \ 0.171938 \ 105 \ 0.770322 \ 21770.1 \ 460.747 \ 1.08614 \\ 0 \ 0 \ 2 \ 3 \ 29 \ 0.147459 \ 1.16316 \ 0.126884 \ 0.171938 \ 105 \ 0.770322 \ 21471.5 \ 452.809 \ 1.09134 \\ 0 \ 0 \ 2 \ 3 \ 30 \ 0.147459 \ 1.16316 \ 0.126884 \ 0.171938 \ 125 \ 0.770322 \ 21471.5 \ 452.809 \ 1.09134 \\ 0 \ 0 \ 2 \ 3 \ 30 \ 0.147459 \ 1.16316 \ 0.126884 \ 0.171938 \ 125 \ 0.770322 \ 2148.1 \ 467.693 \ 1.09134 \\ 0 \ 0 \ 2 \ 3 \ 30 \ 0.147459 \ 1.16316 \ 0.126884 \ 0.171938 \ 125 \ 0.770322 \ 21488.1 \ 616.541 \ 1.10712 \\ 0 \ 0 \ 2 \ 3 \ 30 \ 0.147459 \ 1.16316 \ 0.126884 \ 0.171938 \ 155 \ 0.770322 \ 23926.8 \ 605.209 \ 1.11166 \\ 0 \ 0.2 \ 3 \ 30 \ 0.147459 \ 1.16316 \ 0.126884 \ 0.171938 \ 155 \ 0.770322 \ 23926.8 \ 605.209 \ 1.11166 \\ 0 \ 0.126884 \ 0.171938 \ 155 \ 0.770322 \ 23926.8 \ 605.$

$A_{UU}^{\cos\phi}$: From measurements to interpretation

🎯 📢 20

Jefferson Lab

Azimuthal moments with unpolarized target

Azimuthal moments with unpolarized target

