Radiative Decay of η' in CLAS $\gamma p \rightarrow p(\eta' \rightarrow \pi^+ \pi^- \gamma)$

Georgie Mbianda Njencheu

(LMD Group)

Old Dominion University

CLAS Collaboration Meeting November 3, 2016

Outline

- Theoretical Background
- CLAS Setup
- The g11 Experiment
- Current status of Analysis
- Preliminary Results

Axial Anomaly

- An anomaly arises when a classical symmetry is broken in QFT.
- The massless Dirac Lagrangian has a symmetry generated by the axial vector current

$$j_{5\mu} = \bar{\Psi} \gamma_{\mu} \gamma_5 \Psi$$

• If
$$\Psi$$
 satisfies $(i\gamma_{\mu}\partial^{\mu} - m)\Psi = 0$
 $\partial^{\mu}j_{5\mu} = (\partial^{\mu}\bar{\Psi})\gamma_{\mu}\gamma_{5}\Psi - \bar{\Psi}\gamma_{5}\gamma_{\mu}\partial^{\mu}\Psi$
 $= (im\bar{\Psi})\gamma_{5}\Psi - \bar{\Psi}\gamma_{5}(-im\Psi) = 2im\bar{\Psi}\gamma_{5}\Psi$
 $= 0(m = 0)$

• However in QFT when gauge fields are present, the divergence of current is non-zero:

$$\partial^{\mu} j_{5\mu} = -rac{e^2}{16\pi^2} arepsilon^{\mu
ulphaeta} F_{\mu
u} F_{lphaeta}$$

• where $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$ is the EM field strength tensor.

- Anomalies are encoded in some terms of the Wess-Zumino-Witten Langrangian.
- Radiative decays would provide access to box anomaly term of this Lagrangian
- The di-pion invariant mass for $\eta' \to \pi^+\pi^-\gamma$ could be described in a model-independent approach of two free parameters, α and β .

g11 Overview

- The g11 experiment ran in the summer of 2004
- Electron beam had the energy E=4GeV and average current of 60nA
- A gold radiator of 10⁻⁴ radiation length was used to create bremsstrahlung beam of photons
- Liquid H₂ target of 40cm long and 4cm diameter was used
- Trigger required at least two charged tracks in different sectors.
- 20 billion triggers stored as 21 TB of raw data.

Photon tagger and other subsystems of CLAS Detector

CLAS subsystems

- The start counter surrounded the target and measured vertex time of particles in coincidence with the incoming photon.
- Tagger's E-plane measured energy of recoiling electrons from which photon energy is determined, $E_{\gamma} = E_0 E_e$
- Tagger's T-plane made accurate timing measurements of recoiling electrons.
- The drift chambers measured the momentum of charged particles.
- TOF system measured time and position of each charged particle that hits it. Played important rule in trigger and particle ID.
- The EC used for detecting charged and neutral particles and discriminated between electrons and positrons from charged pions.

Event Selection and Particle Identification

- Trigger required at least 2 charged track so we cannot detect events with mesons decaying into entirely neutral particles in the final state.
- Events with 3 charged tracks identified as proton, π + and π and at least one photon were selected.
- TOF system was used for particle identification.

$M_X(p)$ for selected data set

SIMULATION

- MC: Events are generated as per the cross section and beam flux
- GSIM: Generated events are passed through the Geant based simulation in CLAS that simulates-decay, energy loss & multiple scattering
- GPP: GSIM Post Processor for smearing detector signal to reflect actual resolution.
- RECSIS: Reconstruction program to analyze GSIM output in same manner as raw data

CLAS Acceptance & Resolution

- We used $M_{\pi\pi}$ mass range from 0.32 0.92 GeV split into 120 bins
- 10 million events were simulated for each $M_{\pi\pi}$ bin
- Acceptance and $M_{\pi\pi}$ resolution were obtained.

Data & MC Compared

Data & MC Compared

Differential cross section for $\gamma p ightarrow p \eta'$ compared

Differential cross section for $\ \gamma p \to p \eta'$ compared

Extracting parameters α and β

• The radiative decay matrix element can be written as:

$$|M|^{2} \approx |F_{V}(m_{\pi\pi}^{2})|^{2} (1 + \alpha m_{\pi\pi}^{2} + \beta m_{\pi\pi}^{4})^{2} E_{\gamma}^{2} q^{2} sin^{2}(\theta)$$

R.R. Akhmetshin et al. / Physics Letters B 527 (2002) 161-172

Preliminary Results

Theoretical $M_{\pi\pi}$ spectrum for given (α, β) was convoluted with acceptance and resolution to get observable $M_{\pi\pi}$

CLAS Preliminary results compared to CRYSTAL BARREL (1997)

Comparison with Theoretical Prediction from Kubis et al. (2015)

[1] Kubis et al., Eur.Phys.J. C75 (2015) no.6, 283.

Systematic Uncertainties

- Estimated by varying each cut used in the event selection process
- The total systematic uncertainty was then obtained by adding the uncertainties from the different sources in quadrature
- The systematic uncertainty is pprox 10% for each parameter

Source	$\delta lpha$	δeta
$ M_X(p\pi^+\pi^-\gamma) ^2$	$5.47 imes 10^{-2}$	$7.74 imes10^{-2}$
$ M_E(p\pi^+\pi^-) - P_\gamma $	$5.73 imes 10^{-2}$	6.43×10^{-2}
$M_E(p\pi^+\pi^-)$	2.70×10^{-2}	2.20×10^{-2}
P_{γ}	1.83×10^{-3}	1.21×10^{-3}
$ M_X(p) - M(\eta') $	7.88×10^{-2}	$9.33 imes 10^{-2}$
$ M(\pi^+\pi^-\gamma) - M(\eta') $	1.84×10^{-3}	$3.91 imes 10^{-3}$
$\cos heta_{CM}^{\eta'}$	4.75×10^{-3}	4.68×10^{-3}
Total Systematic	1.15×10^{-1}	1.39×10^{-1}

Experiment	$\alpha \; [{\rm GeV^{-2}}]$	$\beta ~[{\rm GeV^{-4}}]$
CRYTAL BARREL (1997)	$1.80 \pm 0.49 \pm 0.04$	$0.04 \pm 0.36 \pm 0.03$
GAMS-2000	2.7 ± 1.0	
CLAS(g11) Preliminary	$1.17 \pm 0.40 \pm 0.12$	$-1.44 \pm 0.41 \pm 0.14$
Theory		
Kubis (2015)	1.4 ± 0.4	-1.0 ± 0.1

Thank You