CLAS6 (eg2): Study of SRC with the A(e,e'pn) reaction 💜

Data Mining Project

Igor Korover

Tel Aviv University / NRCN

CLAS Collaboration meeting

November 3, 2016

1) Motivation

- 2) Method of identifying neutrons (TOF counters)
- 3) Calibration with Deuteron
- 4) Next Steps

Short Range correlation

High energetic projectiles and large momentum transfer reactions probe small distances and disintegrate the SRC pair

Indication for SRC

* Inclusive scattering at SLAC and at JLAB, measured scaling effect at Bjorken X

Phys. Rev. Lett **59**,427(1987)

Phys. Rev. C48, 2451(1993)

Inclusive Scattering

K. Sh. Egiyan *et al.* Phys. Rev. Lett. **96**, 082501 (2006)

Phys. Rev. Lett. 108, 092502 (2012)

5

Exclusive measurements

Direct measurement of 2N-SRC done using BNL:¹²C(p,2pn) Jlab (Hall A): C(e,e'pN) Jlab (Hall A): He(e,e'pN) Jlab (CLAS): A(e,e'pp) (C, Al, Fe, Pb)

A(e,e'pN) analysis done on eg2a run period

Motivation for the current analysis

Extend A(e,e'pn) measurements to heavier nuclei (Fe, Pb).

(Done on He and Carbon only)

Measure the fraction of np – SRC as function of A

Combine with pp-SRC estimate the total amount of 2N-SRC in the nuclei (C, Al, Fe, Pb)

Use of eg2a run period to measure A(e,e'pn).

Advantages:

CLAS: open trigger

Nuclei, from light 12C up to 208Pb Allow to study the np fraction as function of A

Existence of liquid deuterium target Measurement of neutron detection efficiency.

Large angular coverage (Compared to previous experiments)

Challenges:

Low neutron detection efficiency of TOF counters

Data Analysis Extraction of neutron from eg2a data

Neutron hits in the TOF counters can be extracted from tracking plus SCRC bank data.

Technical issue: Current ClasTool does not read SCRC BOS bank.

Solution: (1) Implement SCRC in ClasTool, Gagik help. (2) At this point, we access the bank directly (without ClasTool) to develop analysis methodology until step (1) is done.

The following results are therefore very preliminary.

Information on hits in TOF counters:

- Sector: Number of the sector of interest (from 1 to 6)
- Id: Paddle number in the sector (from 1 up to 48)
- Energy: Energy deposit in MeVee
- Position: Hit position in the sector coordinate system.
- Time: Timing information

(For absolute time the start time is subtracted)

Cuts for Veto:

1) Neutral hits are defined by requiring no tracks within ±10 cm.

"Neutral" hits multiplicity:

Most "neutral" hits are gamma and unreconstructed charged particles.

Counts We aim to study neutrons in momentum range: 300 - 700 MeV/c Multiplicity Relevant time window 30 - 70 ns ~1.05 hits per event in this time window

Contamination of "neutrals" with unreconstructed charged particles

Event display Program – CED

From Gn analysis CLAS analysis Note 2008-103

No hit in the chamber

Candidate for "neutron"

Clearly track due to charged particles.

track

However, before we include wire data for Veto algorithm improvement, we continue to see how far we can get

Neutron Calibration with deuteron

Liquid deuterium

<image>

Deuteron Analysis

Energy deposit > 5 MeVee

Eliminate contribution from low energy events (low energy photon background)

Compare to the previous analysis done in CLAS

Absolute Time – Neutron Momentum

The energy of the neutrons can be determined by the Time-of-flight measurement.

Translation from TOF to momentum

Expected arrival time for Photons

Missing Mass of d(e,e'p)

Missing Mass for d(e,e'p) (Double coincidence events)

Opening Angle

Opening angle between measured neutral hit and expected neutron From d(e,e'pn) reaction.

Opening angle

Corrected TOF

"Corrected" TOF

Missing Mass for d(e,e'p) + neutral hit

Missing Mass for d(e,e'p) + neutron hit

Cuts: Energy deposit Missing Mass Time Window Opening angle

Low Background

Reconstructed momentum resolution:

Neutron detection efficiency.

Efficiency determined by ratio

d(e,e'pn) # d(e,e'p)

Count of #d(e,e'pn) reaction is straight forward

In #d(e,e'p) events there is large background

Efficiency Results:

Although we did not removed the unreconstructed tracks that mimic neutral hits in the efficiency result is consistent with Gn analysis

Neutron efficiency: Gn analysis

30

Future plans:

- 1) Modify ClasTool to extract the TOF counters hits
- 2) Extract the wires hit data from dc0 BOS bank improve Veto algorithm
- 3) Redo deuteron calibration
- 4) Extract the number of A(e,e'pn) events from the solid targets
- 5) Extract the ratio A(e,e'pn)/C(e,e'pn) (no absolute neutron detection efficiency needed)
- 6) Measure A(e,e'pn)/A(e,e'p) (neutron detection efficiency needed)
- 7) Measure the CM momentum of the 2N- SRC
- 8) More physics ... :)

Collaborators

Tel Aviv University

<u>MIT</u>

<u>ODU</u>

Meytal Duer

Or Hen

Larry Weinstein

Erez Cohen

Shalev Gilad

Adi Ashkenazi

Eli Piasetzky

Thank you

Energy deposit

Neutron calibration

1) Develop method for neutron extraction

2) Identify neutrons from d(e,e'pn) reaction in the TOF counters

3) Measure absolute neutron detection efficiency

Data Analysis Extraction of neutron from eg2a data

Cooked data does not include neutron hits in the

SCPB BOS bank, however raw hits data is stored in SCRC BOS bank.

Grou	p: 🔇	SCRC	Sector:	1	Nhits: 3	Next	ind:	1838		
id: 22 energy: 1.448 time: 55.544 pos >x: 366.114655, y:-2.500206, z:376.719238										
err > x: 0.000000, y:103.992226, z:0.000000										
status: 3 denergy: 0.000 dtime: 6.454										
id:	30	energ	y: 1.561	time:	100.272 p)os > <mark>x:</mark> 4	12.525	5085, y:184.872711,		
z:217.826065										
err > x: 0.000000, y:23.329113, z:0.000000										
statı	JS:	11 d	energy: ().241	dtime: 1.4	108				
id:	40	energ	y: 1.399	time:	1.358 pos	5 > x: 411	80575	56, y:6.217634, z:-6.877030		
err > x: 0.000000, y:50.179745, z:0.000000										
statı	JS:	11 d	energy: ().185	dtime: 3.0)34				

Synchronizing tracking data with the SCRC bank

In order to synchronize the TOF hits with the EVNT bank information

HEAD BOS bank

Group: HE	AD S	Sector: 0	Nhits:	1	Next ind:
0					
Version:	0				
Run:	42011	-			
Event:	58				
Туре:	1 (ph	ysics data)			
ROC:	0				
CLASS:	3				
Trgbit:	0xc00	4			
TIME:	Thu F	eb 26 22:2	18:08 20	04	

For each event we have multiple hits in each sector

Definition of neutral hits in TOF counters

We define hit in TOF counter to be a neutral hit if there is <u>no track</u> in the drift chambers

Each track is stored in the DCPB BOS bank and have hit position in TOF counter

Group: DCPB Sector: 0 Nhits: 3 Next ind: 0 ScTr: 201 x_SC: 426.566 y_SC: -165.796 z_SC: 168.012 CX_SC: 0.883 CY_SC: -0.355 CZ_SC: 0.306 X_EC: -1.306 Y_EC: 1.684 Z_EC: -23.579 Th_CC: 4.261 Chi2: 3.814 Status: 1 ScTr: 202 x_SC: 326.264 y_SC: 107.564 z_SC: -196.830 CX_SC: 0.792 CY_SC: 0.276 CZ_SC: -0.544 X_EC: -0.662 Y_EC: 0.149 Z_EC: -33.423 Th_CC: 1.358 Chi2: 2.723 Status: 2 ScTr: 203 x_SC: 130.349 y_SC: -30.233 z_SC: 484.604 CX_SC: 0.028 CY_SC: 0.062 CZ_SC: 0.998 X_EC: 130.845 Y_EC: -29.133 Z_EC: 502.305 Th_CC: 0.417 Chi2: 1.618 Status: -1

> ScTr : 100*sector+track_ID in *BTR Position: x_SC, y_SC, z_SC (given in sector coordinate system) ³⁹