Event generator for the $p\pi^0$, $n\pi^+$, $K^+\Lambda$, and $K^+\Sigma^0$ electroproduction channels at Q² from 5 to 12 GeV²

> V. Klimenko¹, E. Golovach¹, V. Mokeev² ¹Moscow State University ²JLAB

Event Generator for $p\pi^0$, $n\pi^+$, $K^+\Lambda$, $K^+\Sigma^0$ electroproduction channels for Q^2 from 5 to 12 GeV²

CLAS data provided cross sections for a number of exclusive channels: $p\pi^0$, $n\pi^+$, $K^+\Lambda$, $K^+\Sigma^0$ and others at Q^2 below $\approx 5-6$ GeV² *http://clas.sinp.msu.ru/jlab/*

Upgrade of the JLAB accelerator increases the beam energy to 11 GeV and the new CLAS12 detector will allow to extend the kinematic region up to $Q^2 \approx 12 \text{ GeV}^2$ This region remains unexplored. Evaluation of the CLAS12 detector efficiency requires the creation of the realistic event generator at Q^2 from 5 to 12 GeV².

EG is based on the extrapolation of the integrated cross sections from the available CLAS data on exclusive electroproduction channels into the Q^2 range from 5 to 12 GeV².

Extrapolation procedure of the fully integrated cross sections.

Contribution from the exclusive channels to inclusive structure functions F_1 and F_2 were evaluated from the integrated cross sections. In the OPE approximation:

$$\sigma_{ch} = \sigma_{T,ch} + \epsilon \sigma_{L,ch}, \quad \sigma_{L,ch} \approx 0.2 \sigma_{T,ch}$$
$$W_1 = \frac{K}{4\pi^2 \alpha} \sigma_T, W_2 = \frac{\sigma_L + \sigma_T}{4\pi^2 \alpha} \frac{(2\nu M_p - Q^2)Q^2}{2M_p(Q^2 + \nu^2)}$$
$$F_{1,channel} = M_p W_1, F_{2,channel} = \nu W_2$$

In spirit of the operator product expansion we assumed that

$$F_{1,2}(W,Q^2) = C_0 + \sum_{\tau} C_{\tau} \left(\frac{\Lambda_{QCD}^2}{Q^2}\right)^{\tau/2}$$

 Q^2 -dependence of $F_{1,ch}$ and $F_{2,ch}$ were fit at each W by

$$F_{1, channel}(W, Q^2) = \sum_{n=0,1,2} C_n \frac{1}{(Q^2)^n}$$

In the Q² range, where the data are available. Then F_1 and F_2 were extrapolated to higher Q².

Extrapolation procedure of the fully integrated cross sections.

The fit of F_1 and F_2 was performed in the Q² range, where data are available with the requirement that $0 < (R_{1,2} = F_{1,2,channel}/F_{1,2,inc.}) < 1$, where $F_{inc.}$ is from [*M.E.Christy. P.E. Bosted arXiv:0712.3731*] Then F_1 and F_2 were extrapolated into higher Q² and the integrated cross sections were calculated from F_1 and F_2 .

The shape of the extrapolated cross sections was set to be the same as it is in the experimental data at the maximal achievable Q^2 .

Fit and Extrapolation of the contribution of the exclusive channels into the structure function F_1

Fit and Extrapolation of the contribution of the exclusive channels into the structure function F_2

$F_{1,channel}/F_1$

Integrated cross sections extrapolated over Q² at different W

Extrapolation of the cross section into larger W region was done from W-dependence of the photoproduction data

Event Generator

Summary

The model to extrapolate the integrated cross section of the exclusive channels: $p\pi^0$, $n\pi^+$, $K^+\Lambda$, and $K^+\Sigma^0$ in kinematics region of $5 < Q^2 < 12 \text{ GeV}^2$ was developed. It is based on the extrapolation of the contribution of these channels into the structure functions F_1 and F_2 . The model extrapolates only the integrated cross section.

EG for the mentioned electroproduction channels was made. The θ and ϕ dependencies of the cross section in the extrapolated region are set to be the same as they are in the experimental data at the maximal achievable Q².

Extrapolation procedure can be extent to other exclusive channels.