Coherent Deuteron Scattering (g10 Data)

Taya Chetry Kenneth Hicks Ohio University

11/03/2016

OUTLINE

g10 results

- Motivation
- PID Spectra
- Basic Cuts
- $\gamma d \rightarrow \rho d \rightarrow \pi^+ \pi^- d$
 - Global Spectrum
 - Acceptance
 - Yield Extraction
 - Preliminary Results
- γ d $\rightarrow \omega$ d $\rightarrow \pi^+\pi^-d$ (π^0)
 - Global Spectrum
 - Acceptance
 - Yield Extraction
 - Preliminary Results
- $\gamma d \rightarrow \pi d^* \rightarrow \pi^+ \pi^- d$
 - Global Spectra
 - Acceptance
 - Yield Extraction
 - VERY Preliminary Results
- Conclusion

MOTIVATION

g10 results

- Vector Meson beams cannot be produced in a lab.
- These studies will allow to test models of hadronic scattering of ρ and ω -mesons from the nucleon.
- Limited world data for these channels.

Mandelstam *t* : $t = (P_{\gamma} - P_{V})^{2} = (P_{d_{i}} - P_{d_{o}})^{2}$

t [(GeV/c)²]

-0.8

-0.6

-0.4

-0.2

Reactions in interest $\chi d \rightarrow \rho d \qquad \chi d \rightarrow \omega d$

-14

-1.2

DIBARYON

10 results

- Theoretically expected and long sought resonances.
- d* (2145): Partial Wave Analysis Arndt et al. Phys. Rev. C 48, 1926 (1993)
- Recently claimed d* (2380). $pn \rightarrow d\pi^0 \pi^0$

PID (Data)

g10 results

g10 results

- Timing cuts made using momentum-dependent analysis
- -40 cm < z_{vertex} < -10 cm
- Fiducial cuts applied:
 - $-\phi = ae^{b\theta}c + c$
 - Theta cut: $\theta_{\pi-,d} > 0.1$ [*rad*]; $\theta_{\pi+} > 0.25$ [*rad*];
 - Bad scintillator paddles removed.

Particle	Sector 1	Sector 2	Sector 3	Sector 4	Sector 5	Sector 6
π^+	23, 27		11, 23, 31	23, 33, 35	23, 29	23
	≥ 43	≥ 45	≥ 40	≥ 46	≥ 46	≥ 45
π^{-}	23, 27		11, 15, 16, 23,	23, 27, 35	20, 23, 29	23
	≥ 41	≥ 41	$34-36, \ge 41$	≥ 43	≥ 43	≥ 42
d	23, 27	23	11, 22, 23	23	23	23
	≥ 35	≥ 35	≥ 35	≥ 35	≥ 35	≥ 35

BASIC CUTS

10 results

 $\gamma d \rightarrow \rho d \rightarrow \pi^+ \pi^- d$ $\gamma d \rightarrow \omega d \rightarrow \pi^+ \pi^- d (\pi^0)$ $\gamma d \rightarrow \pi d^* \rightarrow \pi^+ \pi^- d$

GLOBAL SPECTRUM

 $\gamma d \rightarrow \rho d \rightarrow \pi^+ \pi^- d$

BINNING

$$\gamma d \rightarrow \rho d \rightarrow \pi^+ \pi^- d$$

• Data and MC events binned in 10 incident photon energy and 10 4-momentum transfer bins.

•
$$1.4 < E_{\gamma} < 3.4 \ [GeV]$$

 $-2.5 < t < -0.3 \ [GeV^2/c^2]$

YIELD EXTRACTION

ACCEPTANCE & WORKING FORMULA

Differential Cross Section: $\frac{d\sigma}{dt}(E_{\gamma}) = \frac{Yield}{(\delta t) A L(E_{\gamma})};$

 $A \equiv Detector \ Acceptance$ Luminosity, $L = \frac{\rho_d N_A l_d}{M_d} N_{\gamma}$ $N_{\gamma} \equiv N_{\gamma}(E_{\gamma})$ $\rho_d = 0.169 \ g \ cm^{-3}$ $l_d = 24 \ cm$ $M_d = 2.014 \ g \ mole^{-1}$ $L(E_{\gamma}) \sim 3.8 - 1.6 \ pb^{-1}$

 $\delta t = 0.22 \, GeV^2/c^2$

()

g10 results

 $\gamma d \rightarrow \rho d \rightarrow \pi^+ \pi^- d$

 $\gamma d \rightarrow \omega d \rightarrow \pi^+ \pi^- d (\pi^0)$ $\gamma d \rightarrow \pi d^* \rightarrow \pi^+ \pi^- d$

GLOBAL SPECTRUM

 $\gamma d \rightarrow \omega d \rightarrow \pi^+ \pi^- d (\pi^0)$

BINNING

 $\gamma \, \mathsf{d} \,
ightarrow \, \omega \mathsf{d} \,
ightarrow \, \pi^+ \pi^- d \, (\, \pi^0)$

• Data and MC events binned in 5 incident photon energy and variable 4-momentum transfer bins.

•
$$1.4 < E_{\gamma} < 3.4 \ [GeV]$$

 $-2.5 < t_{E_{\gamma 1}} < -0.3 \ [GeV^2/c^2]$
 $-2.0 < t_{rest} < -0.3 \ [GeV^2/c^2]$

YIELD EXTRACTION

 $\gamma d \rightarrow \omega d \rightarrow \pi^+ \pi^- d (\pi^0)$

ACCEPTANCE **RKING FORMULA**

 $\gamma d \rightarrow \omega d \rightarrow \pi^+ \pi^- d (\pi^0)$

11/03/2016 18

Differential Cross Section of $\gamma d \rightarrow \omega d \rightarrow \pi^{+} \pi^{-} \pi^{0} d$

g10 results

 $\gamma d \rightarrow \rho d \rightarrow \pi^+ \pi^- d$ $\gamma d \rightarrow \omega d \rightarrow \pi^+ \pi^- d (\pi^0)$ $\gamma d \rightarrow \pi d^* \rightarrow \pi^+ \pi^- d$

WHAT WE SEE

 $\gamma d \rightarrow \pi d^* \rightarrow \pi^+ \pi^- d$

WHAT WE SEE

 $\gamma d \rightarrow \pi d^* \rightarrow \pi^+ \pi^- d$

11/03/2016

BINNING

$$\gamma d \rightarrow \pi d^* \rightarrow \pi^+ \pi^- d$$

 Data and MC events binned in 4 W bins and 10 angle bins.

•
$$1.4 < E_{\gamma} < 1.6 \ [GeV]$$

 $2.70 < W < 3.085 \ [GeV]$
 $-1.0 < \cos(\theta_{CM}^{\pi^+}) < 1.0$

YIELD EXTRACTION

 $\gamma d \rightarrow \pi d^* \rightarrow \pi^+ \pi^- d$

DIFFERENTIAL CROSS SECTION (DCS)

- The vector meson cross-section data provides sensitivity to the nucleon-scattering data for higher |t|-values.
- DCS for vector meson channels verify diffractive scattering processes as expected.
- Understanding this reaction channel will help understand its interference in the d* resonance
 - $\gamma d \rightarrow \pi d^* \rightarrow \pi^+ \pi^- d$
- Forward peaking differential cross section for the d*++
- Next steps would include:
 - Study of |t|-slope dependence in MC for vector meson channels.
 - Study of systematic uncertainties
 - Comparison with theory including interference effects

Extras!!

INVESTIGATED CHANNELS

$\gamma d \rightarrow \rho d \rightarrow \pi^+ \pi^- d$

ρ(770) ^[h]	$I^{G}(J^{PC}) = 1^{+}(1^{-})$					
Mass $m = 7$ Full width Γ $\Gamma_{ee} = 7.04 =$	75.26 ± 0.25 MeV = 149.1 ± 0.8 MeV ± 0.06 keV					
ρ(770) DECAY MODES	Fraction (Γ_i/Γ)		Scale factor/ Confidence level	р (MeV/c)		
ππ	\sim 100	%		363		

 $\gamma d \rightarrow \omega d \rightarrow \pi^+ \pi^- d (\pi^0)$ $I^{G}(J^{PC}) = 0^{-}(1^{-})$ ω(782) Mass $m = 782.65 \pm 0.12$ MeV (S = 1.9) Full width $\Gamma = 8.49 \pm 0.08$ MeV $\Gamma_{ee} = 0.60 \pm 0.02 \text{ keV}$ Scale factor/ р $\omega(782)$ DECAY MODES Fraction (Γ_i/Γ) Confidence level (MeV/c) $\pi^{+}\pi^{-}\pi^{0}$ (89.2 ±0.7)% 327 $\pi^0 \gamma$ (8.28±0.28)% S=2.1 380 $(1.53^{+0.11}_{-0.13})\%$ $\pi^+\pi^-$ S=1.2 366

INTERFERENCE

Plot Description

The 2D histogram is made after basic cuts are applied to the data.

Plot on the left is the y-projection of the 2D histogram. It is the invariant mass distribution of the outgoing deuteron and the π^* .

Plot on the right is the x-projection of the 2D histogram. It is the invariant mass distribution of $\pi^+ \pi^-$ or the p-meson distribution.

Extras!

INTERFERENCE

Plot Description

The 2D histogram is made after basic cuts are applied to the data.

Plot on the left is the y-projection of the 2D histogram. It is the invariant mass distribution of the outgoing deuteron and the π .

Plot on the right is the x-projection of the 2D histogram. It is the invariant mass distribution of $\pi^+ \pi^-$ or the ρ -meson distribution.

INTERFERENCE

Extras!

Plot Description

The 2D histogram is made after basic cuts are applied to the data.

Plot on the left is the y-projection of the 2D histogram. It is the mass distribution for the π^0 and the outgoing d.

Plot on the right is the x-projection of the 2D histogram. It is the mass distribution for $\pi^+ \pi^- \pi^0$ or the ω -meson distribution.

