MIT Involvement and Physics Program for CLAS12

Or Hen

MIT

CLAS12 Users Group Meeting, JLab, November 4th 2016.

- I recently moved from Tel-Aviv to MIT where I'm starting a new nuclear physics research group.
- While personally active in CLAS for several years, MIT and myself are not full members of CLAS.
- As we have several ongoing data-mining analysis + approved CLAS12 proposal + plans for more proposals I figured it's time to officially join CLAS.
- This talk is an 'official' part of the petitioning process.

Hope you will review our petition in favor!

Who Are We?

• MIT (Or Hen):

Reynier Torres

Efrain Segarra

Afroditi Papadopoulou

Axel Schmidt

George Laskaris

Maria Patsyuk

Taofeng Wang (*visiting scientist)

• TAU (Eli Piasetzky):

Erez Cohen

Meytal Duer

Igor Korover

Adi Ashkenazy

• ODU (Larry Weinstein):

Mariana Khachatryan

Florian Hauenstein

Theory Collaborators (lots!)

Who Are We?

Active

in CLAS

• MIT (Or Hen):

Barak Schmookler

Reynier Torres

Efrain Segarra

Afroditi Papadopoulou

<u>Axel Schmidt</u>

George Laskaris

Maria Patsyuk

Florian Hauenstein

ODU (Larry Weinstein):

Mariana Khachatryan

TAU (Eli Piasetzky):

Erez Cohen

Meytal Duer

Igor Korover

Adi Ashkenazy

- 1. Nuclear Structure (JLab / GSI).
 - + Phenomenology.
 - + Neutron Detectors.
- Neutrino-Nucleus Interactions (Fermilab).

3. Tabletop Standard Model Tests (MIT).

50

40

30

20

10

-10

-20

240

- 1. Nuclear Structure (JLab / GSI).
 - + Phenomenology.
 - + Neutron Detectors.
- Neutrino-Nucleus Interactions (Fermilab).

3. Tabletop Standard Model Tests (MIT).

Looking for nucleon pairs that are close together in the nucleus (wave functions overlap)

=> Momentum space: pairs with <u>high relative</u> <u>momentum and low c.m. momentum</u> compared to the Fermi momentum (k_F)

Шii

Breakup the pair => Detect both nucleons => Reconstruct 'initial' state

- Knockout high-initial-momentum proton, look for correlated nucleon partner.
- For 300 < P_{miss} < 600 MeV/c all nucleons are part of 2N-SRC pairs: 90% np, 5% pp (nn).

- Knockout high-initial-momentum proton, look for correlated nucleon partner.
- For 300 < P_{miss} < 600 MeV/c all nucleons are part of 2N-SRC pairs: 90% np, 5% pp (nn).

2nd Gen, Hall-A (⁴He)

I. Korover, N. Muangma, and <u>*O. Hen*</u> et al., Phys. Rev. Lett 113, 022501 (2014).

Pair density calculations:

Чiг

3D Reconstruction

Back-to-back = pairs!

mp-SRC pair dominance in heavy nuclei

Science 346, 614 (2014)

mp-SRC pair dominance in heavy nuclei

np fraction

Bottom Line:

- 'Density Fluctuations' predominantly due to np-SRC.
- Universal character observed in
 A = 4 208 nuclei.
- Strong indication for Tensor force dominance at short distance

O. Hen et al. (CLAS Collaboration), Science 346, 614 (2014)

Universal structure of nuclear momentum distributions

Universal structure of nuclear momentum distributions *in asymmetric nuclei*

Data-Mining Analyses

Correlation studies using high-momentum backward recoiling tagging:

- Tagging SRCs via high-momentum recoils (N. Muangma).
- Tagging the EMC Effect via high-momentum recoils (B. Schmookler).

Properties of SRC pairs in Nuclei:

- A dependence of pp-SRC c.m. motion (E. Cohen).
- Tensor to Scalar dominance transition (E. Cohen).
- Isospin structure using leading and recoiling neutrons (M. Duer & I.Korover).
- Three-Nucleon Correlations (E. Cohen).

Energy sharing in asymmetric nuclei:

- Proton/neutron energy sharing in heavy nuclei (M. Duer).
- Proton/neutron energy sharing in ³He and ⁴He (M. Khachartyan).

6 - 8 papers expected in the next 3 years

Data-Miners:

Data-Mining Example

Data-Mining Example

*Me at this point of the talk

SRC Implications

- Deviation of the per-nucleon DIS cross section ratio of nuclei relative to deuterium from unity.
- Universal shape for 0.3<x<0.7 and 3<A<197.
- ~Independent of Q².
- Overall increasing as a function of A.
- No fully accepted theoretical explanation.

$$\frac{d^2\sigma}{d\Omega dE'} = \sigma_A = \frac{4\alpha^2 E'^2}{Q^4} \left[2\frac{F_1}{M} \sin^2\left(\frac{\theta}{2}\right) + \frac{F_2}{V} \cos^2\left(\frac{\theta}{2}\right) \right] \quad F_2(x, Q^2) = \sum_i e_i^2 \cdot x \cdot f_i(x)$$

Universality of the EMC Effect

EMC Challenge: 'Strength 'Scales

EMC Challenge: 'Strength 'Scales

Nuclear Structure

Чiг

Where is the EMC Effect?

Results III: EMC-SRC Correlation

O. Hen et al., Int. J. Mod. Phys. E. 22, 1330017 (2013).

O. Hen et al., Phys. Rev. C 85 (2012) 047301.

L. B. Weinstein, E. Piasetzky, D. W. Higinbotham, J. Gomez, O. Hen, R. Shneor, Phys. Rev. Lett. 106 (2011) 052301.

Building Large-Acceptance Detectors

Backward Angle Neutron Detector (BAND@Hall-B) R&D @ MIT / UTSM / TAU Construction @ BATES

BAND R&D

Чiг

BAND R&D

Hii

Current Status:

- Finalizing mechanical design and installation plan (UTSM).
- Last stages of PMT / scintillator testing (MIT / TAU).
- Magnetic shielding tests (ODU).
- Construction during 2017 (UTSM / MIT-BATES).
- Moving to Jlab in early 2018.

Conclusions

- Do our best to be a large, active, group.
- Main interest in SRC and tagged structure functions.
- Working on 6 data-mining papers in the coming 3 years.
- Building the BAND detector for CLAS12.
- Ideas for more nuclear studies using CLAS12!

Hope to officially join CLAS! ③

MIT (Or Hen):

Barak Schmookler

Reynier Torres

Efrain Segarra

Afroditi Papadopoulou

Axel Schmidt

George Laskaris

Thank You! Samp **Questions?**