Measurement of Double Pion Electroproduction Cross-sections

Reaction: $ep \to e'p'\pi^+\pi^ Q^2 = [2.0, 5.0]GeV^2$ W = [1.400, 2.125]GeV

Arjun Trivedi

Experimental Nuclear Physics Group Department of Astronomy and Physics University of South Carolina Partially supported by US National Science Foundation under grant PHY-1205782

CLAS Hadron Spectroscopy Group Meeting November 3, 2016

Outline

My analysis

- In the physics perspective
- In the N* program perspective
- Measurements
- Core tasks
- Preliminary results

•
$$A_{\frac{1}{2}}(W), A_{\frac{3}{2}}(W) \to A_{\frac{1}{2}}(Q^2, W), A_{\frac{3}{2}}(Q^2, W), S_{\frac{1}{2}}(Q^2, W) := \mathsf{TFF}$$

Arjun Trivedi

Epistemological structure of the N* program

Reaction and its kinematic coverage

$p(\gamma, K)X$	[3]	$p(e, e'K^+K^-)p, p(e, e'K^+\pi^-)X$	[17]
$p(\gamma, \eta, \eta')p$	[4]	$p(e, e'\pi)N$	[18]
$D(\gamma, \eta), \ D(\gamma, \eta')$	[5]	$\vec{p}(\vec{e}, e'p)\pi^0$	[19]
$p(\gamma, \pi)N$	[6]	$p(e, e'\omega)p$	[20]
$p(\vec{\gamma}, \omega)p$	[7]	$p(e, e'\pi^{+}\pi^{-})p$	[21]
$\vec{\gamma}\vec{p} \rightarrow K^{+}\Lambda, K^{+}\Sigma, K^{0}\Sigma^{+}$	[8]	$\vec{p}(\vec{e}, e'\pi)n$	[22]
$\vec{p}(\vec{\gamma}, \pi^{+})n, \vec{p}(\vec{\gamma}, p)\pi^{0}$	[9]	$p(\vec{e}, e'p)\pi^0, p(\vec{e}, e'\pi^+)n$	[23]
$\vec{p}(\vec{\gamma}, \eta)p$	[10]	$p(e, e'p)\pi^0$	[24]
$\vec{p}(\vec{\gamma}, \pi^{+}\pi^{-}p)$	[11]	$p(e, e'K^+)\Lambda, \Sigma$	[25]
$n(\vec{\gamma}, K\Lambda)$	[12]	$p(e, e'\pi^0)p, p(e, e'\pi^+)n$	[26]
$p(e, e'\pi)N$	[13]	$p(e, e'\pi^{+}\pi^{-}p)$	[27]
$p(e, e'\pi^+)n, p(e, e'p)\pi^0, n(e, e'\pi^-)p$	[14]	$p(\vec{e}, e'K, \vec{\Lambda}, \vec{\Sigma})$	[28]
$p(e, e'p)\eta$	[15]	$p(e, e'p)\pi^0, \eta$	[29]
$p(\vec{e}, e'p)\pi^0, p(\vec{e}, e'\pi^+)n$	[16]		

Q^2 coverage,	Wcoverage,	Bin size over W/Q^2 ,	Data status
${ m GeV^2}$	GeV	${\rm GeV}/{\rm GeV^2}$	
0.20-0.60	1.30-1.57	0.025/0.050	Completed [69]
0.50 - 1.50	1.40-2.10	0.025/0.3- 0.4	Completed [70]
2.0-5.0	1.40-2.00	0.025/0.5	In progress
0.	1.60-2.80	0.025	In progress

Arjun Trivedi

Significance of $p\pi^+\pi^-$ channel

8

Arjun Trivedi

Cross-sections from $ep \rightarrow e'p'\pi^+\pi^-$

Measurements

Cross-sections from $ep \rightarrow e'p'\pi^+\pi^-$

$$\Delta^{++} M_{\rho\pi^{+}}, \theta_{\pi^{-}}^{*}, \phi_{\pi^{-}}^{*}, \alpha_{[\rho'\pi^{+}][\rho\pi^{-}]}^{*}, M_{\pi^{+}\pi^{-}}$$

$$\Delta^{0} : M_{\rho\pi^{-}}, \theta_{\pi^{+}}^{*}, \phi_{\pi^{+}}^{*}, \alpha_{[\rho'\pi^{-}][\rho\pi^{+}]}^{*}, M_{\rho\pi^{+}}$$

$$\rho : M_{\pi^{+}\pi^{-}}, \theta_{\rho}^{*}, \phi_{\rho}^{*}, \alpha_{[\pi^{+}\pi^{-}][\rho'\rho]}^{*}, M_{\rho\pi^{+}}$$

Measurements

Cross-sections from $ep \rightarrow e'p'\pi^+\pi^-$

Variable sets

$$\Delta^{++} M_{\rho\pi^{+}}, \theta_{\pi^{-}}^{*}, \phi_{\pi^{-}}^{*}, \alpha_{[p'\pi^{+}][p\pi^{-}]}^{*}, M_{\pi^{+}\pi^{-}}$$

$$\Delta^{0} : M_{\rho\pi^{-}}, \theta_{\pi^{+}}^{*}, \phi_{\pi^{+}}^{*}, \alpha_{[p'\pi^{-}][p\pi^{+}]}^{*}, M_{p\pi^{+}}$$

$$\rho : M_{\pi^{+}\pi^{-}}, \theta_{p}^{*}, \phi_{p}^{*}, \alpha_{[\pi^{+}\pi^{-}][p'p]}^{*}, M_{p\pi^{+}}$$

Measurements

Cross-sections from $ep \rightarrow e'p'\pi^+\pi^-$

Variable sets

$$\Delta^{++} M_{\rho\pi^{+}}, \theta_{\pi^{-}}^{*}, \phi_{\pi^{-}}^{*}, \alpha_{[\rho'\pi^{+}][\rho\pi^{-}]}^{*}, M_{\pi^{+}\pi^{-}}$$

$$\Delta^{0} : M_{\rho\pi^{-}}, \theta_{\pi^{+}}^{*}, \phi_{\pi^{+}}^{*}, \alpha_{[\rho'\pi^{-}][\rho\pi^{+}]}^{*}, M_{\rho\pi^{+}}$$

$$\rho : M_{\pi^{+}\pi^{-}}, \theta_{\rho}^{*}, \phi_{\rho}^{*}, \alpha_{[\pi^{+}\pi^{-}][\rho'\rho]}^{*}, M_{\rho\pi^{+}}$$

Cross-sections

Independent of γ^* polarization:

$$rac{d^5\sigma}{d au^5}
ightarrowrac{d\sigma}{dX_{ij}}$$

Measurements

Cross-sections from $ep \rightarrow e'p'\pi^+\pi^-$

Variable sets

$$\Delta^{++} M_{\rho\pi^{+}}, \theta_{\pi^{-}}^{*}, \phi_{\pi^{-}}^{*}, \alpha_{[p'\pi^{+}][\rho\pi^{-}]}^{*}, M_{\pi^{+}\pi^{-}}$$

$$\Delta^{0} : M_{\rho\pi^{-}}, \theta_{\pi^{+}}^{*}, \phi_{\pi^{+}}^{*}, \alpha_{[p'\pi^{-}][\rho\pi^{+}]}^{*}, M_{\rho\pi^{+}}$$

$$\rho : M_{\pi^{+}\pi^{-}}, \theta_{p}^{*}, \phi_{p}^{*}, \alpha_{[\pi^{+}\pi^{-}][p'\rho]}^{*}, M_{\rho\pi^{+}}$$

Cross-sections

1. Independent of γ^* polarization:

$$rac{d^5\sigma}{d au^5}
ightarrow rac{d\sigma}{dX_{ij}}$$

2. Sensitive to γ^* polarization:

$$\left(\frac{d^{2}\sigma}{dX_{ij}d\phi_{i}}\right) = R2_{T}^{X_{ij}} + R2_{L}^{X_{ij}} + R2_{LT}^{c,X_{ij}}\cos\phi_{i} + R2_{TT}^{c,X_{ij}}\cos2\phi_{i} + \delta_{X_{ij}\alpha_{i}}\left(R2_{LT}^{s,\alpha_{i}}\sin\phi_{i} + R2_{TT}^{s,\alpha_{i}}\sin2\phi_{i}\right)$$

Measurements

Cross-sections from $ep \rightarrow e'p'\pi^+\pi^-$

Variable sets

$$\Delta^{++} M_{\rho\pi^{+}}, \theta_{\pi^{-}}^{*}, \phi_{\pi^{-}}^{*}, \alpha_{[\rho'\pi^{+}][\rho\pi^{-}]}^{*}, M_{\pi^{+}\pi^{-}}$$

$$\Delta^{0} : M_{\rho\pi^{-}}, \theta_{\pi^{+}}^{*}, \phi_{\pi^{+}}^{*}, \alpha_{[\rho'\pi^{-}][\rho\pi^{+}]}^{*}, M_{\rho\pi^{+}}$$

$$\rho : M_{\pi^{+}\pi^{-}}, \theta_{\rho}^{*}, \phi_{\rho}^{*}, \alpha_{[\pi^{+}\pi^{-}][\rho'\rho]}^{*}, M_{\rho\pi^{+}}$$

Cross-sections

1. Independent of γ^* polarization:

$$rac{d^5\sigma}{d au^5}
ightarrow rac{d\sigma}{dX_{ij}}$$

2. Sensitive to γ^* polarization:

All possible observables: A glimpse

Polarization Observables for Electroproduction

Target Recoil Target + Recoil	oil	
	1 2 2 2	_
$eta \ - \ - \ - \ - \ x' \ y' \ z' \ x' \ x' \ y' \ y' \ y'$	/ 2 2 x	z'
lpha - x y z x y z x y z	z x y	z
$T = R_T^{00} = 0 = R_T^{0y} = 0 = 0 = 0 = R_T^{y'0} = 0 = R_T^{x'x} = 0 = 0 = 0$	$R_T^{z'x} = 0 R$	
$L = R_L = 0 = R_L^{0y} = 0 = 0 = * = 0 = R_L^{x'x} = 0 = R_L^{x'z} = 0 = * = 0$) * 0	*
$TL = R_{TL}^{00} = 0 = {}^{c}R_{TL}^{0y} = 0 = 0 = {}^{c}R_{TL}^{x'x} = 0 = {}^{c}R_{TL}^{x'x} = 0 = {}^{c}R_{TL}^{y} = 0 = {}^{c}R_{TL}^{y} = {$	$c R_{TL}^{z'x} = 0$	*
$TL = 0 = {}^{s}R_{TL}^{0x} = 0 = {}^{s}R_{TL}^{0z} = {}^{s}R_{TL}^{x'0} = 0 = {}^{s}R_{TL}^{z'0} = 0 = {}^{s}R_{TL}^{0} = 0 = {}^{s}R_{TL}^{0} = 0 = {}^{s}R_{TL}^{0} = {}^{s}R_{TL}^{$	* 0 *	0
$TT = R_{TT}^{00} = 0 * 0 0 * 0 * 0 * 0 * 0 * 0$) * 0	*
$TT = 0 = {}^{s}R_{TT}^{0x} = 0 = {}^{s}R_{TT}^{0z} = {}^{s}R_{TT}^{x'0} = 0 = {}^{s}R_{TT}^{z'0} = 0 = {}^{s}0 = {}^{s}0 = {}^{s}0 = {}^{s}0 = {}^{s}0$	* 0 *	0
$TL' = 0 = {}^{c}R_{TL'}^{0x} = 0 = {}^{c}R_{TL'}^{0z} = {}^{c}R_{TL'}^{x'0} = 0 = {}^{c}R_{TL'}^{z'0} = 0 = {}^{c}R_{TL'}^{0} = 0 = {}^{c}R_{TL'}^{0} = {}^{c}R_{TL'$	* 0 *	0
$TL' \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$) {}^{s}R_{TL'}^{z'x} 0$	*
$T' = 0 = R_{TT'}^{0x} = 0 = 0$ $R_{TT'}^{0z} = R_{TT'}^{x'0} = 0 = 0$ $R_{TT'}^{z'0} = 0$ $R_{TT'}^{z'0} = 0$ $R_{TT'}^{z'0} = 0$	* 0 *	0

Note that this table is applicable for single pseudoscalar electroproduction

In case of double (charged) pseudoscalar electroproduction, in addition to ${}^{c}R2_{1T}^{00}$ and ${}^{c}R2_{TT}^{00}$, ${}^{s}R2_{1T}^{00}$ and ${}^{s}R2_{TT}^{00}$ can be also be measured:

 $\left(\frac{d^{2}\sigma}{dX_{ij}d\phi_{i}}\right) = \underline{R2_{T}}^{X_{ij}} + \underline{R2_{LT}}^{X_{ij}} + \underline{R2_{LT}}^{c,X_{ij}}\cos\phi_{i} + \underline{R2_{TT}}^{c,X_{ij}}\cos2\phi_{i} + \delta_{X_{ij}\alpha_{i}}\left(\underline{R2_{LT}}^{s,\alpha_{i}}\sin\phi_{i} + \underline{R2_{TT}}^{s,\alpha_{i}}\sin2\phi_{i}\right)$

°7 °7 Τ

Measurements

Summary

My analysis Core tasks

Experiment: $ep \rightarrow e'X$

- **)** Reconstruct $ep \rightarrow e'p'\pi^+\pi^-$
 - Particle identification
 - || Fiducial cuts
 - III Momentum corrections
 - IV Energy loss corrections
 - V Event selection
 - VI Bin events $\Rightarrow N_R^i$
- Aⁱ from Simulation

$$\bigcirc N_T^i = N_R^i / A^i$$

Radiative effects correction

$$o(\mathbf{Q}^2, \mathbf{W}) = \frac{\sum N_T^i}{\mathsf{L}\Gamma(\mathbf{Q}^2, \mathbf{W})}$$

Experiment: $ep \rightarrow e'X$ Natural process

Reconstruct $e p
ightarrow e' p' \pi^+ \pi^-$

- Particle identification
- || Fiducial cuts
- III Momentum corrections
- IV Energy loss corrections
- V Event selection
- VI Bin events $\Rightarrow N_R^i$
- Aⁱ from Simulation
- $\bigcirc N_T^i = N_R^i / A^i$
 - Radiative effects correction

 $o(\mathbf{Q}^2, \mathbf{W}) = \frac{\sum N_T^i}{\mathsf{L}\Gamma(\mathbf{Q}^2, \mathbf{W})}$

Simulation: $ep \rightarrow e'p'\pi^+\pi^-$ Model(JM) based process

Reconstruct $e p
ightarrow e' p' \pi^+ \pi^-$

- similar
- II similar
- III N.A.
- IV similar
- V similar
- VI similar

$$A^i = N_R^i / N_T^i$$

$$N_T^i = N_R^i / A^i$$

O N.A.

🗿 N.A.

Particle identification

Electrons

Coincident "hit" in DC,CC,SC,EC
 Only electrons trigger CC
 Additionally, use the EC
 SF = EEC / p = constant

Core tasks

Particle identification

Protons & pions

- Coincident "hit" in DC & SC
- Use $\beta(=\frac{L}{t})$ vs. p correlation
 - t from SC
 - L & p from DC

Arjun Trivedi

Measurement of Double Pion Electroproduction Cross-sections

Core tasks

Event selection

MM-top2 2.00-5 00_1.400-1.425 mm_ER_npcor hmm_SR_npcor MM-top2 2.00-5.00_1.650-1.675 hmm_ER_npcor hmm_SR_npcor MM-top2 2.00-5.00_1.800-1.825 hmm_ER_npcorr mm_SR_npcor Measuremer

Based on Missing Mass technique

Arjun Trivedi

• ep
$$ightarrow$$
 e' p' π^+ X

Arjun Trivedi

Preliminary results

E16 experiment conducted in Hall B

Preliminary results

E16 experiment conducted in Hall B

Single-differential cross-sections

 $Q^2, W \text{ bin} = [2.4, 3.0) GeV^2, [1.725, 1.750) GeV$

Single-differential cross-sections

 Q^2 , W bin = [2.4, 3.0)GeV², [1.725, 1.750)GeV

 $Q^2, W \text{ bin} = [2.4, 3.0) GeV^2, [1.725, 1.750) GeV$

$$\left(\frac{d^{2}\sigma}{dX_{ij}d\phi_{i}}\right) = R2_{T}^{X_{ij}} + R2_{L}^{X_{ij}} + \underline{R2_{LT}}^{c,X_{ij}}\cos\phi_{i} + \underline{R2_{TT}}^{c,X_{ij}}\cos2\phi_{i} + \delta_{X_{ij}\alpha_{i}}\left(\underline{R2_{LT}}^{s,\alpha_{i}}\sin\phi_{i} + \underline{R2_{TT}}^{s,\alpha_{i}}\sin2\phi_{i}\right)$$

 Q^2 , W bin = [2.4, 3.0)GeV², [1.725, 1.750)GeV

$$\left(\frac{d^{2}\sigma}{dX_{ij}d\phi_{i}}\right) = \frac{R2_{T}X_{ij}}{R2_{L}} + R2_{L}X_{ij} + R2_{LT}c^{X_{ij}}\cos\phi_{i} + R2_{TT}c^{X_{ij}}\cos2\phi_{i} + \delta_{X_{ij}\alpha_{i}}\left(R2_{LT}s^{\alpha_{i}}\sin\phi_{i} + R2_{TT}s^{\alpha_{i}}\sin2\phi_{i}\right)$$

 Q^2 , W bin = [2.4, 3.0)GeV², [1.725, 1.750)GeV

 $\left(\frac{d^{2}\sigma}{dX_{ij}d\phi_{i}}\right) = \underline{R2_{T}}^{X_{ij}} + \underline{R2_{L}}^{X_{ij}} + R2_{LT}^{c,X_{ij}}\cos\phi_{i} + R2_{TT}^{c,X_{ij}}\cos2\phi_{i} + \delta_{X_{ij}\alpha_{i}}\left(\underline{R2_{LT}}^{s,\alpha_{i}}\sin\phi_{i} + R2_{TT}^{s,\alpha_{i}}\sin2\phi_{i}\right)$

 Q^2 , W bin = [2.4, 3.0)GeV², [1.725, 1.750)GeV

$$\left(\frac{d^{2}\sigma}{dX_{ij}d\phi_{i}}\right) = R2_{T}^{X_{ij}} + R2_{L}^{X_{ij}} + \underline{R2_{LT}}^{c,X_{ij}}\cos\phi_{i} + R2_{TT}^{c,X_{ij}}\cos2\phi_{i} + \delta_{X_{ij}\alpha_{i}}\left(R2_{LT}^{s,\alpha_{i}}\sin\phi_{i} + R2_{TT}^{s,\alpha_{i}}\sin2\phi_{i}\right)$$

 Q^2 , W bin = [2.4, 3.0)GeV², [1.725, 1.750)GeV

$$\left(\frac{d^{2}\sigma}{dX_{ij}d\phi_{i}}\right) = R2_{T}^{X_{ij}} + R2_{L}^{X_{ij}} + \underline{R2_{LT}}^{c,X_{ij}}\cos\phi_{i} + \underline{R2_{TT}}^{c,X_{ij}}\cos2\phi_{i} + \delta_{X_{ij}\alpha_{i}}\left(R2_{LT}^{s,\alpha_{i}}\sin\phi_{i} + R2_{TT}^{s,\alpha_{i}}\sin2\phi_{i}\right)$$

 Q^2 , W bin = [2.4, 3.0)GeV², [1.725, 1.750)GeV

R2^s_{LT} for Q2,W = 2.40-3.00_1.725-1.750

 $\left(\frac{d^{2}\sigma}{dX_{ij}d\phi_{i}}\right) = R2_{T}^{X_{ij}} + R2_{L}^{X_{ij}} + R2_{LT}^{c,X_{ij}}\cos\phi_{i} + R2_{TT}^{c,X_{ij}}\cos2\phi_{i} + \delta_{X_{ij}\alpha_{i}}\left(\frac{R2_{LT}^{s,\alpha_{i}}\sin\phi_{i}}{R2_{TT}^{s,\alpha_{i}}\sin\phi_{i}} + R2_{TT}^{s,\alpha_{i}}\sin2\phi_{i}\right)$

Arjun Trivedi

 Q^2 , W bin = [2.4, 3.0)GeV², [1.725, 1.750)GeV

R2s for Q2,W = 2.40-3.00_1.725-1.750

R2⁶_{TT} for Q2,W = 2.40-3.00_1.725-1.750

 $\left(\frac{d^{2}\sigma}{dX_{ij}d\phi_{i}}\right) = R2_{T}^{X_{ij}} + R2_{L}^{X_{ij}} + R2_{LT}^{c,X_{ij}}\cos\phi_{i} + R2_{TT}^{c,X_{ij}}\cos2\phi_{i} + \delta_{X_{ij}\alpha_{i}}\left(\underline{R2_{LT}}^{s,\alpha_{i}}\sin\phi_{i} + \underline{R2_{TT}}^{s,\alpha_{i}}\sin2\phi_{i}\right)$

Arjun Trivedi

Preliminary results

Overview of measurements

ouble Pion Electroproduction Cross-sections 37

- Summary
 - 51 sets of cross-sections measured in each bin of, hitherto uncharted, Q²-W region.
 - Of these 51, 30 are measured for the first time and are related to the photon polarization.
- Outlook
 - Working on analysis note and finalizing data studies.