Accelerator Status

Michael Tiefenback
CASA, Hall B Accelerator Physics Liaison
content collected from many others

Outline

- Acknowledgments and Thanks
- What has been done
- What needs doing
- What has changed
- What is still changing
- Outlook... (look out)

Most material taken from:

- Arne Freyberger's Science and Technology Review presentation at JLab on 28 Sept 2016
- Matt Poelker's Spin'16 presentation Sept. 25-30, 2016, in Champaign-Urbana, Illinois.

12 GeV CEBAF Operations

Science and Technology Briefing Sept. 28 2016

Arne Freyberger
Operations Department
Accelerator Division
Jefferson Lab

12 GeV CEBAF: Accelerator Systems

SPIN 2016, Champaign-Urbana, IL Sept. 25 - 30, 2016

12 GeV CEBAF Timeline

~ 50 weeks of beam operations to date (FY14,FY15,FY16)

16 weeks at design energy, 2.2 GeV/pass

6 weeks of 12GeV-preops operation (Accelerator and Hall-D KPP demonstrated)

12 GeV CEBAF Overview

- Polarized electron beam (P > 85%)
- Three 499 MHz or 249.5 MHz interleaved beams, resulting in 1497 MHz CW beam.
 - Fourth laser installed, commissioning of 4-halls schedule for Spring 2017
- CW SRF linacs, 1 MW capable

- Design energy 2.2 GeV/pass: 5.5 passes, 12 GeV (Hall-D), 5 passes, 11 GeV (ABC)
- Simultaneous delivery of ~100 μA and nA beams: 5 orders of magnitude in bunch charge
- Flexible extraction options for ABC, 1st...5th pass

FY16 Beam Operations Summary

Fall 2015

- 5 weeks of beam operations at design energy: 12 GeV
 - Measured transverse emittance: 12 GeV CEBAF meets out-year spec
 - Helium Processing in Summer 2015 helped in achieving the design energy.
 - 5th pass RF separation at design energy established (new 750 MHz separation system).

Spring 2016

- 11 weeks planned, 10 weeks actual of beam operations at design energy: 12 GeV
 - DVCS/GMp experiment in Hall-A (passes 2,4,5)
 - HPS experiment in Hall-B (pass-1)
 - GlueX engineering run in Hall-D (pass-5.5) COMPLETED
- Reliability issues (RF systems, Cryo), details in Andrew's presentation

Summer 2016

- 5.5 weeks low power, one CHL configuration at ~50% of design energy
 - PRad experiment in Hall-B (passes 1 & 2) **COMPLETED**
 - Hall-C Beamline checkout (pass 2) COMPLETED

Beam Parameters at 12 GeV (2.2 GeV/pass)

- Growth in emittance/energy spread due to synchrotron radiation effects agrees well with expectations.

1e-04

Bunchlength Evolution at 12 GeV

TABLE 10: Bunch length results (rms value) summary at all locations

Technique	Location	Beam Energy	Measured	Expected	
Brock cavity	A2	$130~\mathrm{keV}$	$8.31\pm0.01\;\mathrm{mm}$	6.8 mm	
Slit-scan	Chopper chamber	$130~\mathrm{keV}$	$7.16\pm0.04~\mathrm{mm}$	$7.9~\mathrm{mm}$	
Brock cavity	1D dump	130 keV	$10.41\pm0.04~\mathrm{mm}$	8.1 mm	
Back-phasing	4D dump	$102~{\rm MeV}$	$80.8\pm2.0\;\mu\mathrm{m}$	$100~\mu\mathrm{m}$	
SLM1	Arc1	$1052~\mathrm{MeV}$	$91.4\pm6.5\;\mu\mathrm{m}$	$100~\mu\mathrm{m}$	
SLM1(compression)	Arc1	$1052~\mathrm{MeV}$	$46.1\pm3.5\;\mu\mathrm{m}$	$56~\mu\mathrm{m}$	
SLM2	$\mathrm{Arc}2$	$2002~{\rm MeV}$	$112.8\pm5.8\;\mu\mathrm{m}$	$100~\mu\mathrm{m}$	
SLM2(compression)	Arc2	$2002~{\rm MeV}$	$42.5\pm5.1~\mu\mathrm{m}$	$56~\mu\mathrm{m}$	

Slit Scan @ 130 keV

(a) Slit scan for A-laser at 249.5 MHz

RF Phase Shifts @ 102 MeV

RF Phase Shifts @ 1050 MeV

FIG. 58: Hyperbola fitting for Arc1 - rms calculation (CW mode).

Hall-A: DVCS and GMp

- First demonstration of high current, high beam power for 12 GeV CEBAF.
- Dynamic configuration: passes 1,2,4, & 5
- 5th pass operation simultaneous with Hall-D operation:
 - New 750 MHz RF separator cavities
 - New 249.5 MHz laser repetition rate.
- Beam Polarimeters (Moller & Compton) commissioned.
- Proximity of Compton detectors to beam makes this device useful as a beam diagnostic.
 - Very clean Compton signal (blue trace) achieved, high laser-on to laser-off ratio. (laser power is the green trace).
 - Halo-free beam

11 GeV, 70 μA, 770 kW to Hall-A

11 GeV, 50 µA to Hall-A, 12 GeV to Hall-D

Compton Signal: Laser On/Laser Off

(Minutes)

Hall-B: HPS & PRad

- PRad: First use of windowless gas target at JLab
 - Requires stable, halo-free, small beam on target and through the detectors
 - $\sigma_{\text{beam}} \sim 20 \ \mu\text{m}$
 - Beam halo-free over 6 orders of magnitude (limit of instrumentation)
- Low Q² measurement, detectors placed close to the beamline.
 - Q² as low as 1x10⁻⁴ GeV² expected with offline analysis; 2.5x10⁻⁴ GeV² achieved on-line

Hall-C: First Beam since 2012

- Successful beam transport checkout of the Hall-C beam, May 2016.
 - Beam switchyard to Hall-C Dump
- No major issues found:
 - Magnet polarities correct, beam diagnostics functioning.

- Completion of the Hall-C high power dump maintenance on track for beam delivery Q1 FY17
- Considerable accumulation of activated debris on the tunnel surface removed with *Decongel* prior to maintenance tasks as well as activated elements.
- Application of lessons learned from Hall A dump maintenance resulted in ALARA success.
 - Estimated worker exposure (FY15-16): 5725 person-mrem
 - Actual worker exposure (FY15-16): 3000 personmrem

Hall-D: GlueX Engineering Run

- Linearly polarized photon beam generated via coherent bremsstrahlung in a diamond radiator.
- Photon beam traverses 75 m from radiator to collimator (3.4 mm aperture).
 - Incident electron beam position, angle, stability and transverse size impact the maximum achieved photon polarization.
- Peak photon polarization of 40% has been measured using several techniques (expectation is 40%).

Spring 2016 Beam Operations

robust operation.

28.5

29.5

X wire position (mm)

31

31.5

12 GeV Peak(best) Performance (to date)

Accelerator Incident Downtime (Hours) from April 7 - 25, 2016

Summary

Total Downtime (Hours):	27.0
MTTR (Hours):	0.8
Total Suspend (Hours):	22.8
Total Restore (Hours):	4.2
Period Duration (Hours):	422.0

94% CEBAF
System Reliability

Tight configuration control during this period; not one quadrupole magnet was manually adjusted. No tweaking, just monitoring.

Accelerating Cavities at CEBAF

We use both types for 12 GeV nuclear physics

Original CEBAF 5 cell cavity

- 5-cell, Cornell-Type
- 338 cavities in 42-1/4 modules
- Design
 - Ea=5 MV/m
 - Q₀=2.4×10⁹ @ 5 MV/m
- Achieved after Helium Processing
 - <Ea>=7.5 MV/m, <Q₀>=5×10⁹@ 5MV/m
- Achieved after Refurbishing
 - <Ea>=12.5 MV/m, <Q₀>=5×109@ 5MV/m
- Total energy 2 x 600 MV
- 5 kW 2K cooling power
- 5 MW liquefier operation power

CEBAF upgrade cavity

- 7-cell, Low-Loss Shape
- 80+8 cavities in 10+1 modules
- Design
 - Ea=19.2 MV/m
 - Q₀=7.2×10⁹ @ 19.2 MV/m
- Achieved
 - <Ea>=22.2 MV/m
 - <Q0> @ 8.1×109 @ 19.2 MV/m
- Total energy 2 x 500 MV (+100 MV)
- Requires additional ~ 5 kW 2K cooling power
- Requires additional ~ 5 MW liquefier operation power

Two C100 cryomodules installed during 6-month down Operated at nominal specifications during Qweak experiment

Energy Reach Plans

- Improve C100 performance
 - "Gradient Team" composed to address this
- Mitigate impact of gradient degradation (~34 MeV/pass/year)
 - C20 refurbishment program (C50->C75) in place until degradation is no longer occurring.
- Reduce or eliminate gradient degradation
 - Accumulation of new field emitters, particulate on the cavity surface
 - Identify field emitter particulate source (in progress).
 - Mitigate: Develop the plan, approve the plan, implement
- New issue: radiation damage of beamline elements in C100 radiation field.
 - C100 gradient large enough to accelerate field emitted electrons to energies above Neutron threshold (~10 MeV),
 - Optimize C100 gradient/field emission ratio (Gradient Team)
 - Helium process to reduce field emitter sites.
 - Improve particulate control, maintain the low FE state post HeProc (see Gradient Degradation above).

Energy Delivery: C100 Performance

- FY14-FY16 is the first large scale use of high gradient SRF cavities (C100) for sustained beam operations.
- Identification of why the C100s are collectively not achieving the individual commissioning values is on-going.

Energy Delivery: Field Emission

- Original C20 modules have ceramic windows that charge/discharge(trip) in the presence of field emission
 - As field emitters accumulate->trip rate increases->gradient lowered.
- C100 modules accelerate field emitted electrons above Neutron threshold Short Term: Impingement of energetic electrons on warm region surface causes vacuum degradation, resulting in valve closure and beam termination.

Long Term: Material activation and radiation damage of beam-line components.

Images of particulates found on cavity surface

Field Emission: Recent Activity

- Successfully tested new Helium Processing (HeProc) procedure on one C100 module this past Summer.
 - HeProc on high FE cavities during Shutdown periods.
- Removed, particulate sampled and thoroughly cleaned the two warm girders associated with C50-12 installation zone
 - Significant particulate found on inner surface of beam-line vacuum space
- Developed and used a new in-tunnel clean room for cryomodule C50-12 installation vacuum work. Strive to achieve low particulate condition during cryomodule and warm girder vacuum work.
- Install new NEG-Ion pump systems associated with C50-12 installation.
 - Calculations show that modern NEG-ion pump systems have pumping rates competitive with the cryo-pumping of the module.
 - Original ion-pumps ineffective as pumps, very effective as particulate generators.

Field Emission: Recent Activity

Particles found on beamline gate valve viton seal.

C20 Gate valve failure due to particulate accumulation not radiation damage

C100 Radiation Damage

- Estimated activation assuming 30 wks/year operation at ~12 GeV energy.
- Radiation damage to cables and plastics observed Spring 2016

8 MONTHS PER YEAR (a), 300 RAD/H

- Plan to harden the C100 region elements in place; partially completed Summer 2016.
- Long term impact on C100 module worrisome (ceramic feedthroughs).

5th Pass RF Separation Hardware

Horizontal 5th Pass Separator (kicks out Hall D for 5.5 pass)

D+2: 500 MHz

D+3: 750 MHz

RF Separation – "D + 2"

RF Separation – "D + 3"

750MHz Separation

11 GeV maximum beam energy

Improvements were implemented Summer 2016 to increase beam separation:

- •Proper cavity placement relative to Lambertson magnets (9% gain in separation)
- •Increase IOT power and cooling controls (10% gain)

Four Laser Upgrade for CEBAF

Fall 2015 – Spring 2016

- •Simultaneous 3-beam operation with either 250/499 MHz rep rate
- •Clever firmware solution allowed this with standard 499 MHz laser-RF system

Summer 2016

- •Rebuilt laser system, added 4th laser
- •Four beams from polarized electron source (chopper photo, right)

Winter 2016

- •Planned installation of final 4-laser RF system
- •Quick switch between rep rates from MCC, full 360 degree phase adjust

Spring 2017

•Planned 4-beam delivery to 4 Halls

Four Hall Operations

- Laser table upgrade complete, four laser installed
- RF controls for fourth laser to be completed Q1 FY17
- 750 MHz separator cavities improved during Summer 2016
 - Compact placement (9% gain in separation)
 - Increase IOT power and cooling controls (10% gain)

750 MHz Separators

Laser Table with 4 lasers

CEBAF simultaneous fourbeams commissioning scheduled for Spring 2017

Injector Upgrade

- 200 kV gun, reduced space charge effects to support reliable, low-loss high bunch charge operations.
 - Reliable support of 12 GeV Parity Violating experiments due to clean transport.
 - Reliable support of 5-pass operation which requires 249.5 MHz beam structure (twice the nominal bunch charge).
- New ¼ cryomodule (first and oldest SRF element in CEBAF)
 - More straight forward Injector transport-> less beam tuning
 - New stub tuner and RF coupler design do not introduce transverse kicks.
 - New C100 style HOM couplers do not introduce X-Y coupling.

CEBAF Parity Violation Experiments

Experiment	Energy	Pol	1	Target	Apv	Charge	Position	Angle Diff	Size Diff
	(GeV)	(%)	(μA)		Expected (ppb)	Asym (ppb)	Diff (nm)	(nrad)	$(\delta\sigma/\sigma)$
HAPPEx-I (Achieved)	3.3	38.8	100	¹ H (15 cm)	15,050	200	12	3	
		68.8	40						
G0-Forward (Achieved)	3	73.7	40	¹ H (20 cm)	3,000-40,000	300±300	7±4	3±1	
HAPPEx-II (Achieved)	3	87.1	55	¹ H (20 cm)	1,580	400	2	0.2	
HAPPEx-III (Achieved)	3.484	89.4	100	¹ H (25 cm)	23,800	200±10	3	0.5±0.1	
PREx-I (Achieved)	1.056	89.2	70	²⁰⁸ Pb (0.5 mm)	657±60	85±1	4	1	
QWeak-I (Achieved)	1.155	89	180	¹ H (35 cm)	281±46	8±15	5±1	0.1 ± 0.02	
QWeak (Analysis In Progress)	1.162	90	180	¹ H (35 cm)	234±5	<100±10	<2±1	<30±3	$< 10^{-4}$
PREx-II (To Be Sched- uled, FY18?)	1	90	70	²⁰⁸ Pb (0.5mm)	500±15	<100±10	<1±1	<0.3±0.1	$<10^{-4}$
MØLLER (To Be Scheduled, FY21+?)	11	90	85	¹ H (150 cm)	35.6±0.74	<10±10	<0.5±0.5	<0.05±0.05	$<10^{-4}$

- PREx-II and its cousin, CREx, have requirements similar to QWeak-I. CEBAF can support these experiments without modification.
- Møller PQB requirements order of magnitude more stringent than previous parity experiments.

CEBAF Injector Upgrade

- Upgrade Gun HV to reduce space charge effects, minimize losses, improve AQ stability.
- Upgrade $\frac{1}{4}$ cryomodule to reduce/eliminate x/y coupling.
- Upgrade all the elements between Gun and $\frac{1}{4}$ for 200 keV beam energy.

CEBAF – ILC 200 kV Inverted Gun

Developed and ready for installation

- -Commissioned at Test Cave to 225 kV w/o field emission
- -Large Grain Niobium electrode
- -But prefer a bit more voltage headroom....

Testing > 300 kV Inverted Guns

Magnetized beam generation – for electron

CEBAF Injector Upgrade Status

Done 200kV capable gun installed, need 200+ kV power supply

Done Vertical Wien filter installed

Done C100-0 installed in 0L04 slot, injector 123 MeV capable

Done New $\frac{1}{4}$ cryomodule design

June 2016 New $\frac{1}{4}$ cryomodule fabrication complete

FY16/FY17 New $\frac{1}{4}$ cryomodule commissioning

FY17+ Upgrade and commissioning the elements between gun and $\frac{1}{4}$ cryomodule to support 200keV transport.

Injector Test Facility

- Commission HDIce and the new CEBAF injector
- Expect keV operations soon
- New gun and 200 kV Wien Filters at CEBAF during Summer 2017

Summary

12 GeV CEBAF beam transport design validated and meets the users out-years requirements.

- Completed the first 12 GeV experiment: PRad.
- Completed commissioning of the GlueX experiment, ready for physics.
- Beam has been successfully transported through every CEBAF 12 GeV element.

Operations, SRF, Source, Beam Physics and Engineering groups effectively addressing issues (reactive mode) and developing future plans (proactive mode).

- Search for the cause of gradient loss is narrowing in on the warm regions between cryomodules as the source of new particulates.
 - Development of mitigation plan is the next step.
- C75 refurbishment plan developed and is ready for testing with 2 cavities in C50-07B.
- Identification of activation and radiation damage of C100s and nearby regions.
 - Reduce activation/damage by optimizing C100 gradients based on FE.
 - Radiation hardening of the warm region components adjacent to the C100 modules.

FY17 Beam Operations

Fall 2016

- 11 weeks of beam operations at 11.6 GeV
 - DVCS/GMp experiment in Hall-A (passes 1,3,4,5)
 - GlueX experiment in Hall-D (pass-5.5), first production run for GlueX
 - Hall-C test beam, tentative
- Continue to probe RF systems for more gradient (especially C100s)

Spring 2017

- 15 weeks of beam operations at 11.6 GeV
 - Hall-A E12-10-103 (passes 2,3,4,5)
 - Hall-D GlueX (pass 5.5)
 - Hall B&C when available for beam [PRESENTLY APRIL for HALL B]
- Four beam commissioning/demonstration

Summer 2017

- 4 weeks low power, one CHL configuration at ~50% of design energy
 - Hall-A E12-14-009 (pass 1)
 - Hall-B&C when available for beam
- Install and commissioning C50-07B, HeProc FE C100s

Potential Hall B 11 GeV Beam Envelope

Tagger dump cannot go to 11 GeV

- Solution taken: bury the beam into the tagger yoke.
- RadCon is involved and believes this is feasible
 - Personnel issues not in contention
 - Experimental background can be controlled
- Standard "tune mode" beam I_avg ~ 100 nA, much greater than typical Hall B current
- Alternate tune-up mechanisms must be devised
- ITV2C24 is the nearest surrogate for tagger viewer
- Controls allow for testing prior to fiducialization
- Coordination with nanoAmp BPMs may be helpful

ITV2C24 (YAG) viewer CW capable

Bits Still Under Development

- Accelerator-wide
 - MOMod to provide linac phase lock to beam
 - Online (non-invasive) CW path length monitor
 - Viewer-based profiles for emittance/matching
- Hall B
 - Improve nanoAmp BPM behavior
 - Better utilize Digital Receiver BPMs
 - Restore 2C20 Synchrotron Light Monitor
 - Beam dump procedure development for tagger yoke
 - Possible skew quad correction near Lambertson

Overview

- The accelerator can work at 12 GeV
- Unexpected (rad) damage near C100s calls for attention
- Improving reliability analysis within a mix of old and new
 - Procedures, tools, and diagnostics
 - Fault analysis and root cause corrections
 - Information tracking and data handling improving
- Fiscally tight this year
 - More operating hours scheduled than last year
 - Less money available than last year
- Challenging....

End

• Backup slides follow

12 GeV Laser Table: Summer 2016

C100 Operational Performance with Beam

CEBAF Operations StayTreats

Local workshops held near the start of the Summer shutdowns to discuss CEBAF performance and future plans.

- 2014 1-day local workshop on SRF/RF/Cryo systems.
 - <u>Presentations</u> and <u>Summary</u> available via the links.
 - ~40 participants, 17 presentations
 - Crucial in developing the plans to reach the design energy.
- 2015 3-day local workshop on all aspects of CEBAF Operations
 - Presentations and Summary available via the links.
 - ~ 50 participants, 58 presentations
 - Further preparation for operating at design energy, planned for Fall 2015.
 - C75 conceptual design
 - Reliability and CEBAF performance raised in importance
- 2016 3-day local workshop: Emphasis on CEBAF Reliability.
 - <u>Presentations</u> available, Summary in preparation.
 - Peak participant count of ~80, 38 presentations.
 - Remote presentations from SNS and RHIC Operations.
 - Maximizing CEBAF Reliability within constraints

12 GeV Initial Beam Requirements

Hall	Emittance	Energy Spread	Spot Size	Halo
		σ	σ	
	(nm-rad)	(%)	(μm)	
		< 0.05	$\sigma_{\scriptscriptstyle X} < 400$	
Α	$\varepsilon_{\scriptscriptstyle X} < 10$	(12 GeV)	$\sigma_y < 200$	$< 1 imes 10^{-4\dagger}$
	$\varepsilon_{y} < 5$	< 0.003	$(\sigma_{y} < 100)$	
		(2-4 GeV)	(2-4 GeV)	
В	$\varepsilon_{x} < 10$	< 0.1	$\sigma_{\scriptscriptstyle X} < 400$	$<2\times10^{-4\dagger}$
	$\varepsilon_y < 10$		$\sigma_y <$ 400	
С	$\varepsilon_{x} < 10$	< 0.05	$\sigma_{\scriptscriptstyle X} < 500$	$< 2 \times 10^{-4\dagger}$
	$\varepsilon_y < 10$		$\sigma_y < 500$	
			At Radiator:	
D	$\varepsilon_x < 50$	< 0.5	$\sigma_{x} < 1550, \ \sigma_{y} < 550$	$<1\%^{\ddagger}$
	$\varepsilon_{v} < 10$		At Collimator	
			$\sigma_{x} <$ 540, $\sigma_{y} <$ 520	

[†] Ratio of the integrated non-Gaussian tail to Gaussian core.

[‡] Ratio of Halo background event rate to physics event rate.

12 GeV Out-year Beam Requirements

Hall	Emittance	Energy Spread	Spot Size	Halo
		σ	σ	
	(nm-rad)	(%)	(μm)	
		< 0.05	$\sigma_{\scriptscriptstyle X} < 400$	
Α	$\varepsilon_{\scriptscriptstyle X} < 10$	(12 GeV)	$\sigma_y < 200$	$< 1 imes 10^{-4\dagger}$
	$\varepsilon_{v} < 5$	< 0.003	$(\sigma_{\rm v} < 100)$	
		(2-4 GeV)	(2-4 GeV)	
В	$\varepsilon_{x} < 10$	< 0.1	$\sigma_{\scriptscriptstyle X} < 400$	$< 2 imes 10^{-4\dagger}$
	$\varepsilon_y < 10$		$\sigma_y <$ 400	
С	$\varepsilon_{\scriptscriptstyle X} < 10$	< 0.05	$\sigma_{\scriptscriptstyle X} < 500$	$< 2 imes 10^{-4\dagger}$
	$\varepsilon_y < 10$		$\sigma_y < 500$	
			At Radiator:	
D	$\varepsilon_{x} < 50$	< 0.5	$\sigma_{x} < 1550, \ \sigma_{y} < 550$	$<1\%^{\ddagger}$
	$\varepsilon_{y} < 10$		At Collimator	
			$\sigma_x <$ 540, $\sigma_y <$ 520	

[†] Ratio of the integrated non-Gaussian tail to Gaussian core.

[‡] Ratio of Halo background event rate to physics event rate.

