Olga María Cortés Advisor:Philip Cole

Idaho State University

November 3, 2016

This work is funded by NSF Grant: PHY-1615146

Table of contents

1 Motivation

2 Experimental setup• CLAS Detector

3 Data Analysis

- Event Selection
- Method for Beam Asymmetry extraction
- Background studies
- Preliminary Results

5 Conclusion

Motivation

Motivation

- Baryon spectroscopy helps to understand the link between quark based models with QCD. Quark based models predict resonances that have not been experimentally observed.
- Studies of different channels should help in finding "missing resonances"
- Resonances are broad and overlap. Spin observables are necessary to differentiate between resonant contributions.

Motivation

ω photoproduction off bound proton in previous experiments

- The study of bound proton can be studied in comparison with free proton data. (CLAS g8b and g9FROST)
- The way we handle bound proton will provide information on how to analyze bound neutrons

Figure: Data GRAAL 2015: Full circles, free proton. Full triangles, quasifree. (V. Vegna et al. PhysRevC.91.065207 (2015))

Experimental setup

CLAS Detector

CEBAF: Continuous Electron Beam Accelerator Facility

CLAS: CEBAF Large Acceptance Spectrometer

Data Analysis

$$ec{\gamma} p(n) o \omega p(n)$$
 with $\omega o \pi^+ \pi^- \pi^0$ and $\pi^0 o \gamma \gamma$

cut	description	
PID charged particles	3σ for Δeta momentum dependent	
PID photons	$\beta > 0.95$	

Data Analysis

$$ec{\gamma} p(n) o \omega p(n)$$
 with $\omega o \pi^+ \pi^- \pi^0$ and $\pi^0 o \gamma \gamma$

cut	description			
tagged photon	$\left \Delta t_{\gamma\pi^{-}}\right \leq 1$ ns			
charged particles Δt	$\left \Delta t_{\pi^-\pi^+} ight $ and $\left \Delta t_{\pi^- ho} ight \leq 1$ ns			

Data Analysis

$$ec{\gamma} p(n) o \omega p(n)$$
 with $\omega o \pi^+ \pi^- \pi^0$ and $\pi^0 o \gamma \gamma^0$

cut	description		
π^0 reconstruction	3σ for $M^2(\gamma\gamma)$		
Missing momentum	$p_X < 0.2 \frac{\text{GeV}}{c}$		
other cuts	fiducial, momentum and energy corrections		

Data Analysis

Event Selection

 $ec{\gamma} p(n)
ightarrow \omega p(n)$ with $\omega
ightarrow \pi^+ \pi^- \pi^0$ and $\pi^0
ightarrow \gamma \gamma$

Data Analysis

$$ec{\gamma} p(n) o \omega p(n)$$
 with $\omega o \pi^+ \pi^- \pi^0$ and $\pi^0 o \gamma \gamma^0$

Figure: Example. Invariant mass squared of the three pions for missing mass squared 0.75 $< M_X^2(\vec{\gamma}d \rightarrow p\pi^+\pi^-\pi^0 X) < 0.8 \text{GeV}^2/c^4$. 3σ cut around the ω peak for missing mass squared. Shift in the peak due to calorimeter resolution and was reproduced via Toy Monte Carlo

Data Analysis

Method for Beam Asymmetry extraction

$$\frac{\left(\frac{dN}{d\phi}\right)^{\perp} - \left(\frac{dN}{d\phi}\right)^{\parallel}}{\left(\frac{dN}{d\phi}\right)^{\parallel} + \left(\frac{dN}{d\phi}\right)^{\perp}} = \frac{1 - F_R + \frac{F_R P_R + 1}{P_R + 1} 2\bar{P} \sum_{\Delta\phi} \frac{\sin\Delta\phi}{\Delta\phi} \cos\left(2(\phi - \phi_0)\right)}{1 + F_R + \frac{F_R P_R - 1}{P_R + 1} 2\bar{P} \sum_{\Delta\phi} \frac{\sin\Delta\phi}{\Delta\phi} \cos\left(2(\phi - \phi_0)\right)}$$
(1)

with the flux ratio $F_R = \frac{F^{\perp}}{F^{\parallel}}$, polarization ratio $P_R = \frac{P^{\parallel}}{P^{\perp}}$, average of the polarization $\bar{P} = \frac{P^{\parallel} + P^{\perp}}{2}$, $\frac{\sin \Delta \phi}{\Delta \phi}$ correction for the bin width $\Delta \phi$ and ϕ_0 is the offset of the photon polarization vector ¹. We fix all but one variable in the fit, Σ .

• *P_R* and *P* are found using the polarization tables.

¹Ref. N. Zachariou PhysRevC.91.055202 (2015)

Data Analysis

Method for Beam Asymmetry extraction

$$\frac{\left(\frac{dN}{d\phi}\right)^{\perp} - \left(\frac{dN}{d\phi}\right)^{\parallel}}{\left(\frac{dN}{d\phi}\right)^{\parallel} + \left(\frac{dN}{d\phi}\right)^{\perp}} = \frac{1 - F_R + \frac{F_R P_R + 1}{P_R + 1} 2\bar{P} \sum \frac{\sin \Delta \phi}{\Delta \phi} \cos\left(2(\phi - \phi_0)\right)}{1 + F_R + \frac{F_R P_R - 1}{P_R + 1} 2\bar{P} \sum \frac{\sin \Delta \phi}{\Delta \phi} \cos\left(2(\phi - \phi_0)\right)} \quad (1)$$

with the flux ratio $F_R = \frac{F^{\perp}}{F^{\parallel}}$, polarization ratio $P_R = \frac{P^{\parallel}}{P^{\perp}}$, average of the polarization $\bar{P} = \frac{P^{\parallel} + P^{\perp}}{2}$, $\frac{\sin \Delta \phi}{\Delta \phi}$ correction for the bin width $\Delta \phi$ and ϕ_0 is the offset of the photon polarization vector ¹. We fix all but one variable in the fit, Σ .

- P_R and \overline{P} are found using the polarization tables.
- Calculate *F_R* based on a fit over the (1) integrated over all the cos θ bins.

$E_{\gamma}(GeV)$	P_R	Ē
1.1-1.3	0.88	0.754
1.3-1.5	1.01	0.782
1.5-1.7	0.96	0.750
1.7-1.9	0.94	0.676
1.9-2.1	0.99	0.730
2.1-2.3	1.02	0.695

¹Ref. N. Zachariou PhysRevC.91.055202 (2015)

Data Analysis

Method for Beam Asymmetry extraction

$$\frac{\left(\frac{dN}{d\phi}\right)^{\perp} - \left(\frac{dN}{d\phi}\right)^{\parallel}}{\left(\frac{dN}{d\phi}\right)^{\parallel} + \left(\frac{dN}{d\phi}\right)^{\perp}} = \frac{1 - F_R + \frac{F_R P_R + 1}{P_R + 1} 2\bar{P} \sum \frac{\sin \Delta \phi}{\Delta \phi} \cos\left(2(\phi - \phi_0)\right)}{1 + F_R + \frac{F_R P_R - 1}{P_R + 1} 2\bar{P} \sum \frac{\sin \Delta \phi}{\Delta \phi} \cos\left(2(\phi - \phi_0)\right)} \quad (1)$$

with the flux ratio $F_R = \frac{F^{\perp}}{F^{\parallel}}$, polarization ratio $P_R = \frac{P^{\parallel}}{P^{\perp}}$, average of the polarization $\bar{P} = \frac{P^{\parallel} + P^{\perp}}{2}$, $\frac{\sin \Delta \phi}{\Delta \phi}$ correction for the bin width $\Delta \phi$ and ϕ_0 is the offset of the photon polarization vector ¹. We fix all but one variable in the fit, Σ .

- P_R and \overline{P} are found using the $\mathbb{P}_{\mathbb{P}_{n}}^{\mathbb{P}_{n}}$ polarization tables.
- Calculate *F_R* based on a fit over the (1) integrated over all the cos θ bins.

Figure: Example of fit for $1.7 < E_{\gamma} < 1.8$ GeV

¹Ref. N. Zachariou PhysRevC.91.055202 (2015)

Data Analysis

Method for Beam Asymmetry extraction

$$\frac{\left(\frac{dN}{d\phi}\right)^{\perp} - \left(\frac{dN}{d\phi}\right)^{\parallel}}{\left(\frac{dN}{d\phi}\right)^{\parallel} + \left(\frac{dN}{d\phi}\right)^{\perp}} = \frac{1 - F_R + \frac{F_R P_R + 1}{P_R + 1} 2\bar{P} \sum \frac{\sin \Delta \phi}{\Delta \phi} \cos\left(2(\phi - \phi_0)\right)}{1 + F_R + \frac{F_R P_R - 1}{P_R + 1} 2\bar{P} \sum \frac{\sin \Delta \phi}{\Delta \phi} \cos\left(2(\phi - \phi_0)\right)} \quad (1)$$

with the flux ratio $F_R = \frac{F^{\perp}}{F^{\parallel}}$, polarization ratio $P_R = \frac{P^{\parallel}}{P^{\perp}}$, average of the polarization $\overline{P} = \frac{P^{\parallel} + P^{\perp}}{2}$, $\frac{\sin \Delta \phi}{\Delta \phi}$ correction for the bin width $\Delta \phi$ and ϕ_0 is the offset of the photon polarization vector ¹. We fix all but one variable in the fit, Σ .

- P_R and \overline{P} are found using the polarization tables.
- Calculate F_R based on a fit over the (1) integrated over all the cos θ bins.
- φ₀ = 0 as suggested by large statistics channel study

$E_{\gamma}({ m GeV})$	F _R	χ^2/NDF	
1.1-1.3	0.485 ± 0.015	1.098	
1.3-1.5	1.024 ± 0.015	1.325	
1.5-1.7	1.198 ± 0.014	1.358	
1.7-1.9	0.914 ± 0.009	0.875	
1.9-2.1	1.056 ± 0.011	0.677	
2.1-2.3	1.058 ± 0.012	0.727	

¹Ref. N. Zachariou PhysRevC.91.055202 (2015)

Data Analysis

Method for Beam Asymmetry extraction

$$\frac{\left(\frac{dN}{d\phi}\right)^{\perp} - \left(\frac{dN}{d\phi}\right)^{\parallel}}{\left(\frac{dN}{d\phi}\right)^{\parallel} + \left(\frac{dN}{d\phi}\right)^{\perp}} = \frac{1 - F_R + \frac{F_R P_R + 1}{P_R + 1} 2\bar{P} \sum \frac{\sin \Delta \phi}{\Delta \phi} \cos\left(2(\phi - \phi_0)\right)}{1 + F_R + \frac{F_R P_R - 1}{P_R + 1} 2\bar{P} \sum \frac{\sin \Delta \phi}{\Delta \phi} \cos\left(2(\phi - \phi_0)\right)}$$
(1)

with the flux ratio $F_R = \frac{F^{\perp}}{F^{\parallel}}$, polarization ratio $P_R = \frac{P^{\parallel}}{P^{\perp}}$, average of the polarization $\bar{P} = \frac{P^{\parallel} + P^{\perp}}{2}$, $\frac{\sin \Delta \phi}{\Delta \phi}$ correction for the bin width $\Delta \phi$ and ϕ_0 is the offset of the photon polarization vector ¹. We fix all but one variable in the fit, Σ .

- P_R and \overline{P} are found using the polarization tables.
- Calculate F_R based on a fit over the (1) integrated over all the cos θ bins.
- $\phi_0 = 0$ as suggested by large statistics channel study

¹Ref. N. Zachariou PhysRevC.91.055202 (2015)

Data Analysis

Background studies

Is the background polarized?

- The first approach is to take all the events in the background region and calculate the angular asymmetry Σ.
- The events selected where those with $M^2(\pi^+\pi^-\pi^0) \ge 3\sigma_i$ (where *i* denotes the *i*th bin in missing mass squared $M_X^2(\vec{\gamma}p \rightarrow p\pi^+\pi^-\pi^0X)$ and σ_i is the value of σ for a gaussian fit around the ω peak).
- A 2nd-degree polynomial fit is applied to these points.

Figure: Example for $E_{\gamma} = 2.3 \text{ GeV}$

Data Analysis

Background studies

Dilution Factor

- Asymmetry for the background region around zero.
- Dilution factor approach

$$F = \frac{\sum_{i} (A_{tot} - A_{bkg})_{i}}{\sum_{i} (A_{bkg})_{i}} \left(\frac{dN}{d\phi}\right)_{signal}^{\parallel(\perp)} = F^{\parallel(\perp)} \left(\frac{dN}{d\phi}\right)_{peak}^{\parallel(\perp)}$$

- signal $\rightarrow \mu_i 3\sigma_i \le M^2(\pi^+\pi^-\pi^0) \le \mu_i + 3\sigma_i$
- A_{peak} can be calculated integrating the model or integrating the histogram

$E_{\gamma}(\text{GeV})$	DF HISTO	DF _{EIT}	DF_{HISTO}^{\perp}	$DF_{\rm FIT}^{\perp}$
1.1-1.3	0.571	0.679	0.603	0.657
1.3-1.5	0.606	0.619	0.611	0.621
1.5-1.7	0.601	0.606	0.605	0.607
1.7-1.9	0.661	0.661	0.661	0.660
1.9-2.1	0.730	0.736	0.736	0.738
2.1-2.3	0.779	0.776	0.769	0.773

Preliminary Results

Figure: Preliminary result Beam Spin Asymmetry for 1.1 < E_{γ} < 2.3GeV in energy bins of ΔE_{γ} = 100MeV. Blue triangles this work, red circles GRAAL 2015

Conclusion

Future work

- * Preliminary results are shown for the observable Σ for energies between 1.1GeV ≤ E_γ ≤ 2.3GeV. Agreement with GRAAL (2015) only for low energy bins.
- * The effects of a restrained phase space for the omega has to be studied.
- * Systematic uncertainties are being studied (binning, different model for the background, fixed parameter dependency)
- * Dependency of the observables as a function of p_X in order to compare with free proton.

THANK YOU!