
Why?

- * Feb/March 2017 CLAS12 Commissioning run (KPP)
- * Fall 2017 CLAS12 engineering run
- * RG-A (12 GeV on H2 target) will be the major player of CLAS12 First Experiment

* Outcome of the Common Tools Committee includes suggestions to reorganise the PWG in CLASI2 era

How?

• Significant impact on HSWG_2.0 duties

- Nominate representatives in the Analysis Review Committee: permanent/temporary?
- contribute to the Analysis/Calibration team: define 'experts' and 'workers'
- Identify specific procedures relevant for the HSWG only: PWA, Kinematic-fit?

•Significant impact in the Analysis review Process

- Define standard procedures and extra (to be specifically review)
- run-group review from the very beginning (e.g. gl l/gl2)

• Significant impact in the Analysis review Process

- Define standard procedures and extra (to be specifically review)
- run-group review from the very beginning

2

When?

★ Consider the first experiment a Collaboration and HSWG priority

- ***** HSWG members should contribute :
 - to the CLASI2 Common Analysis framework
 - to the CLASI2 Detector Calibration
 - to the CLASI2 Detector reconstruction

* HSWG member should specifically:

- Focus on a specific reaction easy to analyse to get results quickly
- Define known/measured benchmark reference to compare to
- Identify critical issues in detector calibration
- Contribute to the calibration and taking care of specific HSWG procedures
- Identify procedures to insure high quality data
- Run simulation in advance
- Develop and test the full analysis chain (test on simulation)
- Test the new procedure for an efficient and timely analysis review

\star If this scheme will be successful we should extend to all HSWG_2.0 analyses

★ If we agree, we need to define a workplan and coordinate the effort from different groups

* HSWG should play a major role in CLASI2 data analysis

Collaboration

- wise

Common tools analysis framework

Common tools calibration framework

4

Identify Institution interested in contributing
 Identify an Analysis coordinator per each institution
 choose areas where you want to contribute

HSWG Tools

- evgen
- helicity info
- sg/bg separation
- kin fitter
- normalization
- efficiency/acceptance

HSWG Analysis

- angular distributions
- asymmetries
- DME
- trigger efficiency
- xsec
- (PWA)

Meson spectroscopy with photons in CLASI2

Exp-11-005 "MesonEx"

Study the meson spectrum in the I-3 GeV mass range to identify gluonic excitation of mesons (hybrids) and other quark configuration beyond the CQM

* Hybrid mesons and Exotics

- Search for hybrids looking at many different final states
- Charged and neutral-rich decay modes
- $\gamma p \rightarrow p 3\pi, \gamma p \rightarrow p \eta \pi, ...$

* Scalar mesons

- \bullet Poorly know f_0 and a_0 mesons in the mass range 1-2 GeV
- Theoretical indications of unconventional configurations (qqqq or gg)
- $\gamma p \rightarrow p 2\pi, \gamma p \rightarrow p 2K,$
- Decay and production of exclusive reactions, different final states (charged/neutral)
- Detector requirements: good acceptance, energy resolution, particle Id
- Identification of exotic configuration via PWA

- * Hybrids with hidden strangeness and strangeonia
 - Intermediate mass of s quarks links long to short distance QCD potential
 - Good resolution and kaon Id required
 - $\gamma p \rightarrow p \phi \pi, \gamma p \rightarrow p \phi \eta, \gamma p \rightarrow p 2K \pi, ...$

Requirements

- 1) High intensity 6-10 GeV photon beam \rightarrow low Q² electroproduction
- 2) 4π detector
 → CLASI2 + Forward Tagger (FT)

HASPECT Working Group

Ist physics out of CLASI2

Data Analysis

- ★ easy Plds (pions)
- \star not perfect resolution, limited statistics
- \star narrow states, few particles involved
- \star useful for calibration purposes

Physics output

- ★ Simple Moments analysis extended kinematics
- **★** Exploiting linear polarization (asymmetries)
- ★ Spin Density Matrix Elements (SDME)
- ★ longitudinal plots
- ★ Testing Dalitz with new amplitudes (Veneziano)
- ★ [Xsection in the extended kinematics (Eg=6-11 GeV) ?]
- * Mesons never observed in photoproduction (narrow peaks)

Day 1st analysis

$\begin{array}{l} \gamma p \rightarrow n \ \pi + \\ \gamma p \rightarrow p \ \pi 0 \\ \gamma p \rightarrow p \ \pi + (X) \end{array}$	Used to build any theory Less interesting but valuable Inclusive measurement	Angular, xsec Angular, xsec Xsec, longitudinal plot	Requires a dedicated (prescaled) trigger Easier to detect (2 clusters+ 1 chrg track) 2 charged tracks, standard trigger
$\gamma_P \rightarrow N \pi (\pi)$	Benchmark reaction	Angular, SDME, xsec	2 charged tracks, standard trigger
$\gamma_P \rightarrow N \omega, \eta,$	Calibration reaction	Angular, SDME, xsec	2 charged tracks, standard trigger
	Calibration reaction	Xsec, longitudinal plot	2 charged tracks, standard trigger
$\gamma p \rightarrow p \phi$	benchmark reaction	Angular, SDME, xsec	(K ⁰ →ππ)
$\gamma_P \rightarrow N M$	M = any meson not observed	yet in photo production, e.g. ra	adial excitations/new states above 2 GeV

Day 2 analysis

 $\begin{array}{l} \gamma p \rightarrow N \ K \ K \\ \gamma p \rightarrow N \ K \ \pi \\ \gamma p \rightarrow N \ K \ \pi \end{array}$

2π extension K^{*} spectrum K^{*}π spectrum

Moments analysis Dalitz plot Dalitz plot Requires good Pid but could alternatively accessed by considering neutral kaons

<u>e () lab12</u>

MesonEx 1st day analysis

HASPECT Working Group

How to get there?

Day minus-I analysis

- \star Proceed in systematic and coherent fashion
- ★ Define and test a common analysis framework (HASPECT Working Group)
- ★ Get theoretical support from JPAC to be ready on Day I (xsec, angular, asymmetry estimates)
- * Generate massive simulations with a realistic physics implementation well in advance
- ★ Use GEMC and CLASI2 reconstruction software to study reactions
- * Use CLAS6 data to have a better understanding of background and concurrent reactions
- ★ Trigger condition and final state detection definition

Day 0 analysis

- \star Use known reactions for calibration and data quality assurance
- * Compare results from CLAS6 in the overlapping kinematics
- ★ First measurement polarised vector meson photoprodution
- ★ Demonstrate quasi-real photoproduction is well understood
- * Demonstrate effect of linear polarisation on production mechanisms
- ★ Compare to GlueEx or existing data

Day I analysis

* Extract 'easy' observables: SDME, Xsec, Dalitz plots, Moments and, eventually, Partial Wave Analysis

7