The QCD coupling from CLAS data

A. Deur

Thomas Jefferson National Accelerator Facility

A. Deur CLAS Col. Meeting 11/02/16

Outline

•Coupling constants are not constant at high energy. Why is that? (why are they running?) Effective couplings.

•For QCD, the perturbative definition of the coupling doesn't work at low energy. Can we extend the effective coupling approach to low energy?

• If so, can the CLAS data be used to get α_s at low energy?

•Now that we have some kind of coupling at low energy, is it useful? Does it work?

•What do we learn from all this?

Effective couplings

Force = coupling constant \times charge₁ \times charge₂ \times f(r)

Faraday: 1/r²: weakening of the force flux as it spreads isotropically through space.

Nowadays: manifestation in the coordinate space of the propagator of the force carrier.

Ex: Electron scattering:

In momentum space, scattering amplitude \propto propagator $1/Q^2$. \Rightarrow Potential in coordinate space \propto FT(amplitude) \propto 1/r. \Rightarrow Force $\propto 1/r^2$.

Jefferson Lab

Effective couplings

We keep $f(r)=1/r^2$ and fold the additional distance dependence in the coupling. \Rightarrow Effective coupling. Now depends on distance (i.e. energy) scale.

The strong coupling $\alpha_s(r)$

 $\alpha_s(r)$ is well understood at short distances where it is small ($\alpha_s \sim 0.1$). (pQCD).

Very active research to understand it at long distances where it is large ($\alpha_s \sim 1$, non-perturbative domain).

 $\alpha_{s}(r)$ at large distance, work done in collaboration with:

V. Burkert, J-P Chen and W. Korsch (experimental). PLB 650 244 (2007), PLB 665 349 (2008)
 S. J. Brodsky and G. de Teramond (phenomenology). PRD 81,096010 (2010), PLB 750, 528 (2015), PLB 757, 275 (2016) arXiv:1604.04933
 Review on α_s with S. J. Brodsky and G. de Teramond. Prog. Part. Nuc. Phys. 90 1 (2016)

6

The strong coupling at short distances

The strong coupling at short distances

8

At low Q² (≤ 1 GeV²), pQCD cannot be used to define α_s : If pQCD is trusted, $\alpha_s \rightarrow \infty$ for Q $\rightarrow \Lambda_s$.

Contradict the perturbative hypothesis

Wednesday, November 2, 2016

Jefferson Lab

The strong coupling at short distances

9

At low Q² (≤ 1 GeV²), pQCD cannot be used to define α_s : If pQCD is trusted, $\alpha_s \rightarrow \infty$ for Q $\rightarrow \Lambda_s$.

Contradict the perturbative hypothesis

Definition and computation of α_s at long distance?

Wednesday, November 2, 2016

Prescription: Define effective couplings from an observable's perturbative series truncated to first order in α_s . G. Grunberg, PLB B95 70 (1980); PRD 29 2315 (1984); PRD 40 680(1989).

Proposed for pQCD. We tentatively extend it to non-perturbative QCD.

Prescription: Define effective couplings from an observable's perturbative series truncated to first order in α_s .

G. Grunberg, PLB B95 70 (1980); PRD 29 2315 (1984); PRD 40 680(1989).

Ex: Bjorken sum rule:

$$\int (g^{p}_{1}-g^{n}_{1})dx \triangleq \Gamma_{1}^{p-n} = \frac{1}{6} g_{A}(1-\frac{\alpha_{s}}{\pi}-3.58(\frac{\alpha_{s}}{\pi})^{2}-...) + \frac{M^{2}}{9Q^{2}} [a_{2}(\alpha_{s})+4d_{2}(\alpha_{s})+4f_{2}(\alpha_{s})]+...$$

$$\int \int f(\alpha_{s}) dx = \Gamma_{1}^{p-n} = \frac{1}{6} g_{A}(1-\frac{\alpha_{s}}{\pi}-3.58(\frac{\alpha_{s}}{\pi})^{2}-...) + \frac{M^{2}}{9Q^{2}} [a_{2}(\alpha_{s})+4d_{2}(\alpha_{s})+4f_{2}(\alpha_{s})]+...$$

$$\int \int f(\alpha_{s}) dx = \Gamma_{1}^{p-n} = \frac{1}{6} g_{A}(1-\frac{\alpha_{s}}{\pi}-3.58(\frac{\alpha_{s}}{\pi})^{2}-...) + \frac{M^{2}}{9Q^{2}} [a_{2}(\alpha_{s})+4d_{2}(\alpha_{s})+4f_{2}(\alpha_{s})]+...$$

$$\int \int f(\alpha_{s}) dx = \Gamma_{1}^{p-n} = \frac{1}{6} g_{A}(1-\frac{\alpha_{s}}{\pi}-3.58(\frac{\alpha_{s}}{\pi})^{2}-...) + \frac{M^{2}}{9Q^{2}} [a_{2}(\alpha_{s})+4d_{2}(\alpha_{s})+4f_{2}(\alpha_{s})]+...$$

$$\int \int f(\alpha_{s}) dx = \Gamma_{1}^{p-n} = \frac{1}{6} g_{A}(1-\frac{\alpha_{s}}{\pi}-3.58(\frac{\alpha_{s}}{\pi})^{2}-...) + \frac{M^{2}}{9Q^{2}} [a_{2}(\alpha_{s})+4d_{2}(\alpha_{s})+4f_{2}(\alpha_{s})]+...$$

$$\int \int f(\alpha_{s}) dx = \Gamma_{1}^{p-n} = \frac{1}{6} g_{A}(1-\frac{\alpha_{s}}{\pi}-3.58(\frac{\alpha_{s}}{\pi})^{2}-...) + \frac{M^{2}}{9Q^{2}} [a_{2}(\alpha_{s})+4d_{2}(\alpha_{s})+4f_{2}(\alpha_{s})]+...$$

$$\int \int f(\alpha_{s}) dx = \Gamma_{1}^{p-n} = \frac{1}{6} g_{A}(1-\frac{\alpha_{s}}{\pi}-3.58(\frac{\alpha_{s}}{\pi})^{2}-...) + \frac{M^{2}}{9Q^{2}} [a_{2}(\alpha_{s})+4d_{2}(\alpha_{s})+4f_{2}(\alpha_{s})]+...$$

$$\int \int f(\alpha_{s}) dx = \Gamma_{1}^{p-n} = \frac{1}{6} g_{A}(1-\frac{\alpha_{s}}{\pi}-3.58(\frac{\alpha_{s}}{\pi})^{2}-...) + \frac{M^{2}}{9Q^{2}} [a_{2}(\alpha_{s})+4d_{2}(\alpha_{s})+4f_{2}(\alpha_{s})]+...$$

$$\int \int f(\alpha_{s}) dx = \Gamma_{1}^{p-n} = \frac{1}{6} g_{A}(1-\frac{\alpha_{s}}{\pi}-3.58(\frac{\alpha_{s}}{\pi})^{2}-...) + \frac{M^{2}}{9Q^{2}} [a_{2}(\alpha_{s})+4d_{2}(\alpha_{s})+4f_{2}(\alpha_{s})]+...$$

$$\int \int f(\alpha_{s}) dx = \Gamma_{1}^{p-n} + \frac{M^{2}}{9Q^{2}} [a_{2}(\alpha_{s})+4d_{2}(\alpha_{s})+4d_{2}(\alpha_{s})+4d_{2}(\alpha_{s})]$$

$$\int \int f(\alpha_{s}) dx = \frac{M^{2}}{9Q^{2}} [a_{2}(\alpha_{s})+4d_{2}(\alpha_{s})+4d_{2}(\alpha_{s})+4d_{2}(\alpha_{s})]$$

$$\int \int f(\alpha_{s}) dx = \frac{M^{2}}{9Q^{2}} [a_{2}(\alpha_{s})+4d_{2}(\alpha_{$$

Prescription: Define effective couplings from an observable's perturbative series truncated to first order in α_s .

G. Grunberg, PLB B95 70 (1980); PRD 29 2315 (1984); PRD 40 680(1989).

Ex: Bjorken sum rule:

Prescription: Define effective couplings from an observable's perturbative series truncated to first order in α_s .

G. Grunberg, PLB B95 70 (1980); PRD 29 2315 (1984); PRD 40 680(1989).

Ex: Bjorken sum rule:

13

Jefferson Lab

Prescription: Define effective couplings from an observable's perturbative series truncated to first order in α_s .

G. Grunberg, PLB B95 70 (1980); PRD 29 2315 (1984); PRD 40 680(1989).

Ex: Bjorken sum rule:

$$\int (g^{p}_{1}-g^{n}_{1})dx \triangleq \Gamma_{1}^{p-n} = \frac{1}{6} g_{A}(1-\frac{\alpha_{s}}{\pi}-3.58(\frac{\alpha_{s}}{\pi})^{2}-...) + \frac{M^{2}}{9Q^{2}} [a_{2}(\alpha_{s})+4d_{2}(\alpha_{s})+4f_{2}(\alpha_{s})]+...$$

$$\int g^{P}_{1} = \frac{1}{6} g_{A}(1-\frac{\alpha_{s}}{\pi}-3.58(\frac{\alpha_{s}}{\pi})^{2}-...) + \frac{M^{2}}{9Q^{2}} [a_{2}(\alpha_{s})+4d_{2}(\alpha_{s})+4f_{2}(\alpha_{s})]+....$$

$$\int g^{P}_{1} = \frac{1}{6} g_{A}(1-\frac{\alpha_{s}}{\pi}-3.58(\frac{\alpha_{s}}{\pi})^{2}-...) + \frac{M^{2}}{9Q^{2}} [a_{2}(\alpha_{s})+4d_{2}(\alpha_{s})+4f_{2}(\alpha_{s})+4f_{2}(\alpha_{s})+4f_{2}(\alpha_{s})+4f_{2}(\alpha_{s})+1$$

$$\int g^{P}_{1} = \frac{1}{6} g_{A}(1-\frac{\alpha_{s}}{\pi})^{2}-...) + \frac{M^{2}}{9Q^{2}} [a_{2}(\alpha_{s})+4d_{2}(\alpha_{s})+4f_{2}(\alpha_{s})+4f_{2}(\alpha_{s})+1$$

$$\int g^{P}_{1} = \frac{1}{6} g_{A}(1-\frac{\alpha_{s}}{\pi})^{2}-...) + \frac{M^{2}}{9Q^{2}} [a_{2}(\alpha_{s})+4f_{2}(\alpha_{s})+1]$$

 $\Rightarrow \Gamma_1^{p-n} \triangleq \frac{1}{6} g_A(1 - \frac{\alpha_{g_1}}{\pi})$

This means that short distance pQCD effects and long distance confinement forces are now folded into the definition of α_s .

Analogy with the original coupling constant becoming an effective coupling when short distance quantum effects are folded into its definition.

Jefferson Lab

$\alpha_s(\mathbf{r})$ at long distance (low Q^2)

Advantages of extracting α_s from the Bjorken Sum Rule:

•Bjorken sum rule: simple perturbative series.

•Data (CLAS!) exist at low, intermediate, and high Q².

•Rigorous Sum Rules dictate the behavior of Γ_1^{p-n} in the unmeasured $Q^2 \rightarrow 0$ and $Q^2 \rightarrow \infty$ regions.

15

 \Rightarrow We can obtain α_{g1} at any Q².

α_{g1} from the Bjorken Sum data

Wednesday, November 2, 2016

α_{g1} from the Bjorken Sum data

α_{g1} from the Bjorken Sum data

18

A. Deur CLAS Col. Meeting 11/02/16

Low Q² limit

19

Wednesday, November 2, 2016

Jefferson Lab

Large Q² limit

Does it work?

•Comparison with theory

•Is α_{g1} bringing us useful information on QCD?

First, we will compare with AdS/QCD approach to QCD. Then check with Lattice, SDE,... approaches.

AdS/QCD:

•Analytical method to study non-perturbative QCD.

•Based on QCD Lagrangian expressed on the light front and reasonable approximations (neglect quark masses and short range quantum fluctuations).

•Provides a semi-classical approximation for QCD that is fully determined: Equations determined by QCD Lagrangian and by QCD's conformal symmetry).

•One universal parameter κ . (Minimal amount of parameter for a strong force description (if quark masses are neglected): pQCD has one: $\Lambda_{s.}$)

•Very successful in describing hadron form factors, hadron mass spectrum.

Review: Brodsky, de Teramond, Dosch, Erlich, Phys. Rep. 05 (2015) 001 [arXiv:1407.8131]

Jefferson Lab

Does it work? Comparison with theory

ADS/QCD prediction agrees very well with the α_s extracted from JLab's Bjorken sum data. No free parameters.

22

Jefferson Lab

Does it work? Comparison with theory

One can also fit the $\alpha_{g1}(Q^2)$ data to get κ : $\kappa=0.513\pm0.025$ GeV

Comparison with other predictions

These calculations agree qualitatively (α_s freezes, transition occurs at similar Q² scale) but they disagree on $\alpha_s(0)$ value.

24

The many values of $\alpha_s(0)$ (from literature)

Deur, Brodsky, de Teramond. Prog. Part. Nuc. Phys. 90 1 (2016)

The many values of $\alpha_s(0)$ (from literature)

Deur, Brodsky, de Teramond. Prog. Part. Nuc. Phys. 90 1 (2016)

A. Deur CLAS Col. Meeting 11/02/16

Wednesday, November 2, 2016

A. Deur CLAS Col. Meeting 11/02/16

AdS/QCD results can be used to obtain $\alpha_s(0)$ in any scheme:

 \Rightarrow Quantify scheme-dependence of $\alpha_s(0)$ in the non-perturbative domain.

AdS/QCD results can be used to obtain $\alpha_s(0)$ in any scheme:

 \Rightarrow Quantify scheme-dependence of $\alpha_s(0)$ in the non-perturbative domain.

29

Deur, Brodsky, de Teramond PLB 757, 275 (2016)

A. Deur CLAS Col. Meeting 11/02/16

Wednesday, November 2, 2016

Jefferson Lab

Comparison with literature

			1 0	10	$\Lambda_{\hat{i}}$		ך _ז	\uparrow			7	אלא די	1	
$\alpha_{s}(0)$	Scheme	Expectation from	$\alpha_{s}($		fund		oroad	bu	١	$\blacksquare Effectiv \\ \land SDE$	e charge Δ	es 🕱 Ha Ouark-Hadr	dron spec on duali	ctrum tv
		Literature			chrod		ial app	coupli	spectr	Lattice	<u>ک</u> ک	ϕ^4 to Yang-N	Aills map	ping
3.51±0.62	g ₁	π		8	Lattice (S		Variation	Analytic	Hadron	▼ FRG ★ Gribov- ₩ Stochas	⊕ 1 Zwanzi Stic Quan	Bogoliubov ger approac ntization	comp. pr h	incip
$(n_f=3 \text{ at } Q_0)$					-					$\bigcirc BPT$	☆ (Curci-Ferm	i Model	
2.30±0.35	V	-		6	-		1			$\Box OPT$		Analytic cou	pling	
$(n_f=3 \text{ at } Q_0)$					-	•								
2.84±0.60	MOM	2.97		4		I								r
(nf=0 at Q=0)		(nf=0)				4	—		*	≻ ▲				X
0.80±0.10	MS	~0.6		2	-			⊥ ★	т	1		NZ		
(nf=0 at Q=0)		(nf=0)						\rightarrow	φ	0 0	* * *	™ ******		Ĭ
				0	╞╼╶╻	-	_	-	-			☆ ▲		
					-									

Comparison with literature

Also compatible with $\alpha_s(0) \rightarrow \infty$ results: based on V \propto r: linear static quark-quark potential. AdS/QCD harmonic oscillator potential on Light-Front form equivalent to linear potential in usual frame (Instant-Front form).

 \Rightarrow Discrepancy in non-perturbative α_s behavior seen in literature can be explained by scheme-dependence and ~mismatch in coordinate system used.

AdS/QCD not valid

A. Deur CLAS Col. Meeting 11/02/16

Good agreement between JLab α_{g1} data and pQCD prediction.

Wednesday, November 2, 2016

10

Can match α_s from pQCD to α_s from AdS/QCD.

 $\alpha_{\sigma 1}/\pi$ (pQCD)

GDH limit $\mathbf{X} = \alpha_{F3}/\pi$

 α_{g1}/π JLab CLAS (2008)

 α_{01}/π JLab CLAS (2014)

 α_{g1}/π Hall A/CLAS Lattice QCD (2004)

AdS/QCD

 α_{r}/π OPAL

 \Rightarrow can relate κ , i.e. hadronic masses, to fundamental QCD parameter Λ_s .

(2007)

34

Jefferson Lab

Wednesday, November 2, 2016

0.4

0.2

 10^{-1}

Wednesday, November 2, 2016

A. Deur CLAS Col. Meeting 11/02/16

Higher order predictions for meson spectrum

Analytic determination of hadron spectrum from Λ_s

Jefferson Lab

36

Can match α_s from pQCD to α_s from AdS/QCD.

Matching equations also determines pQCD-Strong QCD transition scale

$$\begin{array}{l} \alpha_{g_1}{}^{pQCD}(Q_0) = \alpha_{g_1}{}^{AdS/QCD}(Q_0) \\ \beta^{pQCD}(Q_0) = \beta^{AdS/QCD}(Q_0) \end{array} \begin{array}{l} (\beta \text{ is the log derivative of } \alpha_s) \\ \hline MS \text{ scheme} \end{array} \\ \end{array} \\ \begin{array}{l} Q_0 \sim 1.07 \text{ GeV.} \\ \hline MS \text{ scheme} \end{array} \\ \end{array} \\ \begin{array}{l} A. \text{ Deur CLAS Col. Meeting 11/02/1} \end{array} \end{array}$$

Prediction of Λ_s **from hadronic observable**

Conversely, one can use κ and use the same matching procedure to predict QCD's fundamental parameter Λ_s .

 κ from hadron masses, n_f=3, use recent 5-loop α_s calculation.

Determination of Λ_s in excellent agreement with PDG world average and with similar uncertainty.

Jefferson Lab

Wednesday, November 2, 2016

Summary

• α_s is the fundamental parameter of QCD.

It is well understood at short distances but no so at long distances.
Bjorken Sum Rule is advantageous to define an effective coupling α_{g1}.
Data -essentially from CLAS- and sum rules allow to obtain α_{g1} at all Q².
α_{g1} "freezes" at low Q²

Remarkable agreement with AdS/QCD prediction. No free parameters.

•Analytic determination of hadron spectrum from $\Lambda_{s.}$

Conversely, high precision determination of $\Lambda_{s.}$ (Other

Long thought goal of QCD.

means: Lattice or experimental data).

•Q₀ can be used as starting scale for QCD's DGLAP and ERBL evolution equations.

•Agreement with most other theoretical predictions once scheme-dependence accounted for. Solve long-standing confusion on what is the freezing value of α_s .

Hall A and CLAS data at the origin of these progresses.

Jefferson Lab