New Results on Deuteron Spin Structure function g_1 and its moments at low Q^2 from EG4 Experiment

- Spin structure at Low Q² -Formalism and Motivation
- Experimental Setup
- Data Analysis
- Results

11/2/2016

Krishna P. Adhikari Mississippi State University For the CLAS collaboration

MISSISSIPPI ST

Inclusive Lepton Scattering & Structure Functions

Low Q² Motivation - Integrals

- At low momentum transfers (Q²), one can study the transition from partonic (quark-gluon) to hadronic (nucleonic) descriptions of Strong interaction by testing & constraining effective theories based on QCD such as Chiral Perturbation Theory (xPT).
- Test xPT Calculations ($Q^2 < ~0.1 \text{ GeV}^2$) :
 - **Relativistic Baryon** χ **PT with** Δ , Bernard, Hemmert, • Meissner:
 - **Heavy Baryon** χ **PT**, Ji, Kao, Osborne; Kao, • Spitzenberg, Vanderhaeghen
 - Lensky, Alarco n, Pascalutsa, PRC90, 055202 (2014). •
 - Bernard, Epelbaum, Krebs, ۲ Ulf-G. Meißner, Phys. Rev. D **87**, 054032 (2013)
- Test Phenomenological medels • Burkert-Ioffe, Soffer-Terayev, MAID, ...

$$\bar{I}_{TT} = \frac{2M^2}{Q^2} \int_{0}^{x_{th}} (g_1 - \frac{2M^2 x^2}{Q^2} g_2) dx \xrightarrow{(Q^2 \to 0)} -\frac{\kappa^2}{4}$$

$$\gamma_{0} = \frac{16\alpha M^{2}}{Q^{6}} \int_{0}^{x_{th}} (g_{1} - \frac{2M^{2}x^{2}}{Q^{2}}g_{2})x^{2}dx$$
Krishna P. Adhikari 5 Miloolooli YI olale

Elastic contribution DIS
not included pQCD

$$\Gamma_1$$
 operator product
expansion
 f_1 expansion
 f_1 expansion
 f_1 Q^2 (GeV²)
GDH sum rule
Interesting variation with Q²
Hadron Parton
 $\overline{\Gamma_1} = \int_0^{x_{th}} g_1(x, Q^2) dx$
 $-\frac{2M^2 x^2}{Q^2} g_2 dx$ $(Q^2 \to 0) - \frac{\kappa^2}{4}$
is a nomalous magnetic moment GDH
 $2 X_{th} Q^2 x^2$

Some Past Data at Low Q² : g₁ from EG1b

g, vs. x for Q 2 (0.08, 0.09)

Proton

Deuteron

Neutron

Plots courtesy of N. Guler

Some Past Data – moments from EG1b $\Gamma_1 = \int g_1(x, Q^2) dx \qquad \gamma_0(Q^2) = \frac{16\alpha M^2}{\Omega^6} \int A_1 F_1 x^2 dx$

Deuteron results from N. Guler

Shows expected trend toward DIS result at high Q²

At low Q² observed a negative slope as expected from GDH Sum Rule.

0.02 Agreement with χ PT at the lowest points.

Deuteron analysis was repeated with full data set and more extended results were obtained for the Γ_1 at low to moderate Q2 region.

Krishna P. Adhikari

F1 obtained from fit to world data

Discrepancy with MAID - mainly due to parametrizations of F_1 .

No agreement with χ PT, even at Q² = 0.05 GeV²

Hall B CLAS Experiment: EG4

"EG4"- Similar conditions to EG1 Kinematical coverage extended down to $Q^2 = 0.015 \text{ GeV}^2$ using lower beam energies -1.0, 1.3, 2.0, 2.3, 3.0 GeVs •Target at vz = -101 cm electron outbending CLAS configuration a new Cerenkov detector in S6 •DNP polarized Targets: Longitudinally polarized, solid ¹⁵NH₃ (P~85%) & ¹⁵ND₃ (P~35%)

Measurement of g_1 at low Q^2

•Test of χ PT as Q² \rightarrow 0 •Measured Absolute XS differences

•Goal : Extended GDH Sum Rule

on Proton, Deuteron

•Ran in 2006

Jefferson Lab

 NH_{3:} M. Battaglieri, A. Deur, R. De Vita, M. Ripani
 ND₃. A. Deur, G. Dodge, K. Slifer

New Cerenkov Counter in the 6th sector (INFN Genoa)

Things done in this Pass2 Analysis

- Pass2 reconstruction (slight changes in RECSIS configuration)
- Repeating the simulation (slight changes in both GSIM and RECSIS configurations)
- Tracking correction (using method developed by Peter Bosted) and momentum correction.
- CC-inefficiency correction
- Redeveloping the following cuts
 - CC-cuts
 - Fiducial cuts
 - Vertex-Z cuts
 - EC-cuts
- Extraction of g₁, A₁F₁ and moments.

Simulation of Deuteron Data

• **RCSLACPOL** program for **Radiated Polarized Cross-sections** for event generator

Uses standard approach by Shumeiko & Kuchto (NP B219, 412 (1983)) and Mo & Tsai (RMP 41, 205 (1969)), including external radiation in the target.

- > Updated with latest models (world data fit) on polarized and un-polarized structure functions over a wide kinematic range.
- > Folding algorithm by Melnitchouk & Kahn (PRC 79 (3), 035205) for deuteron structure functions.
- Extensively tested & used at SLAC (E142/143/154/155/155x) & Jlab (EG1a/b).

• GSIM (& GPP) for CLAS simulation and RECSIS for Data reconstruction

Data Analysis: Kinematic Corrections

•Tracking correction:

Swims particles through target field to DC, uses direction cosines at DC and the beam position (x,y) from raster magnets.

•Energy loss correction •Momentum correction.

Fiducial cuts

More Particle ID Cuts

Q² dependent cuts on Z-vertex & EC-sampling

Method for g₁ calculation

Method for g₁ calculation

Results: Generalized GDH integral (ITT)

Results: Generalized Forward Spin polarizability (γ₀)

- A wealth of new low Q² data on the nucleon spin structure in the nonperturbative regime has been produced in Hall A, and B at Jefferson Lab as part of a broad spin physics program
- Measurements of moments of g_1 provide strong tests of χ PT.
- Low Q² analysis on polarized deuteron target data of EG4 experiment in Hall B are in the final stages.
- At very low Q^2 the EG4 results show good agreement with other Jlab results and with available χ PT predictions.

 \blacktriangleright Exception – Lensky-Pascalutsca calculation on γ_0

- Proton results and Neutron data extraction from EG4's deuteron and proton data is expected in near future.
- Deuteron analysis is in final stages and first draft of the analysis note will go into circulation next week.
- Ongoing 6 GeV data analyses and the future 12 GeV JLab measurements at low Q² are expected to shed more light on the nucleon spin structure in the non-perturbative region.

Krishna P. Adhikari

34

Thank you!

Sources of Systematic errors

- 1) Overall scaling factor (Mostly due to PbPt and target length)
- 2) Radiative corrections
- 3) Model Uncertainties
- 4) Contaminations of polarized H in the target and π^- in the scattered electrons.
- 5) Beam energy measurement
- 6) CC-efficiency estimation
- 7) e⁺e⁻ pair symmetric contamination

Estimation of Systematic errors

Neutron Target

- □ Neutron mean lifetime is just under 15 mins.
- ³He nucleus has two protons whose spins are paired, and a single neutron that accounts for most of the nuclear spin.
- \Box So, ³He is an effective polarized neutron target.

F. R. P. Bissey, A. W. Thomas, and I. R. Afnan, Phys. Rev. C64, 024004 (2001)

