

Crab Crossing design and Simulations

Salvador Sosa

Old Dominion University ssosa006@odu.edu

Salvador Sosa - JLEIC Collaboration Meeting, October 6th, 2016

1

Crab Crossing concepts and considerations for JLEIC

- Preliminary self-consistent set of crab crossing parameters
- Crab Crossing simulations
- Future Plans

2

Beam Crossing Angle

Reduce parasitic collisions

Reduce long range beam-beam effects

Luminosity Reduction Factor @ JLEI

Luminosity Reduction @ JLEIC

Crossing beam parameters				
θ_{c}	50	mrad		
σ_{z}	9.08	mm		
$\sigma_{\rm x}$	18.04×10^{-3}	mm		
φ	12.5	rad		

$R_{\phi} \approx 0.0797$

Roughly 8% of Luminosity

JLEIC Luminosity Approach

- Short bunches for both ion and electron beams
- Small transverse emittance
- Ultrahigh collision frequency
- Staged electron cooling
- Small final focusing β^*
- Large beam-beam tune shift
- Crab crossing of colliding beams

$$\mathcal{K} = \frac{N_1 N_2 f n_b}{4\pi\varepsilon \sqrt{\beta_x^* \beta_y^*}} \cdot \frac{1}{\sqrt{1 + \left(\frac{\sigma_z}{\sigma_x} \tan\frac{\theta_{cross}}{2}\right)}}$$

The Crabbing Concept

Jefferson Lab

7

Crabbing Schemes: Local & Global

• Local crabbing:

- Y.-P. Sun et. Al, Phys. Rev. ST. Accel. Beams, 12, 101002
- $(2n+1)\pi/2$ phase advance between crab cavities

Crabbing by deflecting cavity

Jefferson Lab

• Use of a transverse electric field to impart a "kick" on the bunch

$$V_{da} = \frac{cE_b \tan \frac{\varphi_{cross}}{2}}{e2\pi f \sqrt{\beta_{crab}\beta^*}}$$

- E_b = beam energy
- f = RF frequency
- β_{crab} = beta function at CC location
- β^* = beta function at IP
- φ_{cross} = beam crossing angle

S. Ahmed, et al. in Proceedings of IPAC2011, WEPC047

Crabbing by dispersive cavity

• Convetional accelerating/bunching cavity located in a region of dispersion D(s)

$$V_a = \frac{cE_b\varphi_{crab}}{e2\pi f\sqrt{\beta_{crab}\beta^*}D'}$$

 E_b = beam energy

= RF frequency

- β_{crab} = beta function at CC location
- β^* = beta function at IP

 φ_{crab} = crab angle

 $D' \leq 0.3$ (from ion ring lattice simulation)

Dispersive crab voltage larger than deflecting crab voltage.

S. Ahmed, et al. in Proceedings of IPAC2011, WEPC047

JLEIC layout

C.M. energy - $\sqrt{s} = 15 - 65 \text{ GeV}$ $L \approx 10^{33} \text{ cm}^{-2} \text{s}^{-1}$, optimized around 45-50 GeV

Ion Collider Ring

- Figure-8 ring with a circumference of 2153.9 m
- Two 261.7° arcs connected by two straights crossing at 81.7°
- Vertical doglegs to be added

Detector Region Layout

Jefferson Lab

Baseline Ion IR Optics

IR design features

- Modular design
- Based on triplet Final Focusing Blocks (FFB)
- Asymmetric design to satisfy detector requirements and reduce chromaticity
- Spectrometer dipoles before and after downstream FFB, second focus downstream of IP
- No dispersion at IP, achromatic optics downstream of IP

Collision optics of JLEIC ion collider ring

 β_x peaks from CCB sextupoles adequate for crab cavity locations.

Crab Crossing at JLEIC

- Effective head-on bunch collisions restored with 50 mrad crossing angle
- Local crab scheme
- Two cavities are placed at (2n+1)π/2 phase advance relative to IP
- Optimal β_x at locations of crab cavities for minimizing the required kicking voltage
- Deflective crabbing using transverse electric field of SRF cavities (as at KEK-B)
 - Design and analysis completed
 - Prototype fabricated and characterized
 - Final testing with promising results

Crab crossing Design Parameters

Parameter	Unit	Electron	Proton	
Energy	GeV	10	100	
Frequency	MHz	952.6		
Crossing angle	mrad	50		
β^*	cm	10		
$\beta_x @$ crab cavity location	m	200	400	
Integrated kicking voltage	MV	2.8	19.81	
			(0)	

Deflecting voltage:

$$V_{da} = \frac{cE_b \tan \frac{\varphi_{cross}}{2}}{e2\pi f \sqrt{\beta_{crab}\beta^*}}$$

S. Abeyratne et al, MEIC Design Summary, 2015

17

Bunch at IP with and w/o crabbing

Jefferson Lab

Crab stability with time

Crab angle jitter suppression, required for beam stability and minimum emittance impact.

Emittance growth with crabbing

Bunch matching in ion ring lattice

Crabbing OFF:

Particle distributions are matched after 1 turn.

Crabbing ON: Particle distribution is not matched after 1 turn.

Momentum spread in Phase Space

Of 1 particle over 3000 turns, crabbing off and on

Crab crossing plan

- Avoid sextupoles in crabbed beam region by switching optics sections
- Optimize the crabbing system for best beam stability and minimum emittance impact
- Study effects of and specify tolerances on crab cavity errors such as misalignment, amplitude and phase instability
- Study and specify tolerances on cavity multipole components by estimating impact on the ring's dynamic aperture
- Specify high-order mode requirements
- Specify requirement on the beam parameters such as maximum bunch length
- Evaluate and optimize impedance of the crab cavities
- Complete beam dynamics simulation using an optimized field map satisfying the determined requirements

Acknowledgements

- Vasiliy Morozov
- Jean Delayen, ODU
- Jlab CASA members
- JLEIC Collaboration

