

Progress on the Multi-Ion Injector Linac Design

B. Mustapha, A. Plastun¹, Z. Conway and P. Ostroumov² Physics Division, Argonne National Laboratory (¹Visiting from ITEP, Moscow; ²Now at FRIB, MSU)

JLEIC Collaboration Meeting, October 5-7, 2016, JLab, VA

Outline

Recent Updates to the Ion Linac Design
Two RFQs: One for light ions & one for heavy ions
IH-DTL: No frequency jump & FODO lattice instead of triplets
Two LEBTs designed for light & heavy ion beams

- Design of Different Linac Sections
 - LEBTs
 - RFQs
 - IH-FODO
 - SRF Linac

□ Very Preliminary: Alternative Options for the JLEIC Ion Complex

- Compact 3 GeV Booster (Octagonal or Race-Track)
- □ Electron Ring as Ion Booster: 3 Possible Scenarios/Energies
- □ Possible Collider Staging: 60 GeV with RT to 200 GeV with SC magnets

Updated Linac Design & Layout

- Two RFQs: For light ions $(q/A \sim 1/2)$ and for heavy ions $(q/A \sim 1/7)$
 - Different emittances and voltage requirements for polarized light ions and heavy ions
- Selected RT Structure: IH-DTL with FODO Lattice instead of Triplets
 - □ No Frequency jump & FODO focusing \rightarrow Significantly better beam dynamics
- Separate LEBTs and MEBTs for light and heavy ions
- Stripper and SRF section are the same

LEBTs: From Ion Sources to the RFQs

Similar to CERN Linac3 LEBT

Similar to BNL LEBT

B. Mustapha

Progress on the Multi-Ion Injector Linac Design

Two Separate RFQs for Light lons and Heavy lons

- Light-Ion RFQ is designed for polarized beams with 2 π mm mrad normalized transverse emittance
- ✓ Heavy-Ion RFQ is designed for ion with Z/A ≤ 7 with 0.5 π mm mrad normalized transverse emittance

Parameter	Heavy ion	Light ion	Units
Frequency	100		MHz
Energy range	10 - 500	15 - 500	keV/u
Highest - A/Q	7	2	
Length	5.6	2.0	m
Average radius	3.7	7.0	mm
Voltage	70	103	kV
Transmission	99	99	%
Quality factor	6600	7200	
RF power consumption	210	120	kW
(structure with windows)			
Output longitudinal emittance (Norm., 90%)	4.5	4.9	π keV/u ns

Light Ion RFQ: Proposed Structure

B. Mustapha

Light Ion RFQ: 3D Modeling and Multi-Physics Analysis

7

IH-DTL with FODO Focusing Lattice

✓ 3 Tanks – 20 Quadrupoles in FODO arrangements

Light Ion Beam Dynamics in the IH-DTL

Input beam: 0.5 MeV/u, polarized deuterons, 2 π.mm.mrad and 2 mA
Output beam: ~ 5 MeV/u, 13% Transverse emittance growth – 0% Longitudinal

B. Mustapha

Progress on the Multi-Ion Injector Linac Design

Heavy Ion Beam Dynamics in the IH-DTL

Input beam: 0.5 MeV/u, lead ions, 0.5 π.mm.mrad and 0.5 mA
Output beam: ~ 5 MeV/u, 10% Transverse emittance growth – 0% Longitudinal

B. Mustapha

Progress on the Multi-Ion Injector Linac Design

Deuterons Beam Dynamics in the RFQ + IH-DTL

Lead Beam Dynamics in the RFQ + IH-DTL

Stripper and SRF Linac Section

Progress on the Multi-Ion Injector Linac Design

Very Preliminary: Alternative Options for the JLEIC Ion Complex

B. Mustapha

Motivations / Driving Forces

□ Reduce the footprint of the Ion Complex → Potential cost saving
□ Compact ring as pre-booster (3 GeV, RT, no figure-8 required)
□ Consolidate: Use electron ring as large ion booster (10-20 GeV)

Lower the risk of the project by using proven technology of roomtemperature or fully superconducting magnets

Possible Staging of the project

- □ First Stage: 60 GeV Collider with RT magnets only (Cost effective)
- □ Second Stage: Upgrade to 200 GeV with fully superconducting

Layout of A Possible Alternative ...

- The Electron Storage Ring and Ion Collider Ring are stacked vertically in one tunnel
- Ion injection from the booster (e-ring) to the ion collider ring is a vertical bend

B. Mustapha

Electron Ring As Large Booster: 3 Scenarios

PEP-II Magnets	New Magnets for low-emittance version	New Magnets for higher ions energy & low emi.
Proton energy ~ 11 GeV Lead energy ~ 3.8 GeV Proton above transition n collider ring, ions NOT	Proton energy ~ 15 GeV Lead energy ~ 5.4 GeV Proton above transition in collider ring, ions NOT	Proton energy ~ 20 GeV Lead energy ~ 7.5 GeV Proton above transition in collider ring, Lead NOT
imited by dipole field 0.36 T for PEP-II Magnets)	Limited by RT quad gradient (20-25 T/m for RT)	Similar or shorter dipoles than low-emittance option for higher γ _{tr}
		Requires ~ 25% longer or 25% smaller RT quad aperture
		Consequences on electrons

✓ In all of these options, ion beams remain below transition in the e-ring = large ion booster

Possible Staging with RT than SC Magnets

- \Box First Stage: Fully RT Magnets \rightarrow 60 GeV Collider, possible with
 - □ 130 MeV Linac
 - 3 GeV Pre-Booster
 - □ 11 GeV Large Booster (E-ring with PEP-II Magnets)
 - □ 60 GeV Ion Collider Ring
- □ Second Stage: SC Magnets in Collider Ring \rightarrow 200-250 GeV Collider
 - □ 130 MeV Linac
 - 3 GeV Pre-Booster
 - □ 15-20 GeV Large Booster (E-ring with New RT Magnets)
 - □ 200-250 GeV Ion Collider Ring with SC Magnets

Summary & Future Work

- Significant progress has been made in the design of the Injector Linac
- Two separate RFQs are use for light and heavy ions
- IH-DTL structure with FODO focusing lattice produced very good beam dynamics both longitudinally and transversely
- Just started investigating possible alternative options for the JLEIC Ion Complex
- First order: E-ring could be used as large booster for the ions ... more detailed work needed ...
- Possibility of Staging with first RT than SC magnets in Collider Ring

B. Mustapha