Overview of eRHIC Design

Christoph Montag Collider-Accelerator Department Brookhaven National Laboratory

The Relativistic Heavy Ion Collider RHIC

- Two superconducting storage rings
- 3833.845 m circumference
- Energy range 25 250 GeV polarized protons, or 10 100 GeV/n gold
- Virtually all ion species, from (polarized) protons to uranium
- Two collider experiments, STAR and PHENIX
- Siberian snakes to preserve proton polarization on the ramp
- Spin rotators to manipulate spin orientation at IPs
- Operating since 2000

EIC Design Requirements based on EIC White Paper

- High luminosity, $10^{33} 10^{34} \text{ cm}^{-2} \text{sec}^{-1}$
- Large center-of-mass energy range, 20 140 GeV
- Longitudinal spin polarization of both beams
- Arbitrary spin patterns in both beams
- Large acceptance for forward scattered protons with 200 MeV/c $< p_{\perp} <$ 1.3 GeV/c, and a 4 mrad forward neutron cone

eRHIC Design Concept

Based on RHIC with

- 275 GeV polarized proton ring
- large circumference tunnel with long straights

By adding an 18 GeV electron accelerator (either linac or storage ring) in the same tunnel:

- high energy reach
- moderate synchrotron radition losses
- high luminosity

Ultimate eRHIC Design

- Meets all requirements of EIC White Paper
- Luminosity $10^{33} 10^{34} \text{ cm}^{-2} \text{sec}^{-1}$ over entire center-of-mass energy range 20 140 GeV

However:

- Based on high-risk, novel technologies:
- high current Energy-Recovery Linac (ERL),
- 50 mA polarized electron gun,
- Coherent electron Cooling (CeC),
- Fixed-Field Alternating Gradient (FFAG) focusing

 \Rightarrow To move forward, start with a low-risk design at lower luminosity (10³² – 10³³) that can later be upgraded

Acceptable Risk Design

Requirements for an initial phase:

- CM energy: 20 140 GeV
- \bullet Luminosity: $0.1-1\times 10^{33};$ upgradable to $1-10\times 10^{33}$
- Frequent changes to the spin-sign assignment of the electron beam as determined by the Physics requirements
- Beam divergencies at the IR not exceeding the experimental requirements

Requirements are identical to Ultimate Design, except for lower luminosity

Can be met with either a linac-ring or a ring-ring design

Ring-Ring vs. Linac-Ring

Ring-Ring:

Many bunches, Amperelevel beam currents Limited by beam-beam effect on electrons, $\xi \le 0.1$

Linac-Ring:

Low emittance bunches No beam-beam limit on electrons Relatively large electron β^* allows large l^*

Main challenge:

Interaction region with focusing of both beams near IP, plus masking of synchrotron radiation Main challenges: High intensity polarized electron gun HOM power in ERL linac

Parameters at Highest Luminosity

	Ring-Ring		Linac-Ring	
Parameter	е	р	е	р
Energy [GeV]	10	250	13	250
\sqrt{s} [GeV]	100		105	
No. of bunches	330		110	
Bunch freq. [MHz]	28.2		9.4	
Bunch intensity [10 ¹⁰]	31	12	3.3	30
Beam current [mA]	1300	500	50	415
Emittance h/v [nm]	24.2/3.86	17.7/6.7	2.5/2.5	3.4/3.4
Vertical β^* [cm]	7.4	4.2	17.5	13
Horizontal β^* [cm]	70	95	35	26
rms beam div. at IP h/v [μ rad]	186/230	137/400	85/120	115/163
max. beam-beam parameter	0.1	0.015	1	0.004
e-beam disruption parameter	neglig.		6	
rms bunch length [cm]	0.8	8	0.3	16
Polarization [%]	80	70	80	70
Luminosity $[10^{33} \text{ cm}^{-2} \text{sec}^{-1}]$	2.6		1.2	

- \bullet For low- p_{\perp} acceptance, β^* needs to be increased
- Event rate at $p_{\perp} = 200 \, {\rm MeV}$ is high only short running time required

for sufficient statistics despite lower luminosity

Main Features of the Linac-Ring Design

• Superconducting multi-turn energy-recovery linac (ERL) $3 \text{ GeV} (2 \times 1.5 \text{ GeV})$ superconducting linac with 6 return loops to 18 GeV

High current polarized electron source
 Eight individual guns in parallel, each delivering 6.25 mA,
 with bunch-by-bunch switching between them

• Low-emittance RHIC protons and stochastically cooled heavy ions

Reliable generation and preservation of low emittance proton beams to be demonstrated

- 14 mrad crossing angle requiring crab cavities
- Spin rotators after injector and before IP

Superconducting Multi-Pass ERL

- \bullet Two 200 m long linacs, 1.5 GeV each, 36 cryo modules with 18 MV/m
- 6 vertically stacked isochronous recirculating loops in the RHIC tunnel to reach 18 GeV

Cryo module

- Two 647 MHz 5-cell cavities (JLab/FNAL design) per module
- 72 modules total (36 per linac)
- 18 MV/m, CW, $Q = 3 \times 10^{10}$
- RF power 26.7 kW, HOM power 12-30 kW per module
- Total length 5.5 m, U = 42 MV

• Beampipe HOM dampers (demonstrated at KEKB and Cornell)

Polarized Electron Source

Need 3×10^{10} electrons/bunch at 9.4 MHz (50 mA), with 80% polarization

Meet this requirement using 8 guns in parallel, each providing 5.3 nC bunches at 1.2 MHz

- Beam current similar to JLab polarized gun (4 mA), but
 5 A peak current is more than factor 10 higher (0.3 A)
- 5 A peak current is similar to SLC polarized gun (2.7 A), but average current of 6.25 mA is much larger
- eRHIC gun needs combination of both

Experimental verification required, in progress

High-Intensity Electron Injector

10 MeV injector consisting of 8 individual eletron guns, combiner section, buncher and pre-accelerator

Ongoing studies:

- Develop test gun and laser system with eRHIC parameters
- Finalize technicalities of combiner section
- Detailed 3D-studies of high charge beam transport
- Experimental studies of cathode lifetime

Main Features of the Ring-Ring Design

- Full energy polarized electrons injected and stored in storage ring
- Many bunches, high electron beam current, flat beams
- IR geometry and detector capable of accepting large electron beam emittance
- 22 mrad crossing angle requiring crab cavities
- Bunch-to-bunch spin sign control by full energy injection and frequent bunch replacement
- Larger transverse emittances and lower bunch intensities than existing RHIC hadron beams
- Electron beam current limited by 10 MW synchrotron radiation power

Interaction Region

- Interleaved arrangement of electron and hadron quadrupoles
- 22 mrad total crossing angle
- Beam size in crab cavity region independent of energy crab cavity apertures can be rather small, thus allowing for high frequency

Electron polarization

Ramping would destroy electron polarization Electrons self-polarize at store due to synchrotron radiation:

Self-polarization is not viable except at highest energies ⇒ Need a full-energy polarized injector Advantage of a full-energy polarized injector:

- Electron spin patterns with alternating polarization (as in RHIC proton fills) are required for single-spin physics
- Such fill patterns can be generated by a full-energy polarized injector
- Bunches with the "wrong" (unnatural) polarization direction will slowly flip into the "right" orientation. Time scale given by Sokolov-Ternov self-polarization time
- Bunch-by-bunch replacement at 1 Hz (360 bunches in 6 min) yields sufficient polarization even at full energy with $\tau_{S-T} = 30 \text{ min}$
- Requires good intensity lifetime > 1 h to limit beam-beam effect of electron bunch replacement on proton bunches

Electron Injector

- Recirculating linac based on XFEL/LCLS-2 cryomodules, or 650 MHz SRF cavities identical to those in Linac-Ring scheme
- With two 3 GeV linacs in two adjacent RHIC straights, two recirculations to 18 GeV

Short, sharp bends to increase damping decrement at low energies, thus allowing high electron beam-beam parameter $\xi = 0.1$

Studies and R&D Items

- Linac-Ring R&D items:
- High-current polarized electron gun
- HOM damping for $12\times 50\,\text{mA}$ total current
- Multi-pass high current ERL
- FFAG prototype (cost savings)
- Ring-Ring Studies:
- Beam-beam simulations
- Electron polarization studies
- Multi-turn off-energy injection to eliminate need for accumulator ring
- Common R&D items:
- Crab cavities
- In-situ beampipe copper coating

Multi-Pass Test ERL at Cornell eRHIC linac-ring prototype

- Four-pass ERL with FFAG arcs
- 48.5 MeV CW SRF linac
- Permanent magnets used for recircultion arcs
- Test of spreader/combiner sections, and adiabatic transition from arcs to straights

Crab Cavity Development

- Both linac-ring and ring-ring IRs are based on a crossing angle
- Need crab cavities to restore luminosity, and avoid synchro-betatron resonances
- Prototypes being developed in collaboration with CERN, needed for LHC luminosity upgrade

Critical R&D effort for any EIC

In-situ Beampipe Copper Coating

• Resistive wall losses in stainless steel beampipes due to increased number of bunches in ring-ring design and short bunch length in ultimate linac-ring design exceed allowable cryo load

• Need copper coating to increase conductivity

• In-situ beam pipe coating of an entire machine has never been done, but successful coating of 20 m combination of cold-bore RHIC tubing & bellows having room temperature conductivity 85% of solid copper was achieved.

50 cm long cathode magnetron being inserted into a RHIC-type beam pipe

Luminosity Upgrade

- Luminosities in 10³⁴ cm⁻²sec⁻¹ range require strong hadron cooling
- Both linac-ring and ring-ring designs allow luminosity upgrade
- Ring-ring upgrade to 10^{34} cm⁻²sec⁻¹ also requires increased number of bunches - 1320 instead of initial 330
- Alternatively, ring-ring scheme can be converted to linacring by operating full-energy injector in ERL mode
- Intermediate luminosity upgrade for ring-ring can be achieved at all but the highest electron energies by doubling the initial number of bunches, to 660

 \Rightarrow peak luminosity 5.2 · 10³³ cm⁻²sec⁻¹ without cooling

 Proof-of-principle of very strong Coherent electron Cooling (CeC) in progress at RHIC

Summary

- eRHIC design covers the entire EIC White Paper physics case, with $10^{32} 10^{33} \,\mathrm{cm}^{-2} \mathrm{sec}^{-1}$ luminosities
- Two initial design options under study:
- ERL-based linac-ring design with high performance at relatively low technical risk

- ring-ring design with high preformance, based on existing technology

- Need to carry out critical R&D on crab cavities, 50 mA polarized electron source
- Cost effective upgrade to $10^{34} \,\mathrm{cm}^{-2} \mathrm{sec}^{-1}$ possible for both design schemes, using strong hadron cooling
- Crucial R&D underway to mitigate risk of strong hadron cooling (CeC Proof-of-Principle)