

Update on JLEIC Detector Design

Markus Diefenthaler (mdiefent@jlab.org)

JLEIC Collaboration Meeting Fall 2016, October 5th- 7th 2016

Prologue The Electron-Ion Collider Project

The glue that binds us all

Electron-Proton Scattering

J**S**A

Ability to change **Q**² changes the resolution scale

resolution

Ability to change **x** projects out different configurations where different dynamics dominate

ENERGY Office of Science

JLEIC Collaboration Meeting Fall 2016, October 6th 2016

4

Parton distribution functions (PDF)

JLEIC Collaboration Meeting Fall 2016, October 6th 2016

ENERGY Office of Science

< JSA

Jefferson Lab

EIC: ideal facility for studying QCD

October 6th 2016

-ISA

ENERGY

Science

Various beam energy:

broad Q² range for

- studying evolution to Q² of ~1000 GeV²
- disentangling nonperturbative and perturbative regimes
- overlap with existing experiments

High luminosity:

high precision

- for various measurements
- in various configurations

EIC: ideal facility for studying QCD

Polarization

Understanding hadron structure cannot be done without understanding spin:

- polarized electrons and
- polarized protons/light ions

Transverse and longitudinal polarization of light ions (p, d, ³He):

- 3D imaging in space and momentum
- spin-orbit correlations

Section Detector Design – General design considerations

DIS and final-state particles

Aim of EIC is nucleon and nuclear structure beyond the longitudinal description. This makes the requirements for the machine and detector different from all previous colliders **including HERA**.

ENERGY

E_{ion} and **E**_{ion}/**E**_{electron}

This optimization is on-going: $E_{ion} < 100 \text{ GeV}$ and $E_{ion}/E_{electron} < 10$, current status \rightarrow drives JLEIC baseline

> JLEIC Collaboration Meeting Fall 2016, October 6th 2016

ENERGY

Science

Final-state particles

Science

Interaction region concept

NOT TO SCALE!

JLEIC Collaboration Meeting Fall 2016, October 6th 2016

Office of Science

ENERGY

Interaction region concept

Total acceptance detector (and IR)

Detector and interaction region

ENERGY

Science

Section Central Detector

Basic kinematic reconstruction

JLEIC Collaboration Meeting Fall 2016, October 6th 2016

ENERGY

Science

Electron isoline plot

U.S. DEPARTMENT OF Office of Science

< JSA

Quark (jet) isoline plot

October 6th 2016

18

Particle distribution

	E-endcap	Barrel	H-endcap
E'e	<8GeV	8-50GeV	>50 GeV
Ejet	<10GeV	~10-50GeV	20-100GeV
E,hadrons	<10GeV	<15GeV	~15-50GeV
occupancy	low	medium	high

Central detector overview

JLEIC Collaboration Meeting Fall 2016, October 6th 2016 20

U.S. DEPARTMENT OF Office of Science

S

Generic EIC detector R&D program

October 6th 2016 21

EIC User Group

JLEIC Collaboration Meeting Fall 2016, October 6th 2016

22

Section Detectors in electron-beam direction

Chicane for electron-forward detection

October 6th 2016

Luminosity measurement

Use Bethe-Heitler process to monitor luminosity (same as HERA)

SA

Low-Q² tagger

Polarization measurement

Note the off-momentum electrons from IP does not enter the luminosity Compton tracker.

Compton polarimetry

Existing Polarimeter in Hall C at JLab: Achieved 0.6% Precision

JSA

Section Detectors in ion-beam direction

Ion optics for near-beam detection

Far-forward ion detection

Forward detection requirements:

- good acceptance for recoils nucleons (rigidity close to beam)
- good acceptance for fragments (rigidity different than beam)

-ISA

An example: Diffractive DIS (DDIS)

Identify the scattered proton: distinguish from proton dissociation Measure $X_L = E_p'/E_p$, and P_t (or t) (equiv. to measuring M_x)

- SA

Acceptance for p' in DDIS

Acceptance in diffractive peak (X_L>~.98) ZEUS: ~2% JLEIC: ~100%

Epilogue Concluding remarks

Complementary detector scenarios

- two detectors optimized for different capabilities and using complementary technologies allow better performance and improved cost-effectiveness
- complementary sensitivity to physics, backgrounds and fake effects
- cross-checks on discoveries and important physics results
- combine results for precision measurements:
 - a combined reduction of systematics
 - in a ring-ring collider: detector luminosities can be added
- higher efficiency of operation
- increase scientific productivity

IP1: multi-purpose, full acceptance detector (this presentation)

- focus on single track reconstruction and PID
- optimized to support the broad physics program in the white paper

IP2: complementary, smaller detector

ENERGY Science

• focus on jet reconstruction and calorimetry

Towards the realization of the EIC

JLEIC Documentation Series – 001

Science

Jefferson Lab Electron-Ion Collider (JLEIC):

An Introduction to the Interaction Region and Detector Design

Authored by the JLEIC Detector and Interaction Region Group

Jefferson Lab Electron-Ion Collider is a proposed realization of the Electron-Ion Collider (EIC) [1]. The EIC has been chosen as the highest priority new construction for Nuclear Physics in the US [2]. We discuss the main drivers for design of the JLEIC interaction region and the detectors, and the layout that was developed in response to these drivers.

[1] A. Accardi et al., Electron Ion Collider: The Next QCD Frontier - Understanding the glue that binds us all, JLAB-PHY12-1652, 2012.
[2] A. Aprahaman et al., Reaching for the horizon: The 2015 long range plan for nuclear science, 2015.

Jefferson Lab

- Accelerator Physicists, Experimentalists, and Theoreticians are thinking about and defining the EIC research program. It's important that many labs and universities - not only from within the NP community - get involved.
- Close collaboration among Accelerator Physicists, Experimentalists, and Theoreticians at Jefferson Lab.
- Concept finalized for the JLEIC Interaction and Detector Region.
- Documentation in preparation.
- Detailed detector simulations are required to verify the design and optimize the physics reach.

