Recent activity toward high-Q at KEK

2016/11/3 TTC High-Q meeting KEK Kensei Umemori

<u>Contents</u>

- N-doping
 - ≻N-doping @ KEK
 - ► Results of VT @KEK

➢ Results of VT @FNAL

Shown at TTC meeting@SLAC

Shown at IPAC16

► N-doping @FNAL and VT@FNAL for KEK cavity

Measure against magnetic field

➤Study on magnetization

- ➤Cancelling coil
- R&D plan of KEK

High-Q and high-gradient study for ILC

• Summary

N-doping (800 C)

N-doping system at large furnace

• N-doping system was constructed on large furnace which was for 9-cell cavity annealing.

- Nitrogen pressure is controlled by variable leak valve.
- Nitrogen pressure is monitored by pirani gauge.
 - No cryopump. Diffusion pump works.

<u>N-doping at KEK</u>

- Upto 800C with 3hours
- Keep 800C, 3hours
- N-doping
 - -- Stable state within 1min.
 - -- Keep 2.7Pa, 20min.
 - -- After valve close,

vacuum recover quickly

- Keep 800C, 30min
- Heater OFF \Rightarrow cool down

We tried three N-doping parameter (1) 800deg, 3h + 3.3Pa Ndope, 2min + 800deg, 6min (2) 800deg, 3h + 5.5Pa Ndope, 20min + 800deg, 30min (3) 800deg, 3h + 2.7Pa Ndope, 20min + 800deg, 30min

History of Fine grain(ULVAC) single-cell cavity

Date	Process	Details
2015/2/12	EP-1	100um
2015/2	Anneal	750deg, 3h
2015/3/3	EP-2(1)	20um EP-2, HPR, Assembly, Baking(140deg, 48hours)
2015/3/12	VT(1)	Confirm Eacc and Qo
2015/5/19	N-dope(3)	800deg, 3h + 2.7Pa N-dope, 20min + 800deg, 6min
2015/6/2	EP-2(2)	15um EP-2, HPR, Assembly, Baking(140deg, 48hours)
2015/6/11	VT(2)	
2015/6/16	EP-2(3)	15um EP-2, HPR, Assembly, Baking(140deg, 48hours)
2015/6/25	VT(3)	
2015/11/24	EP-2(4)	5um EP-2, HPR, Assembly, (No baking)
2015/12/21	VT(4)	
2016/3/16	VT(5)@FNAL	
2016/3/21	HPR	HPR, Assembly, (No baking)
2016/3/25	VT(6)@FNAL	

VT results (2.7Pa N-dope, 20min)

- Two times VT after N-doping, with 15um EP and additional 15um EP.
 - Q values were drastically degraded.
 - Quench field decreased to 13MV/m.
- Q values and quench field recovered little bit after additional EP.

For tried three N-doping parameters, but everytime Rres becomes worse.

Why N-doping does not work?

Possible reason of bad results are followings.

- 1. Nb surface was not N-doped correctly.
 - Something wrong?
 - Difference of vacuum system? (Cryopump or diffusion pump, oil-free?)
 - Difference on N-doping system?

2. Effect due to remnant field on vertical test cryostat. ⇒ VT@FNAL(March)

- > Trapping of magnetic field on N-doped surface is more sensitive to remnant field on vertical test cryostat. (More than a few \sim several times sensitive?)
- ≻ KEK's VT cryostat has more than 10 mG.
- ➤ Also depend on cooling procedure.
- 3. Cavity or material is wrong?
 - ➤ Cavity was made at KEK-CFF.
 - ➤ Nb supplier is ULVAC and Tokyo-Denkai.

Vertical test at FNAL (March)

- Vertical test of KEK N-doped cavity was carried out at FNAL, where magnetic field inside VT dewar is very small.
- However, Q-value was not good as nominal N-doping cavity.

Even in zero magnetics field, still Rres was too large.

Why N-doping does not work?

Possible reason of bad results are followings.

- 1. Nb surface was not N-doped correctly.
 - Something wrong?
 - Difference of vacuum system? (Cryopump or diffusion pump, oil-free?)
 - Difference on N-doping system?

2. Effect due to remnant field on vertical test cryostat. ⇒ VT@FNAL(March)

> Trapping of magnetic field on N-doped surface is more sensitive to remnant field on vertical test cryostat. (ivore than a few \sim several times sensitive?)

► KEK's VT cryostat has more than 10 mG.

➢ Also depend on cooling procedure.

- 3. Cavity or material is wrong? ⇒ N-dope@FNAL and VT@FNAL(October)
 - ➤ Cavity is made at KEK-CFF.
 - ➤ Nb supplier is ULVAC and Tokyo-Denkai.

N-dope of KEK cavity @FNAL

- 2016/7/9 EP 60um
- 2016/7/12 N-doping (FNAL standard recipe 2/6)

▶800 deg, 3 hours
▶2min N 25mTorr
▶800 deg VAC, 6min
▶Cooling down

- 2016/9/13 EP 6um
- 2016/10/25, 26 VT

2 Flux gate at equator2 Cernox at Equator and 2 at both beampipeCancelling coil

Q = 1e11 at 1.5 K with zero magnetic field Q = 2.8e10 at 2.0 K with zero field Q = 2.4e10 at 1.5 K with 20 mG

Why N-doping does not work?

Possible reason of bad results are followings.

- 1. Nb surface was not N-doped correctly.
 - Something wrong?
 - Difference of vacuum system? (Cryopump or diffusion pump, oil-free?)
 - Difference on N-doping system?

2. Effect due to remnant field on vertical test cryostat. ⇒ VT@FNAL(March)

> Trapping of magnetic field on N-doped surface is more sensitive to remnant field on vertical test cryostat (More than a few \sim several times sensitive?)

➢ KEK's VT cryostat has more than 10 mG.

> Also depend on cooling procedure.

3. Cavity or material is wrong? \Rightarrow N-dope@FNAL and VT@ENAL(October)

Cavity is made at KEK-CFF.

Nb supplier is ULVAC and Tokyo-Denkai.

Measure against magnetic field

Study on magnetized components (example)

From T. Yanagimachi(9/26)

No.	name	Magnetic field [mG]
14	Φ 034 metal valve (1)	430
15	Φ 034 metal valve (which observed vacuum leak)	80
19	Φ 034 metal valve 2	59
25	Volts and washers for support of input coupler shaft	140
28	Nuts and washers for hanging cavity	110
29	Stat-volts, nuts and washers for hanging cavity	300

Measure inside magnetic shield by using 3-axis flux gate sensor.

Measurement inside cryostat

- Measure magnetic field around equator of single-cell cavity inside the cryostat by 3-axis flux gate sensor, while changing condition of flanges and jigs.
- Measurements were done at 0, 90, 180 and 270 degree of equator.
- Conditions
 - ① Only cavity; without flanges and minimum jigs.
 - ② Almost full setup with flanges and jigs
 - ③ One tuner shaft for input coupler was removed from ②
 - ④ Both of tuner shafts for input coupler were removed from ②
 - 5 Changed Φ034 metal valve with highly magnetized one. Other conditions are same with ④

No	Flang e	270 deg Shaft	90 deg Shaft	Metal valve	Angl e	Bx [mG]	By[mG]	Bz[mG]	B[mG]
1 No	Ne	No	No	0	1	0	-1	2	
				90	1	1	-1	2	
	NO	NO	INO	NO	180	0	0	-1	1
					270	1	0	-2	2
2 Yes				0	-7	-11	-6	15	
	Voc	Yes	Yes	Yes (A)	90	-6	2	-9	11
	res				180	6	-11	-7	15
				270	8	130	-49	139	
3 Yes				0	1	0	-2	2	
	Voc	No	Yes	Yes (A)	90	-5	9	-5	12
	ies				180	0	0	-2	2
				270	0	0	-2	2	
4 Yes				0	1	1	-2	2	
	Vec	No	No	Yes (A)	90	0	1	-1	2
	ies	INO			180				
				270					

Remove one shaft from setup

Removed shaft for input coupler tuning

SUS shafts were highly magnetized. More than 1 G!! Already exchanged with Ti shafts.

From slide M. Masuzawa(2016/8/26)

Solenoid coil for control magnetic fie

Inner of bobbin:	326 mm
Outer of solenoid :	339 mm
Length of bobbin:	~420 mm
No of turn:	64 Turns

Resistance(RT) :

- 2.36Ω
- Design value : B0= 0.7 G @ NI=32 AT

0.2

0.4

0.6

- ~850 mG can be generated by +/-0.5A of current
- Linearity is fine •

VT setup for R-6 cavity

Carbon sensor, X-ray sensor (PIN diode), flux gate sensor, solenoid coil were used.

Control of mag. field

- Flux gate was located at equator 60 deg(FG1) and 240 deg(FG2)
- At RT

≻FG1 : ~0.5 mG
 ≻FG2 : ~4.2 mG (large)

- Low temp(20K)
 FG1 : ~6.5 mG
 FG2 : ~9.7 mG
- With solenoid (+4.56mA)
 FG1 : ~ -1.55 mG
 FG2 : ~+1.55mG
- Cancelling was done successfully (at least considering values)

- Rres $\sim 6.6 n\Omega$
- Almost same or little bit better than nominal results for single cell cavity

- Quench at Eacc = 31 MV/m
- 10% of Qo droped after 2K self-pulse
- Magnetic field was trapped during quenches? (Heat spot is close to flux gate.)

R&D plan at KEK

R&D for ILC

A. Short-term R&D (2–3 years)

A-1. Niobium material preparation

- with new processing for sheeting and piping
- A-2. SRF cavity fabrication for *high gradient and high Q*
 - with a new surface process recipe provided by Fermilab
- A-3. Power input coupler fabrication
 - with new-ceramic window (w/o additional coating)

A-4. Cavity chemical treatment

- with vertical configuration and new chemical
 - KEK support high-Q & High-Gradient study for ILC.
 - Plan to buy new furnace next year.
 - Start from single-cell cavities.
 - Hope to obtain reliable results for 9-cell cavities within a few year.

Waveguides~400

Test with single-cell cavity

	Main pump system	Sub pump system	120 deg N2 (new)	Original N2- doping
FNAL with FNAL cavity	Cryo	Dry roots	O (Success)	O (Success)
FNAL with KEK cavity	Cryo	Dry roots	Test in future?	O (Success)
DESY with DESY cavity	TMP	Dry	Test	
KEK with KEK cavity	Diffusion	Mechanical booster + Rotary	Test?	× (Fail)
J-PARC with KEK cavity	Cryo	TMP + scroll	Test	Test

Furnace at J-PARC

- J-PARC has oil-frre furnace with cryo-pump and TMP.
- We try to use it for N-doping / Ninfusion.
- Preparation are is clean with filter, but furnace is not.

<u>Summary</u>

- KEK still continue efforts for high-Q.
- N-doping at KEK was not good, but doping at FNAL was fine.
- We started to remove magnetized components
- Solenoid coil was produced and cancelling was tried.
- We will do surface analysis of Nb.
- KEK support "high-Q & high-gradient study" for ILC R&D.
- Hope to have good results within a few year.
- I would like to ask all of you to help us to realize good performance of cavity for ILC.

Backup slide

<u>N-doping system(1) ~small furnace</u>

- Simple N-doping system was constructed on small furnace which was for single-cell cavity annealing.
- Nitrogen pressure is controlled by manual valve.
- Nitrogen pressure is monitored by convection gauge.
 - No cryopump. Diffusion pump works.

History of Fine grain(Tokyo-denkai) single-cell cavity

Date	Process	Details	
2014/7~	EP-1(100um)⇒ an	neal⇒ EP-2(20um)⇒ VT⇒EP-2(20um)	
2015/1/22	VT(2)	Confirm Eacc and Qo at bulk Nb condition	
2015/2/9	N-dope(1)	800deg, 3h + 3.3Pa N-dope, 2min + 800deg, 6min	
2015/2/17	EP-2(3)	5um EP-2, HPR, Assembly	
2015/2/25	VT(3)		
2015/3/10	EP-2(4)	10um EP-2, PR, Assembly, Baking(140deg, 48hours)	
2015/3/18	VT(4)		
2015/4/3	N-dope(2)	800deg, 3h + 5.5Pa N-dope, 20min + 800deg, 30min	
2015/4/7	EP-2(5)	15um EP-2, PR, Assembly, Baking(140deg, 48hours)	
2015/4/16	VT(5)		
2015/5/11	EP-2(6)	10um EP-2, PR, Assembly, Baking(140deg, 48hours)	
2015/5/20	VT(6)		
2015/6/9	EP-2(7)	10um EP-2, PR, Assembly	
2015/6/18	VT(7)		
2015/8/18	EP-2(8)	10um EP-2, PR, Assembly, Baking(140deg, 48hours)	
2015/8/27	VT(8)		

VT results (3.3Pa N-dope, 2min)

• Two times VT after N-dope, with 5um EP and additional 10umEP

- Q value degraded compared with No N-doping case.
- Quench field decreased to 22MV/m and 30 MV/m.

VT results (5.5Pa N-dope, 20min)

- Four times VT was carried out after
 N-doping, with 15um EP and additional
 10um, 10um, 10um EP.
- Q values were always low.
- Quench field decreased to 17MV/m, and recovered with additional EP.
 Quench locations are different for every measurements.

Remnant field inside STF VT cryostat(@4K)

- Measurement was done with support tools for 9-cell measurement at 4K.
- Remnant field was 12~ 13mG.
- Part of contribution come from support tools ~5mG