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Improving Flux Expulsion & Proposals 



•  First data shows poor flux expulsion in the LCLS-II material
•  How do we convert material that shows poor expulsion? We 

want a “cure” that brings about stronger expulsion

•  Our experiments show that a 900°C furnace treatment can 
dramatically improve expulsion behavior 

•  I will review this data, then discuss proposed next steps

Improving Expulsion
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FIG. 3. Measured curves of flux expulsion as a function of
temperature difference ∆T from bottom to top of the cav-
ity cell as the cavity passes through Tc during cooldown. The
cavities measured from production group 1 (AES007-AES016)
showed strong expulsion behavior (top) while those from pro-
duction group 2 (AES017-AES022) showed strong trapping
(bottom). The cavities within a production group showed
similar behavior in spite of different preparations.

FIG. 4. Grain growth in AES011. The cavity was fabricated
from material with ∼100 µm sized grains, some of which grew
to the few mm-scale after only a few UHV furnace cycles at
800◦C that were each 3 hours long or shorter.

for several hours, and the impact appears to be stronger
for the cavity that received 1000◦C treatment.
The cavities measured in the survey had been treated

with a wide variety of surface processing techniques. By
comparing cavities from the same production group, with
similar furnace treatment history but different surface
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FIG. 5. Flux expulsion measurement in two 1.3 GHz fine
grain cavities, single cell ACC002 and 9-cell NR010, and one
large grain 1.3 GHz single cell, CBMM-D. It should be noted
that CBMM-D received more furnace cycles than ACC002 or
NR010.
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FIG. 6. AES017, a cavity from production group 2 that
showed strong flux trapping behavior, was converted to ex-
pel strongly after a 1000◦C 4 h furnace treatment. The inset
image shows the grain growth after treatment.

processing, we can study the effect of the surface on flux
expulsion. We can also study the effect of a given surface
treatment by comparing flux expulsion on a single cavity
before and after treatment. Figure 8 shows a number of
such comparisons, such as electropolished (EP) surface vs
buffered chemical polish (BCP) surface, N-doping with
2/6 recipe (see Refs. 1 and 15 for information on the
nitrogen-doping process and 2/6 recipe) vs EP, and as-
treated outside surface vs outside BCP. In each case, the
flux expulsion is nearly the same for cavities with similar
bulk history regardless of surface conditions.
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FIG. 5. Flux expulsion measurement in two 1.3 GHz fine
grain cavities, single cell ACC002 and 9-cell NR010, and one
large grain 1.3 GHz single cell, CBMM-D. It should be noted
that CBMM-D received more furnace cycles than ACC002 or
NR010.
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FIG. 6. AES017, a cavity from production group 2 that
showed strong flux trapping behavior, was converted to ex-
pel strongly after a 1000◦C 4 h furnace treatment. The inset
image shows the grain growth after treatment.

processing, we can study the effect of the surface on flux
expulsion. We can also study the effect of a given surface
treatment by comparing flux expulsion on a single cavity
before and after treatment. Figure 8 shows a number of
such comparisons, such as electropolished (EP) surface vs
buffered chemical polish (BCP) surface, N-doping with
2/6 recipe (see Refs. 1 and 15 for information on the
nitrogen-doping process and 2/6 recipe) vs EP, and as-
treated outside surface vs outside BCP. In each case, the
flux expulsion is nearly the same for cavities with similar
bulk history regardless of surface conditions.

Weak expulsion 

Strong expulsion 
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Measuring Expulsion
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Poor	  expulsion:	  BSC/BNC	  ~	  1.1	   Good	  expulsion:	  BSC/BNC	  ~	  1.6	  
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TE1AES017 – Baseline
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TE1AES017 – 1000°C 4 h
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TE1AES017 – 1000°C 4 h
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TE1AES017 – RF Data
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TE1AES018 & TE1AES022 – Baseline (no furnace)
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TE1AES018 & TE1AES022 – 800°C 6 h
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TE1AES018 & TE1AES022 – 1000°C 1 h & 900 C 3 h
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TE1AES018 & TE1AES022 – 1000°C 1 h & 900 C 3 h
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900°C	  3	  h:	  strong	  improvement	  in	  
flux	  expulsion,	  modest	  temp	  
increase	  compared	  to	  1000°C	  



TE1AES024 and TE1AES025 – Baseline
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TE1AES024 and TE1AES025 – 900°C 3 h
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TE1AES024 and TE1AES025 – 900°C 3 h
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TE1AES024 and TE1AES025 – RF Data, 2.0 K
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TE1AES024 and TE1AES025 – RF Data, 2.0 K
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TE1AES024 and TE1AES025 – RF Data, 1.5 K
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AES020 – Baseline
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AES020 – Light Tuning
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AES020 – Heavy Tuning
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AES020 – 900°C 3h
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This	  is	  flux	  raWo	  as	  a	  funcWon	  of	  	  temperature	  difference	  per	  cm	  about	  equator,	  there	  are	  2	  
sensors	  on	  the	  equator,	  each	  20mm	  away	  from	  equator	  at	  flux	  gate	  locaWon	  –	  I	  also	  have	  
the	  data	  for	  RDT-‐15	  which	  I	  used	  to	  baseline	  cooldown	  cycles	  as	  well.	  
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2022	  

RDTTD-‐01	  largest	  crystal	  and	  highest	  RRR	  ingot	  
1991	  

Slide	  from	  Ari	  
Palczewski	  
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Surface Alteration With No Significant Effect on Expulsion
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Different	  surface	  condiWons	  in	  caviWes	  with	  similar	  bulk	  history:	  similar	  expulsion	  



•  We have shown evidence that high temperature furnace 
treatment substantially improves expulsion behavior (i.e. 
expulsion as a function of thermal gradient)

•  For cavities that have shown little improvement after 3 h at 
800°C, treatment at 900°C for 3 h has had a strong impact

•  1000°C also has a strong impact even with short duration, but 
it may have a stronger influence on mechanical properties

•  Supporting data from both magnetic measurements and RF 
measurements

•  No significant changes from surface treatment – seems to be 
a bulk material effect

Summary of Measurements
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Flux Expulsion Improvement
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Flux Expulsion Improvement
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Flux Expulsion Improvement
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•  Vacuum cooling 
•  5 microns EP 

OpWon	  1:	  900	  C	  
treatment	  before	  

bulk	  EP	  

OpWon	  2:	  Change	  
degas	  temp	  to	  900	  C	  
(800	  C	  for	  doping)	  



•  Any mitigation methods for flux expulsion:
1.  should cause no production schedule delay

–   

2.  should be applicable during the production cycle, so that the 
overall linac cryogenic heat-load is reduced
–   

3.  should be inherently low-risk
–   

Requirements from Project
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•  Any mitigation methods for flux expulsion:
1.  should cause no production schedule delay

–  Changing degas temperature should have minimal impact on 
schedule

2.  should be applicable during the production cycle, so that the 
overall linac cryogenic heat-load is reduced
–  Need to continue evaluation of effectiveness of 900 C 

treatment on LCLS-II material single cells
3.  should be inherently low-risk

–  Need to evaluate mechanical concerns

Requirements from Project
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•  Need to evaluate change in sensitivity to plastic deformation 
in transit for 900°C vs 800°C (field flatness, tuning, trapped 
modes, etc.)

•  Some positive notes:
-  There is precedent – 1000 C baked cavity in LCLS-II prototype 

cryomodule
-  We expect both flux expulsion AND mechanical properties to be 

related to dislocation content and grain structure—if cavity that shows 
substantial grain growth after 800°C has acceptable mechanical 
properties, cavity that shows modest grain growth after 900°C may be 
as well

Mechanical Studies
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Proposal to be reviewed (1/2): 

1.  Complete an assessment of the data taken up to present, including 
single-cell, nine-cell (a few), and ambient magnetic-field 
suppression studies. 

•  Collect heat-treatment records of the 16 prototype cryomodule cavities. 
(at least one has been heat-treated above the nominal 800C.) 

•  Collect mechanical tuning-stability records for these cavities. 
•  Develop VT technique (to be used during production) to measure the 

effects of magnetic field in 9-cell bare and dressed cavities. 
•  Complete metallurgical crystallization testing and analysis of LCLS-II Nb 

sheet samples.  
 

LCLS-II Flux Expulsion Review, 30 June 2016 (M. Ross, SLAC) 
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Proposal (2/2): 

2.  Prepare to modify the cavity de-gas/doping heat-treatment recipe so 
that the cavity weldment is pre-annealed, i.e. the oven temperature 
is raised above the baseline temperature. 

•  Fix recipe-modification details using single-cell test results 
•  Evaluate associated risks, (most of which are mechanical), and develop 

counter-measures and test them with single cells and nine cells. 
3.  Assuming the associated risks are properly addressed, identify  

which cavity in the planned production cycle should be the first to 
receive the modified recipe.  

4.  Trigger the modified recipe to be applied following a review of 1) to 
3). 

 

LCLS-II Flux Expulsion Review, 30 June 2016 (M. Ross, SLAC) 



•  In parallel:
–  1-cell cavities – study impact of 900°C 3 h treatment on 1-cell 

cavities made from LCLS-II material
–  Mechanical studies – treat 9-cell cavity in inventory with 900°C 

3 h
–  Sample studies – study yield, modulus, hardness on LCLS-II 

material before/after 800°C and 900°C
•  9-cell cavities: Ideal step after this is to have 9-cell cavities 

with LCLS-II material fabricated and dressed treated at 
vendor to evaluate in full-scale test, including shipping from 
Europe
–  2 cavities for evaluation enough?

Next Steps
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9-cell Expulsion
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