

Pion electromagnetic form factor at high Q^2 from lattice QCD

Bipasha Chakraborty

[With Raul Briceno, Robert Edwards, Adithia Kusno, Kostas Orginos, David Richards, Frank Winter]

Definition

Simplest hadron

Space like "q":

$$q^{2} = (p_{2} - p_{1})^{2} \leq 0$$
$$Q^{2} = -q^{2}$$

$$\langle \pi^+(\vec{p}') | j^{\mu} | \pi^+(\vec{p}) \rangle = (p + p')^{\mu} F_{\pi}(Q^2)$$

(in units of e')

Interplay between hard and soft scales

Need better understanding of the transition to the asymptotic region

JLAB 12 GeV upgrade

Can we get some insight from first principles lattice QCD calculations to the question - where does the transition to pQCD happen?

Lattice recipe for meson correlators

- Expectation values of observables : $\int DUD\psi D\bar{\psi} exp(-\int L_{QCD} d^4x)$
- 4-D space-time lattice
- Gauge configurations: gluons + sea quarks

- Discretise : $L_q \equiv \bar{\psi}(\gamma_\mu D^\mu + m)\psi \rightarrow \bar{\psi}(\gamma.\Delta + ma)\psi$
- Inversion of Dirac matrix : propagator
- 2-point, 3-point correlation functions : extract meson properties
- Corrections for lattice artifacts

Two-point correlator construction

$$C_{ij}(t) = \langle 0|\mathcal{O}_i(t)\mathcal{O}_j^{\dagger}(0)|0\rangle$$

Basis of operators

$$\mathcal{O} \sim \bar{\psi} \Gamma \overleftrightarrow{D} \cdots \overleftrightarrow{D} \psi$$

• Optimized operator for state |n>

$$\Omega_{\mathfrak{n}}^{\dagger} = \sum_{i} w_{i}^{(\mathfrak{n})} \mathcal{O}_{i}^{\dagger}$$

in a variational sense by solving generalized eigenvalue problem-

$$C(t) v^{(\mathfrak{n})} = \lambda_{\mathfrak{n}}(t) C(t_0) v^{(\mathfrak{n})}$$

Diagonalize the correlation matrix – eigenvalues

$$\lambda_n(t) = \exp[-En(t - t_0)]$$

Two-point correlator construction

Correlator Construction: smearing of quark fields - 'distillation' with

$$\Box_{\vec{x}\vec{y}}(t) = \sum_{n=1}^{N_D} \xi_{\vec{x}}^{(n)}(t) \; \xi_{\vec{y}}^{(n)\dagger}(t) \qquad \qquad \text{Low lying hadron states}$$

Meson creation operator:

Operator construction with momentum projection

Meson Spectrum

Tools well established for spectroscopy

Hadron Spectrum Collaboration

Jozef J. Dudek et. al. Phys.Rev. D88 (2013)

Form factor calculation

Need three-point correlator

$$C_{\mathrm{f}\mu\mathrm{i}}(\Delta t, t) = \langle 0 | \mathcal{O}_{\mathrm{f}}(\Delta t) j_{\mu}(t) \mathcal{O}_{\mathrm{i}}^{\dagger}(0) | 0 \rangle$$

$$Z_V < \pi^+(p_2)|J^\mu_\pi(0)|\pi^+(p_1) > = e(p_1 + p_2)^\mu F_\pi(q^2)$$

Clover discretised fermion action

 Z_V calculated using $F_{\pi}(q^2 = 0) = 1$

Pion electromagnetic form factor: up to $Q^2 = 1 \text{ GeV}^2$

Towards higher Q^2

More difficult on lattice for higher momenta

Signal-to-noise ratio:

2-point correlators:

$$\exp[-(E_{\pi}(p)-2m_{\pi})t]$$

3-point correlators :

$$\exp[-(E_{\pi}(pi) + E_{\pi}(pf) - 2m_{\pi})t/2]$$

Minimize energies for a given Q^2 to get better signal

in the middle of the plateau

Towards higher Q^2

Achieve maximum Q^2 by using Breit frame : $\overrightarrow{P_f} = -\overrightarrow{P_i}$

Outlook

Immediate goals:

- \triangleright Pion form factor at $Q^2 \ge 6 \text{ GeV}^2$
- ➤ Extend to more ensembles with lighter pion masses , multiple volumes, multiple lattice spacings
- Take care of lattice artifacts

Long term goals:

- ➤ Hadron structure program distribution amplitude, PFDs, Quasi PDFs
- ➤ Extend to nulceons & more charges, moments, TMDs, GPDs