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QCD phase diagram

I Study response of the system to
change of external parameters,
i.e. temperature and baryon
density, asymptotic freedom
suggests a weakly interacting
phase1

I Experimental program: RHIC,
LHC, FAIR, NICA

I High-temperature phase:
deconfinement, restoration of
chiral symmetry

I QCD equation of state at zero
baryon density has been recently
calculated up to T = 400 MeV

1Collins, Perry (1975), Cabbibo, Parisi (1975)
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Earlier results on the equation of state

I First perturbative EoS calculation2 (left)

I First lattice pure gauge SU(2) EoS calculation3 (right)

2Kapusta (1979)
3Engels et al. (1981)
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Recent results up to T = 400 MeV
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I Comparison of the continuum results with HISQ4 and stout5 for
the trace anomaly, pressure and entropy density

I About 2σ deviations in the integrated quantities at the highest
temperature

4Bazavov et al. [HotQCD] (2014)
5Borsanyi et al. [WB] (2014)
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Approach to the perturbative limit

ε/p-3
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I The ratio of the trace anomaly and the pressure

Θµµ

p
=
ε

p
− 3

compared with perturbative calculations in the Hard Thermal
Loop (HTL)6 and Electrostatic QCD (EQCD)7 schemes

6Haque et al. (2014)
7Laine and Schroder (2006)
A. Bazavov (MSU) GHP2017 Feb 1, 2017 6 / 16



Approach to the perturbative limit
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I The trace anomaly (left) and pressure (right) compared with
HTL and EQCD calculations

I The black line is the HTL calculation with the renormalization
scale µ = 2πT

I Need to extend the lattice equation of state to higher
temperature - THIS TALK
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Lattice QCD

I Switch from Minkowski to
Euclidean space – imaginary time
formalism

I Define the theory on discrete
space-time lattice N3

s Nτ
I This is a gauge-invariant

regularization scheme with the
momentum cut-off π/a, a –
lattice spacing

I Temperature is set as T = 1/(aNτ )

I Fix Nτ , dial the lattice spacing to cover a temperature range

I The continuum limit is reached as 1/Nτ → 0
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Static quark potential and setting the scale
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I Fit the static quark
potential to the form:

V (r) = C +
B

r
+ σr

I Define an interpolating
quantity, r1:

r2 dV

dr

∣∣∣∣
r1

= 1

I The physical value r1 = 0.3106(14)(8)(4) fm

I Measuring r1/a allows one to define the lattice spacing

I Other choices of scale setting are, of course, possible, e.g. fK ,
mΩ, w0, etc.
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Setting the scale
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Trace anomaly
I The partition function

Z =

∫
DUDψ̄Dψ exp{−S}, S = Sg + Sf

I The trace anomaly

Θµµ ≡ ε− 3p = −T

V

d lnZ

d ln a
⇒ p

T 4
− p0

T 4
0

=

∫ T

T0

dT ′
ε− 3p

T ′5

I Requires subtraction of UV divergences (subtract divergent
vacuum contribution evaluated at the same values of the gauge
coupling):

ε− 3p

T 4
= Rβ[〈SG 〉0 − 〈SG 〉T ]

− RβRm[2ml(〈̄l l〉0 − 〈̄l l〉T ) + ms(〈s̄s〉0 − 〈s̄s〉T )]

Rβ(β) = −adβ
da
, Rm(β) =

1

m

dm

dβ
, β =

10

g2
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HISQ data sets

I We use the Highly Improved Staggered Quarks8 action for two
degenerate light quarks and physical-mass strange quark and the
tree-level Symanzik-improved gauge action

I Previous data set:

ml = ms/20

Nτ = 6, 8, 10, 12

β = 5.9, . . . , 7.825

I New data set:

ml = ms/5

Nτ = 8, 10, 12

β = 8, 8.2, 8.4

8Follana et al. [HPQCD] (2007)
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Results: trace anomaly

 0

 1

 2

 3

 4

 5

 200  300  400  500  600  700  800  900  1000

(e
-3

p
)/

T
4

T [MeV]

N
τ
=8

N
τ
=10

N
τ
=12

I The trace anomaly with HISQ ml = ms/20 and ml = ms/5 at
T > 400MeV
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Results: pressure
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I Pressure with HISQ at Nτ = 6, 8 and 10. Continuum stout
result and p4 at Nτ = 6 and 8 are shown for comparison.

I The cutoff effects with HISQ are consistent with those of free
theory.
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Conclusion

I Previous result by the HotQCD collaboration for the 2+1 QCD
equation of state at zero baryon chemical potential is being
extended to higher temperatures

I At temperatures above 400 MeV we use ensembles with
ml = ms/5

I Quark mass (in)dependence at high temperatures needs to be
quantified

I More statistics is required for Nτ = 12 ensembles to do the
continuum extrapolation

I The continuum limit at high temperature may be somewhat
above the stout result (as earlier results also indicate)
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