# The QCD equation of state at high temperatures

Alexei Bazavov (in collaboration with P. Petreczky, J. Weber et al.)

Michigan State University

Feb 1, 2017

#### Introduction

Earlier results on the equation of state

Lattice QCD setup

**Trace anomaly** 

#### Results

Conclusion



| A. Bazavov | (MSU) |
|------------|-------|
|------------|-------|



 Study response of the system to change of external parameters, i.e. temperature and baryon density, asymptotic freedom suggests a weakly interacting phase<sup>1</sup>



- Study response of the system to change of external parameters, i.e. temperature and baryon density, asymptotic freedom suggests a weakly interacting phase<sup>1</sup>
- Experimental program: RHIC, LHC, FAIR, NICA



- Study response of the system to change of external parameters, i.e. temperature and baryon density, asymptotic freedom suggests a weakly interacting phase<sup>1</sup>
- Experimental program: RHIC, LHC, FAIR, NICA
- High-temperature phase: deconfinement, restoration of chiral symmetry



- Study response of the system to change of external parameters, i.e. temperature and baryon density, asymptotic freedom suggests a weakly interacting phase<sup>1</sup>
- Experimental program: RHIC, LHC, FAIR, NICA
- High-temperature phase: deconfinement, restoration of chiral symmetry
- QCD equation of state at zero baryon density has been recently calculated up to T = 400 MeV

| Α. | Bazavov | (MSU |
|----|---------|------|
|    |         | •    |

#### Earlier results on the equation of state



- First perturbative EoS calculation<sup>2</sup> (left)
- ▶ First lattice pure gauge SU(2) EoS calculation<sup>3</sup> (right)

<sup>&</sup>lt;sup>2</sup>Kapusta (1979) <sup>3</sup>Engels et al. (1981)

#### Recent results up to T = 400 MeV



- Comparison of the continuum results with HISQ<sup>4</sup> and stout<sup>5</sup> for the trace anomaly, pressure and entropy density
- About 2σ deviations in the integrated quantities at the highest temperature

```
    <sup>4</sup>Bazavov et al. [HotQCD] (2014)
    <sup>5</sup>Borsanyi et al. [WB] (2014)
```

## Approach to the perturbative limit



The ratio of the trace anomaly and the pressure

$$\frac{\Theta^{\mu\mu}}{p} = \frac{\epsilon}{p} - 3$$

compared with perturbative calculations in the Hard Thermal Loop (HTL)^6 and Electrostatic QCD (EQCD)^7 schemes

<sup>6</sup>Haque et al. (2014) <sup>7</sup>Laine and Schroder (2006)

#### Approach to the perturbative limit



- The trace anomaly (left) and pressure (right) compared with HTL and EQCD calculations
- ► The black line is the HTL calculation with the renormalization scale  $\mu = 2\pi T$

#### Approach to the perturbative limit



- The trace anomaly (left) and pressure (right) compared with HTL and EQCD calculations
- ► The black line is the HTL calculation with the renormalization scale  $\mu = 2\pi T$
- Need to extend the lattice equation of state to higher temperature - THIS TALK



 Switch from Minkowski to Euclidean space – imaginary time formalism



- Switch from Minkowski to Euclidean space – imaginary time formalism
- Define the theory on discrete space-time lattice N<sub>s</sub><sup>3</sup>N<sub>\tau</sub>



- Switch from Minkowski to Euclidean space – imaginary time formalism
- ► Define the theory on discrete space-time lattice N<sup>3</sup><sub>s</sub>N<sub>τ</sub>
- ► This is a gauge-invariant regularization scheme with the momentum cut-off π/a, a – lattice spacing



- Switch from Minkowski to Euclidean space – imaginary time formalism
- ► Define the theory on discrete space-time lattice N<sup>3</sup><sub>s</sub>N<sub>τ</sub>
- This is a gauge-invariant regularization scheme with the momentum cut-off π/a, a – lattice spacing

• Temperature is set as  $T = 1/(aN_{ au})$ 



- Switch from Minkowski to Euclidean space – imaginary time formalism
- ► Define the theory on discrete space-time lattice N<sup>3</sup><sub>s</sub>N<sub>τ</sub>
- This is a gauge-invariant regularization scheme with the momentum cut-off π/a, a – lattice spacing
- Temperature is set as  $T = 1/(aN_{\tau})$
- Fix  $N_{\tau}$ , dial the lattice spacing to cover a temperature range



- Switch from Minkowski to Euclidean space – imaginary time formalism
- ► Define the theory on discrete space-time lattice N<sup>3</sup><sub>s</sub>N<sub>τ</sub>
- This is a gauge-invariant regularization scheme with the momentum cut-off π/a, a – lattice spacing
- Temperature is set as  $T = 1/(aN_{\tau})$
- Fix  $N_{\tau}$ , dial the lattice spacing to cover a temperature range
- The continuum limit is reached as  $1/N_{ au} 
  ightarrow 0$

#### Static quark potential and setting the scale



 Fit the static quark potential to the form:

$$V(r) = C + \frac{B}{r} + \sigma r$$

 Define an interpolating quantity, r<sub>1</sub>:

$$\left. r^2 \frac{dV}{dr} \right|_{r_1} = 1$$

#### Static quark potential and setting the scale



 Fit the static quark potential to the form:

$$V(r) = C + \frac{B}{r} + \sigma r$$

 Define an interpolating quantity, r<sub>1</sub>:

$$\left. r^2 \frac{dV}{dr} \right|_{r_1} = 1$$

- The physical value  $r_1 = 0.3106(14)(8)(4)$  fm
- Measuring  $r_1/a$  allows one to define the lattice spacing
- Other choices of scale setting are, of course, possible, e.g. f<sub>K</sub>, m<sub>Ω</sub>, w<sub>0</sub>, etc.

### Setting the scale



$$\frac{a}{r_1} = \frac{c_0 f(\beta) + c_2(10/\beta) f^3(\beta)}{1 + d_2(10/\beta) f^2(\beta)} , \quad f(\beta) = \left(\frac{10b_0}{\beta}\right)^{-b_1/(2b_0^2)} \exp(-\beta/(20b_0))$$
$$R_\beta = -a \frac{d\beta}{da} = \frac{r_1}{a} \left(\frac{d(r_1/a)}{d\beta}\right)^{-1} , \quad R_\beta^{2-\text{loop}} = 20b_0 + 200b_1/\beta$$

#### **Trace anomaly**

The partition function

$$Z = \int DUD\bar{\psi}D\psi \exp\{-S\}, \quad S = S_g + S_f$$

#### **Trace anomaly**

The partition function

$$Z = \int DUD\bar{\psi}D\psi \exp\{-S\}, \quad S = S_g + S_f$$

► The trace anomaly

$$\Theta^{\mu\mu} \equiv \varepsilon - 3p = -\frac{T}{V} \frac{d \ln Z}{d \ln a} \quad \Rightarrow \quad \frac{p}{T^4} - \frac{p_0}{T_0^4} = \int_{T_0}^{T} dT' \frac{\varepsilon - 3p}{T'^5}$$

#### **Trace anomaly**

The partition function

$$Z = \int DUD\bar{\psi}D\psi \exp\{-S\}, \quad S = S_g + S_f$$

The trace anomaly

$$\Theta^{\mu\mu} \equiv \varepsilon - 3p = -\frac{T}{V} \frac{d \ln Z}{d \ln a} \quad \Rightarrow \quad \frac{p}{T^4} - \frac{p_0}{T_0^4} = \int_{T_0}^T dT' \frac{\varepsilon - 3p}{T'^5}$$

 Requires subtraction of UV divergences (subtract divergent vacuum contribution evaluated at the same values of the gauge coupling):

$$\frac{\varepsilon - 3p}{T^4} = R_\beta [\langle S_G \rangle_0 - \langle S_G \rangle_T] - R_\beta R_m [2m_l (\langle \overline{l}l \rangle_0 - \langle \overline{l}l \rangle_T) + m_s (\langle \overline{s}s \rangle_0 - \langle \overline{s}s \rangle_T)] R_\beta(\beta) = -a \frac{d\beta}{da}, \quad R_m(\beta) = \frac{1}{m} \frac{dm}{d\beta}, \quad \beta = \frac{10}{g^2}$$

## HISQ data sets

- We use the Highly Improved Staggered Quarks<sup>8</sup> action for two degenerate light quarks and physical-mass strange quark and the tree-level Symanzik-improved gauge action
- Previous data set:

$$m_l = m_s/20$$
  
 $N_\tau = 6, 8, 10, 12$   
 $\beta = 5.9, \dots, 7.825$ 

<sup>8</sup>Follana et al. [HPQCD] (2007)

## **HISQ** data sets

- We use the Highly Improved Staggered Quarks<sup>8</sup> action for two degenerate light quarks and physical-mass strange quark and the tree-level Symanzik-improved gauge action
- Previous data set:

$$m_I = m_s/20$$
  
 $N_\tau = 6, 8, 10, 12$   
 $\beta = 5.9, \dots, 7.825$ 

New data set:

$$m_l = m_s/5$$
  
 $N_\tau = 8,10,12$   
 $\beta = 8,8.2,8.4$ 

<sup>8</sup>Follana et al. [HPQCD] (2007)

#### **Results: trace anomaly**



• The trace anomaly with HISQ  $m_l = m_s/20$ 

#### **Results: trace anomaly**



• The trace anomaly with HISQ  $m_l = m_s/20$  and  $m_l = m_s/5$  at T > 400 MeV

#### **Results: pressure**



- Pressure with HISQ at  $N_{\tau} = 6$ , 8 and 10. Continuum stout result and p4 at  $N_{\tau} = 6$  and 8 are shown for comparison.
- The cutoff effects with HISQ are consistent with those of free theory.

#### Conclusion

- Previous result by the HotQCD collaboration for the 2+1 QCD equation of state at zero baryon chemical potential is being extended to higher temperatures
- At temperatures above 400 MeV we use ensembles with  $m_l = m_s/5$
- Quark mass (in)dependence at high temperatures needs to be quantified
- More statistics is required for  $N_{\tau} = 12$  ensembles to do the continuum extrapolation
- The continuum limit at high temperature may be somewhat above the stout result (as earlier results also indicate)