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Jets are abundantly produced at the LHC

§ They are most common at the LHC
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Jets and its internal substructure as new tools

§ Jesse Thaler, 2015
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Hadron distribution inside the jet

§ Study a hadron distribution inside a fully reconstructed jet

§ The 1st observable is like collinear fragmentation function, while 
the 2nd observable is more like a TMD fragmentation function

§ LHC did a great deal of all kinds of measurements, and compared 
with Pythia simulation
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Collinear z-dependence: light hadron

§ ATLAS measurements at 7 TeV and 2.76 TeV
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1109.5816, ATLAS-CONF-2015-022

Light hadron



Collinear z-dependence: heavy meson

§ D meson production inside a jet
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ATLAS, arXiv:1112.4432



Relative momentum jT dependence

§ jT shape does not change much: how to link to TMD evolution
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1109.5816



Relative momentum jT dependence

§ jT shape does not change much: how to link to TMD evolution

8

1109.5816



RHIC measurements

§ Hadron azimuthal distribution inside the jet in transversely polarized p+p
collisions: spin dynamics
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STAR, in arXiv:1501.01220
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Questions

§ How does the factorization formalism look like?

§ How is the collinear z-distribution of hadrons in the jet related to 
the standard collinear fragmentation function?

§ How is the transverse momentum dependent jT-distribution of 
hadrons in the jet related to the usual TMD fragmentation function 
as measured in SIDIS and e+e-?
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Lots of work have been performed along these directions recently, and very active developments
e.g., Kaufmann, Mukherjee, Vogelsang; Bain, Makris, Mehen, Leibovich;

Kang, Ringer, Vitev; Neill, Scimenmi, Waalewijn; …



A further re-factorization for jet and jet substructure

§ For cross section or substructure of single inclusive jet production

11

p

p

a

b

c

p

p

h

a

b

c

d�pp!hX

dpT d⌘
=

X

a,b,c

fa ⌦ fb ⌦Hab!c ⌦Dh
c

d�pp!jet(v)X

dpT d⌘dv
=

X

a,b,c

fa ⌦ fb ⌦Hab!c ⌦ Gc(µ ⇠ pTR, v)

Fragmentation function Semi-inclusive jet function

Dh
c ) Gc(µ ⇠ pTR, v)
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Recall single hadron production

§ Illustration of single hadron production:

§ QCD factorization can be reviewed from the spirit of the effective 
field theory: physics at very different scales do not affect each 
other
§ Hard collision happens at scale ~ pT

§ Hadronization/fragmentation happens at a much lower scale ~ mh

§ The interference between these two scales should be suppressed by mh/pT
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QCD factorization makes things simple

§ Think of QCD factorization using the spirit of effective field theory
§ What are the relevant scales for single jet production?

§ Two momenta: (1)  hard collision: pT (2) jet radius can build one: pT*R

§ In the small-R limit, one can actually factorizes the jet cross section into two 
steps, just like single hadron production

§ Good thing: semi-inclusive jet function Jq,g(z, R, w) are purely perturbative
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Semi-inclusive jet function

§ Describe how a parton (q or g) is transformed into a jet (with a jet 
radius R) and energy fraction z
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Kang, Ringer, Vitev, arXiv:1606.06732, JHEP



Collinear hadron distribution inside the jet

§ First produce a jet, and then further look for a hadron inside the jet

§ Just like the single inclusive jet production, we have
§ Semi-inclusive fragmenting jet function
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Two DGLAPs

§ Parton-to-jet part: evolution is for variable z

§ Substructure of the jet: collinear hadron distribution in the jet, 
relevant to variable zh
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Great probe for collinear FFs

§ Works pretty well in comparison with experimental data

§ Could be used for better constraining gluon-to-hadron FFs, large-z 
region and etc
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What about TMD FFs?

§ TMD hadron distribution inside the jet

§ Factorization formalism

§ Re-factorization of semi-inclusive fragmenting jet function
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A couple of main points

§ One soft function + one TMD FFs
§ How do the rapidity divergences cancel between them?

§ Recall: standard TMD factorization for SIDIS, DY, e+e-, which always involve one 
soft function + TWO TMDs

§ What sets the scale for the TMD evolution of TMD FFs?
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TMD factorization for DY:   

§ Factorized form and mimic “parton model”

§ Rapidity divergences cancel between
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TMDs in b-space at NLO

§ Quark TMD at one loop

§ Soft factor

§ Interesting features
§ Rapidity divergence cancels in 

§ fq/q(x, b) and S(b) lives in the same 𝜇 ~ 𝜇b, but different rapidity scale 𝜈 ~ p+, 𝜇b
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TMDs in b-space at NLO
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What’s different for hadron in the jet?
§ Soft radiation has to happen inside the jet

§ For single inclusive jet production, first we produce a high-pt jet
§ This process only involves hard-collinear factorization, and such a process is not 

sensitive to any soft radiation
§ This is the usual standard “collinear factorization”

§ Once such a high-pt jet is produced, we further observe a hadron inside the jet
§ At this step, we measure the relative transverse momentum of hadron w.r.t the jet. 

For such a step, soft radiation matters
§ However, only those soft radiation that happens inside the jet matters
§ Restricts soft radiation to be within the jet: cuts half of the rapidity divergence

§ Rapidity divergence cancel between restricted “soft factor” and TMD FFs
§ At least up to this order, the combined evolution is the same as the usual TMD 

evolution in SIDIS, DY, e+e-; justify the use of same TMD evolution here
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Collins function: universal

§ Collins function: unpolarized hadron from a transversely polarized quark
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Spin-independent Spin-dependent

ü 2002: A. Metz studied the universality property of Collins function in a model-
dependent way – very subtle – finally found it is universal between SIDIS and e+e-

ü 2004: Collins and Metz have general arguments

ü 2008: Yuan generalizes to pp

ü Collins function is universal: concern on collinear gauge link (unsubtracted TMDs)

ü Now soft function seems to be fine, too
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TMD + DGLAP evolution

§ Evolution structure

§ TMD FFs thus are related to the usual TMD FFs in SIDIS at scale 
pT*R

§ Thus hadron TMD distribution inside the jet could be used to test 
the universality of TMD FFs from SIDIS, e+e- processes
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Summary

§ jet cross section and jet substructure for inclusive jet production 
follow a two-step factorization 
§ First step: parton-to-jet production

§ Second step: jet internal substructure

§ The hard function associated with the 1st step is the same as that 
for single inclusive hadron production

§ For jet substructure, one could then concentrate on the 2nd step

§ Collinear and TMD distribution of hadron in a jet are great 
processes to probe collinear and/or TMD FFs
§ Factorization seems to be okay
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Thank you!


