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Introduction
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Quarkonium Polarization Problem

@ The mechanism of producing Quarkonium has not been solved

@ Non Relativistic QCD (NRQCD), a common method to predict
quarkonium production, has difficulties describing production and
polarization simutaneously

Quarks

Bosons (Forces)

Leptons

@ No polarization prediction has been made using the Color Evaporation
Model (CEM) until now (submitted)
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Quarkonium Production Models
Non Relativistic QCD (NRQCD)

o eg for J/ob, oy =3, Ucf[,,]<(9j/”’[n]>
® Oc¢[n) are cross sections in a particular color and spin state n

calcuated by perturbative QCD

o (0’/¥[n]) are nonperturbative Long Distance Matrix Elements
(LDMEs) that describe the conversion of cc[n] state into final state
J /1, assuming that the hadronization does not change the spin or
momentum

@ LDMEs are assumed to be universal and are expanded in powers of
v/c

@ leading term is n :35[1], corresponds to the color singlet model

@ color octet states are subleading terms 158l 351[8], and 3P58]

@ mixing of LDMEs are determined by fitting to data, usually pt
distributions above some p7 cut
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NRQCD LDMEs! depend on pr cut/experiment

Included in fits ete
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!N. Brambilla et al., Eur. Phys. J. C 74, 2981 (2014)
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Quarkonium Production Models

Color Evaporation Model
o all Quarkonium states are treated like Q@ (@ = c, b) below HH
(H = D, B) threshold
@ does not separate states into color or spin

@ color is said to be ‘evaporated’ away during transition from pair to
Quarkonium state while preserving the kinematics

@ mostly calculated by perturbative QCD
o fewer parameters than NRQCD (one F( for each Quarkonium state)

@ Fq is fixed by comparison of NLO calculation of agEM to /s for J/v
and T, o(xg > 0) and Bdo/dy|,—o for J/4, Bdo/dy|,—g for T

@ spin has been averaged over, no previous prediction of polarization in
CEM
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Color Evaporation Model

Leading Order Total Cross Section

4m%_, R » S R
o= FQZ/4 . ds/dX1dX2ﬁ'/p(X1,M )fi/p(x2, 17)55(8)d(3 — x1%28) ,
ij v*Mg

Fq is a universal factor for the quarkonium state and is independent of the

projectile, target, and energy.

v

Leading Order Rapidity Distribution

2 ~
4my,

ds Ao (2
— =Fg 2/4 ?fi/p(xlaHz)ﬁ‘/p(X%“z)C’U(s) ’

where x12 = (1/3/s) exp(£y).

We take the factorization and renormalization scales to be u? = §.
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Polarization of Quarkonium
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o defined as the tendency of quarkonium to be in a certain total angular
momentum state

@ e.g. an unpolarized J = 1 production means yielding J, = -1, 0, +1
equally

e longitudinal — peak at ¥ = 7/2

@ transverse — peaks at ¥ =0, 7
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Defining Polarization

Polarization in the Helicity Basis

@ helicity is the projection of angular momentum onto the direction of
momentum

o if the helicities are the same, then J, = 0 (longitudinal)

o if the helicities are the opposite, then J, = £1 (transverse)
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Polarized Partonic Cross Section
The individual partonic cross sections for the longintudinal and transverse

polarizations are

Vincent Cheung (UC Davis)
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Total Partonic Cross Section

The sum of the results, O' o4 0’ So=+1 4 6,]?:_1, is equal to the total
partonic cross section?
Atot.(A) _ 871—@?(/\_'_2/\”2)
2 2
atot.fay TG [ ( 31M
5) = — (7
Oes () 35 T3
4M? /\/l4
1+

@ convoluted with the CTEQ6L1 parton distribution functions (PDFs)
@ obtain cross section o as a function of /s and the rapidity

distribution, do/dy

e a5 = g2/(4r) is calculated at one-loop level

@ assume that the polarization is unchanged by the transition from the

parton level to the hadron level

2B. L. Combridge, Nucl. Phys. B 151, 429 (1978)
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Longitudinal polarization fraction at parton level

CC cross sectio ratio at parton level bb cross section ratio at parton level
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Behavior within the integration limits
@ contribution from gluon fusion process is longitudinal
@ contribution from quark annihilation process is transverse

@ both fractions decrease as a function of §
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Energy dependence of longitudinal polarization fraction3

%= ot

5 Ge)
Energy Dependence

@ 1 production is more than 50% for /s > 10 GeV, and saturates at
80% at high energies

@ T production is more than 50% for /s > 50 GeV, and saturates at
90% at high energies

@ ccC and bb production turnover, dominantly transversely polarized at
high energies

3V. Cheung & R. Vogt, submitted
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Rapidity dependence of longitudinal polarization fraction®
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Rapidity Dependence
e fraction is greatest at y = 0 and decreases as |y| increases

@ near transverse polarization of T at fixed-target energies

*V. Cheung & R. Vogt, submitted
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Ongoing

Separation of S =1, S, = 0 (triplet) from S = 0,5, = 0 (singlet)
@ sorted by J, does not distinguish the triplet state from singlet state
@ enforce S =1

Extraction of L =0
@ enforce L=0s0S5=1,L=0—>J=1

@ make sense to calculate the polarization parameter, \y!5! for
comparison

calculation of Ay
_ N —3Jaof
N + ‘80‘2
where N is the total production amplitude
and |ag|? is the longitudinal production amplitude.

A9

v

®P. Faccioli, C. Lourenco, J. Seixas, and H. K. Wohri, Eur. Phys. J. C 69, 657 (2010)
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Conclusion and Future

Conclusion
@ presented the energy and rapidity dependence of the polarization of
heavy quarkonium production in p + p collisions

@ longitudinal at most energies and around central rapidity

@ transverse at the kinematic limits of the calculation where ggq
production is dominant

@ enforcing J = 1 is still in progress

Future
@ leading order calculation — cannot speak to the pr dependence

@ explore the p1 and rapidity dependence of the polarization of a single
heavy quark at leading order

@ then investigate the high pt polarization of heavy quark pairs
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Polarization and Experimental Acceptance®

Polarisation hypothesis FLAT

314 ]
8. .
-

910 :

15 2 25
bsolute) Jy rapidity

Polarisation hypothesis T+o 1
<14

Polarisation hypothe5|s LON(F
> 14

0.
(

5 1

5 2 25

5 1 15 2 25 1.
Absolute) JAy rapidity (Absolute) JAy rapidity

from left to right: unpolarized, totally transverse, totally longitudinal.

5The ATLAS Collaboration, Nucl. Phys. B 850, 387 (2011).
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