Polarized Heavy Quarkonium Production in the Color Evaporation Model

Vincent Cheung

Nuclear Physics Group,
Physics Department,
University of California, Davis

Feb 2, 2017

Overview

(1) Introduction
(2) Results at Parton Level
(3) Results at Hadron Level

- Energy Dependence
- Rapidity Dependence

4 Conclusion and Future

Introduction

Quarkonium Polarization Problem

- The mechanism of producing Quarkonium has not been solved
- Non Relativistic QCD (NRQCD), a common method to predict quarkonium production, has difficulties describing production and polarization simutaneously
- No polarization prediction has been made using the Color Evaporation Model (CEM) until now (submitted)

Quarkonium Production Models

Non Relativistic QCD (NRQCD)

- e.g. for $J / \psi, \sigma_{J / \psi}=\sum_{n} \sigma_{c \bar{c}[n]}\left\langle\mathcal{O}^{J / \psi}[n]\right\rangle$
- $\sigma_{c \bar{c}[n]}$ are cross sections in a particular color and spin state n calcuated by perturbative QCD
- $\left\langle\mathcal{O}^{J / \psi}[n]\right\rangle$ are nonperturbative Long Distance Matrix Elements (LDMEs) that describe the conversion of $c \bar{c}[n]$ state into final state J / ψ, assuming that the hadronization does not change the spin or momentum
- LDMEs are assumed to be universal and are expanded in powers of v/c
- leading term is $n={ }^{3} S_{1}^{[1]}$, corresponds to the color singlet model
- color octet states are subleading terms ${ }^{1} S_{0}^{[8]},{ }^{3} S_{1}^{[8]}$, and ${ }^{3} P_{J}^{[8]}$
- mixing of LDMEs are determined by fitting to data, usually p_{T} distributions above some p_{T} cut

NRQCD LDMEs ${ }^{1}$ depend on p_{T} cut/experiment

${ }^{1}$ N. Brambilla et al., Eur. Phys. J. C 74, 2981 (2014)

Quarkonium Production Models

Color Evaporation Model

- all Quarkonium states are treated like $Q \bar{Q}(Q=c, b)$ below $H \bar{H}$ ($H=D, B$) threshold
- does not separate states into color or spin
- color is said to be 'evaporated' away during transition from pair to Quarkonium state while preserving the kinematics
- mostly calculated by perturbative QCD
- fewer parameters than NRQCD (one F_{Q} for each Quarkonium state)
- F_{Q} is fixed by comparison of NLO calculation of $\sigma_{Q}^{C E M}$ to \sqrt{s} for J / ψ and $\Upsilon, \sigma\left(x_{F}>0\right)$ and $B d \sigma /\left.d y\right|_{y=0}$ for $J / \psi, B d \sigma /\left.d y\right|_{y=0}$ for Υ
- spin has been averaged over, no previous prediction of polarization in CEM

Color Evaporation Model

Leading Order Total Cross Section

$$
\sigma=F_{Q} \sum_{i, j} \int_{4 m_{Q}^{2}}^{4 m_{H}^{2}} d \hat{s} \int d x_{1} d x_{2} f_{i / p}\left(x_{1}, \mu^{2}\right) f_{j / p}\left(x_{2}, \mu^{2}\right) \hat{\sigma}_{i j}(\hat{s}) \delta\left(\hat{s}-x_{1} x_{2} s\right),
$$

F_{Q} is a universal factor for the quarkonium state and is independent of the projectile, target, and energy.

Leading Order Rapidity Distribution

$$
\frac{d \sigma}{d y}=F_{Q} \sum_{i, j} \int_{4 m_{Q}^{2}}^{4 m_{H}^{2}} \frac{d \hat{s}}{s} f_{i / p}\left(x_{1}, \mu^{2}\right) f_{j / p}\left(x_{2}, \mu^{2}\right) \hat{\sigma}_{i j}(\hat{s}),
$$

where $x_{1,2}=(\sqrt{\hat{s} / s}) \exp (\pm y)$.
We take the factorization and renormalization scales to be $\mu^{2}=\hat{s}$.

Polarization of Quarkonium

- defined as the tendency of quarkonium to be in a certain total angular momentum state
- e.g. an unpolarized $J=1$ production means yielding $J_{z}=-1,0,+1$ equally
- longitudinal \rightarrow peak at $\vartheta=\pi / 2$
- transverse \rightarrow peaks at $\vartheta=0, \pi$

Defining Polarization

Polarization in the Helicity Basis

- helicity is the projection of angular momentum onto the direction of momentum
- if the helicities are the same, then $J_{z}=0$ (longitudinal)
- if the helicities are the opposite, then $J_{z}= \pm 1$ (transverse)

Polarized Partonic Cross Section

The individual partonic cross sections for the longintudinal and transverse polarizations are

$$
\begin{aligned}
\hat{\sigma}_{q \bar{q}}^{J_{z}=0}(\hat{s}) & =\frac{16 \pi \alpha_{s}^{2}}{27 \hat{s}^{2}} M^{2} \chi, \\
\hat{\sigma}_{q \bar{q}}^{J_{z}= \pm 1}(\hat{s}) & =\frac{4 \pi \alpha_{s}^{2}}{27 \hat{s}^{2}} \hat{s} \chi, \\
\hat{\sigma}_{g g}^{J_{z}=0}(\hat{s}) & =\frac{\pi \alpha_{s}^{2}}{12 \hat{s}}\left[\left(4-\frac{31 M^{2}}{\hat{s}}+\frac{33 M^{2}}{\hat{s}-4 M^{2}}\right) \chi\right. \\
& \left.+\left(\frac{4 M^{4}}{\hat{s}^{2}}+\frac{31 M^{2}}{2 \hat{s}}-\frac{33 M^{2}}{2\left(\hat{s}-4 M^{2}\right)}\right) \ln \frac{1+\chi}{1-\chi}\right], \\
\hat{\sigma}_{g g}^{J_{z}= \pm 1}(\hat{s}) & =\frac{\pi \alpha_{s}^{2}}{24 \hat{s}}\left[-11\left(1+\frac{3 M^{2}}{\hat{s}-4 M^{2}}\right) \chi\right. \\
& \left.+\left(4+\frac{M^{2}}{2 \hat{s}}+33 \frac{M^{2}}{2\left(\hat{s}-4 M^{2}\right)}\right) \ln \frac{1+\chi}{1-\chi}\right],
\end{aligned}
$$

where $\chi=\sqrt{1-4 M^{2} / \hat{s}}$.

Total Partonic Cross Section

The sum of the results, $\hat{\sigma}_{i j}^{J_{z}=0}+\hat{\sigma}_{i j}^{J_{z}=+1}+\hat{\sigma}_{i j}^{J_{z}=-1}$, is equal to the total partonic cross section ${ }^{2}$

$$
\begin{aligned}
\hat{\sigma}_{q \bar{q}}^{\text {tot. }}(\hat{s})= & \frac{8 \pi \alpha_{s}^{2}}{27 \hat{s}^{2}}\left(\hat{s}+2 M^{2}\right) \chi, \\
\hat{\sigma}_{g g}^{\text {tot. }}(\hat{s})= & \frac{\pi \alpha_{s}^{2}}{3 \hat{s}}\left[-\left(7+\frac{31 M^{2}}{\hat{s}}\right) \frac{1}{4} \chi\right. \\
& \left.+\left(1+\frac{4 M^{2}}{\hat{s}}+\frac{M^{4}}{\hat{s}^{2}}\right) \ln \frac{1+\chi}{1-\chi}\right] .
\end{aligned}
$$

- convoluted with the CTEQ6L1 parton distribution functions (PDFs)
- obtain cross section σ as a function of \sqrt{s} and the rapidity distribution, $d \sigma / d y$
- $\alpha_{s}=g_{s}^{2} /(4 \pi)$ is calculated at one-loop level
- assume that the polarization is unchanged by the transition from the parton level to the hadron level

[^0]
Longitudinal polarization fraction at parton level

Behavior within the integration limits

- contribution from gluon fusion process is longitudinal
- contribution from quark annihilation process is transverse
- both fractions decrease as a function of \hat{s}

Energy dependence of longitudinal polarization fraction ${ }^{3}$

Energy Dependence

- ψ production is more than 50% for $\sqrt{s}>10 \mathrm{GeV}$, and saturates at 80% at high energies
- Υ production is more than 50% for $\sqrt{s}>50 \mathrm{GeV}$, and saturates at 90% at high energies
- $c \bar{c}$ and $b \bar{b}$ production turnover, dominantly transversely polarized at high energies

Rapidity dependence of longitudinal polarization fraction ${ }^{4}$

Rapidity Dependence

- fraction is greatest at $y=0$ and decreases as $|y|$ increases
- near transverse polarization of Υ at fixed-target energies

Ongoing

Separation of $S=1, S_{z}=0$ (triplet) from $S=0, S_{z}=0$ (singlet)

- sorted by J_{z} does not distinguish the triplet state from singlet state
- enforce $S=1$

Extraction of $L=0$

- enforce $L=0$ so $S=1, L=0 \rightarrow J=1$
- make sense to calculate the polarization parameter, $\lambda_{\vartheta}{ }^{[5]}$ for comparison
calculation of λ_{ϑ}

$$
\lambda_{\vartheta}=\frac{\mathcal{N}-3\left|a_{0}\right|^{2}}{\mathcal{N}+\left|a_{0}\right|^{2}}
$$

where \mathcal{N} is the total production amplitude and $\left|a_{0}\right|^{2}$ is the longitudinal production amplitude.

Conclusion and Future

Conclusion

- presented the energy and rapidity dependence of the polarization of heavy quarkonium production in $p+p$ collisions
- longitudinal at most energies and around central rapidity
- transverse at the kinematic limits of the calculation where $q \bar{q}$ production is dominant
- enforcing $J=1$ is still in progress

Future

- leading order calculation \rightarrow cannot speak to the p_{T} dependence
- explore the p_{T} and rapidity dependence of the polarization of a single heavy quark at leading order
- then investigate the high p_{T} polarization of heavy quark pairs

Backup Slides

Polarization and Experimental Acceptance ${ }^{6}$

from left to right: unpolarized, totally transverse, totally longitudinal.
${ }^{6}$ The ATLAS Collaboration, Nucl. Phys. B 850, 387 (2011).

[^0]: ${ }^{2}$ B. L. Combridge, Nucl. Phys. B 151, 429 (1978)

