Precision Prediction for Higgs Production at Small Transverse Momentum

Hua Xing Zhu Massachusetts Institute of Technology

7th Workshop of the APS Topical Group on Hadronic Physics Feb. 2, 2017

Based on:

Ye Li, D. Neill, HXZ, 1604.00392 Ye Li, HXZ, 1604.01404 Ye Li, D. Neill, I. Stewart, M. Schulze, HXZ, in preparation

Where do we stand?

- On July 4th, 2012, the ATLAS and CMS collaborations at CERN announced the observation of a new particle consistent with the Higgs particle in the Standard Model
- This discovery filled the last gap of the SM.
- However, it leaves many important questions open
- If no new physics found at LHC run 2, studying the properties of the Higgs boson in great detail will be of the utmost importance

Bounding light quark Yukawa from Higgs pT

Precision measurement of Higgs pT can be used to constrain light quark Yukawa

10

Previous works on Higgs prod. at low pT

- ★ Accurate description of Higgs pT spectrum requires the resummation of large logarithms log(q_T/m_H)
 - Hinchliffe, Novaes, 1988; Kauffman, 1999; Berger, Qiu, 2002; Gao, Li, Liu, 2005; Idilbi, Ji, Yuan, 2005; Bozzi, Catani, Florian, Grazzini, 2005; Mantry, Petriello, 2009; Becher, Neubert, Wilhelm, 2012; Echevarria, Kasemets, Mulders, Pisano, 2015; Neill, Rothstein, Vaidya, 2015; Bagnaschi,Vicini, 2015; Bagnaschi, Harlander, Mantler,Vicini,Wiesemann, 2015; ...
- All the previous works are done at NLL or NNLL accuracy (exp(α_s^klogⁿ(bm)), n≥k-1)
- ★ In this talk, a first effort to extend the pT resummation to N3LL (including all the logarithmic singular terms at $O(\alpha_s^3)$)

Exponential regulator for rapidity divergence

- Within the Rapidity RG formalism, there is the freedom of choosing different rapidity regulator
- ☆ We adopt the recently introduced exponential regulator in our calculation [Ye Li, Neill, HXZ, 2016]

The exponential regulator

$$\frac{d^3 \mathbf{p}}{(2\pi)^3 2|\mathbf{p}|} \to \frac{d^3 \mathbf{p}}{(2\pi)^3 2|\mathbf{p}|} \exp\left[-2\tau|\mathbf{p}|\right] \qquad \lim \tau \to 0$$
$$\nu \equiv 1/\tau$$

- The exponential regulator is gauge invariant, preserve nonabelian exponentiation, and has operator definition
- Soft function calculated to three loops with exponential regulator [Ye Li, HXZ, 2016]

The pT resummed formula

Neill, Rothstein, Vaidya, 2015

☆ The resummation formula in impact parameter space

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d}^2 \vec{Q}_T} = \int x_a \int x_b \,\delta\left(x_a x_b - \frac{m_H^2}{S}\right) \sigma_0 \int \frac{\mathrm{d}^2 \vec{b}}{(2\pi)^2} e^{i\vec{b}\cdot\vec{Q}_T} W\left(x_a, x_b, m_H, \vec{b}, \mu, \nu\right) + \left.\frac{\mathrm{d}^2 \sigma}{\mathrm{d}^2 \vec{Q}_T}\right|_{\mathrm{n.s.}}$$

$$W(x_a, x_b, m_H, \vec{b}, \mu, \nu) = \left| C_V(m_t, m_H, \mu) \right|^2 S(\vec{b}, \mu, \nu) B_{g/N_1}^{\alpha\beta}(x_a, Q, \vec{b}, \mu, \nu) B_{g/N_2}^{\alpha\beta}(x_b, Q, \vec{b}, \mu, \nu) \right|^2 S(\vec{b}, \mu, \nu) B_{g/N_1}^{\alpha\beta}(x_b, Q, \vec{b}, \mu, \nu) = \left| C_V(m_t, m_H, \mu) \right|^2 S(\vec{b}, \mu, \nu) B_{g/N_1}^{\alpha\beta}(x_b, Q, \vec{b}, \mu, \nu) \right|^2 S(\vec{b}, \mu, \nu) B_{g/N_1}^{\alpha\beta}(x_b, Q, \vec{b}, \mu, \nu) = \left| C_V(m_t, m_H, \mu) \right|^2 S(\vec{b}, \mu, \nu) B_{g/N_1}^{\alpha\beta}(x_b, Q, \vec{b}, \mu, \nu) \right|^2 S(\vec{b}, \mu, \nu) B_{g/N_1}^{\alpha\beta}(x_b, Q, \vec{b}, \mu, \nu) = \left| C_V(m_t, m_H, \mu) \right|^2 S(\vec{b}, \mu, \nu) B_{g/N_1}^{\alpha\beta}(x_b, Q, \vec{b}, \mu, \nu) \right|^2 S(\vec{b}, \mu, \nu) B_{g/N_1}^{\alpha\beta}(x_b, Q, \vec{b}, \mu, \nu) = \left| C_V(m_t, m_H, \mu) \right|^2 S(\vec{b}, \mu, \nu) B_{g/N_1}^{\alpha\beta}(x_b, Q, \vec{b}, \mu, \nu) B_{g/N_2}^{\alpha\beta}(x_b, Q, \vec{b}, \mu, \nu) \right|^2 S(\vec{b}, \mu, \nu) B_{g/N_1}^{\alpha\beta}(x_b, Q, \vec{b}, \mu, \nu) = \left| C_V(m_t, m_H, \mu) \right|^2 S(\vec{b}, \mu, \nu) B_{g/N_1}^{\alpha\beta}(x_b, Q, \vec{b}, \mu, \nu) B_{g/N_2}^{\alpha\beta}(x_b, Q, \vec{b}, \mu, \nu) \right|^2 S(\vec{b}, \mu, \nu) B_{g/N_1}^{\alpha\beta}(x_b, Q, \vec{b}, \mu, \nu) = \left| C_V(m_t, m_H, \mu) \right|^2 S(\vec{b}, \mu, \nu) B_{g/N_1}^{\alpha\beta}(x_b, Q, \vec{b}, \mu, \nu) \right|^2 S(\vec{b}, \mu, \nu) B_{g/N_1}^{\alpha\beta}(x_b, Q, \vec{b}, \mu, \nu) B_{g/N_1}^{\alpha\beta}(x_b, Q, \vec{b}, \mu, \nu)$$

$$C_{V}(m_{t},m_{H},\mu) = C_{V}(m_{t},m_{H},\mu_{H}) \exp\left[\frac{1}{2}\int_{\mu_{H}^{2}}^{\mu^{2}} \frac{d\bar{\mu}^{2}}{\bar{\mu}^{2}} \left(\Gamma_{cusp}\left[\alpha_{s}(\bar{\mu})\right] \ln\frac{M_{H}^{2}}{\bar{\mu}^{2}} + \gamma^{V}\left[\alpha_{s}(\bar{\mu})\right]\right)\right]$$

$$B_{g/N}^{\alpha\beta}(x,\vec{b},Q,\mu,\nu) = \left[\frac{g_{\perp}^{\alpha\beta}}{d-2}B_{g/N}(x,b,Q,\mu,\nu) + \left(\frac{g_{\perp}^{\alpha\beta}}{d-2} + \frac{b^{\alpha}b^{\beta}}{b^{2}}\right)B_{g/N}'(x,b,Q,\mu,\nu)\right]$$

$$B_{g/N}(x,b,Q,\mu,\nu) = \sum_{j}\int_{x}^{1} \frac{dz}{z}I_{gj}(z,b,Q,\mu,\nu)f_{j/N}(x/z,\mu) + \dots$$

$$S_{\perp}(b,\mu,\nu) = S_{\perp}(b,\mu_s,\nu_s) \exp\left[\int_{\mu_s^2}^{\mu^2} \frac{\mathrm{d}\bar{\mu}^2}{\bar{\mu}^2} \left(\Gamma_{\mathrm{cusp}}\left[\alpha_s(\bar{\mu})\right] \ln \frac{b^2\bar{\mu}^2}{b_0^2} + \gamma^s\left[\alpha_s(\bar{\mu})\right]\right) + \ln \frac{\nu^2}{\nu_s^2} \left(-\int_{b_0^2/b^2}^{\mu^2} \frac{\mathrm{d}\bar{\mu}^2}{\bar{\mu}^2} \Gamma_{\mathrm{cusp}}\left[\alpha_s(\bar{\mu})\right] + \gamma^r\left[\alpha_s(b_0/b)\right]\right)\right]$$

Relation to the Colins-Soper-Sterman formula

☆ The SCET formula can be related to the CSS formula

Identify:

$$C_{g/N_{1}}^{\alpha\beta}(x_{a},\vec{b},m_{H}) = B_{g/N_{1}}^{\alpha\beta}\left(x_{a},\vec{b},m_{H},\mu_{B}=\frac{b_{0}}{b},\nu_{B}=\frac{1}{m_{H}}\right)\sqrt{S\left(\vec{b},\mu_{s}=\frac{b_{0}}{b},\nu_{s}=\frac{b_{0}}{b}\right)}$$
$$\cdot\sqrt{|C_{V}(m_{t},m_{H},\mu_{H}=m_{H})|^{2}}$$
$$A\left[\alpha_{S}(\bar{\mu})\right] = \Gamma_{cusp}\left[\alpha_{S}(\bar{\mu})\right] + 2\bar{\mu}\frac{d\gamma^{r}\left[\alpha_{S}(\bar{\mu})\right]}{d\bar{\mu}}$$
$$B\left[\alpha_{S}(\bar{\mu})\right] = \gamma^{V}\left[\alpha_{S}(\bar{\mu})\right] - \gamma^{r}\left[\alpha_{S}(\bar{\mu})\right]$$

The resumed component in SCET reduces to

$$W(x_a, x_b, m_H, \vec{b}) = C_{g/N_1}^{\alpha\beta} C_{g/N_2}^{\alpha\beta} \exp\left\{-\int_{b_0^2/b^2}^{m_H^2} \frac{d\bar{\mu}^2}{\bar{\mu}^2} \left[A\left[\alpha_s(\bar{\mu})\right] \ln\frac{m_H^2}{\bar{\mu}^2} + B\left[\alpha_s(\bar{\mu})\right]\right]\right\}$$

Summarize the perturbative ingredients

	matching (singular)	nonsingular	γ^x	$\Gamma_{\rm cusp}$	β	PDF
NLO	NLO	NLO	-	-	1-loop	LO
NNLO	NNLO	NNLO	-	-	2-loop	NLO
N3LO	N3LO	N3LO	-	-	3-loop	NNLO
LL	NLO	-	-	1-loop	1-loop	LO
NLL	NLO	-	1-loop	2-loop	2-loop	LO
NNLL	NNLO	-	2-loop	3-loop	3-loop	NLO
NLL'+NLO	NLO	NLO	1-loop	2-loop	2-loop	NLO
NNLL+NNLO	NNLO	NNLO	2-loop	3-loop	3-loop	NNLO
NNLL'+N3LO	N3LO	N3LO	2-loop	3-loop	3-loop	NNLO
N ³ LL+N3LO	N3LO	N3LO	3-loop	4-loop	4-loop	NNLO

Perturbative ingredients only available recently

- Three-loop rapidity anomalous dim. (B₃): [Ye Li, HXZ, 2016]
- Two-loop TMD beam function: [Gehrmann, Luebert, L.L. Yang, 2014]
- $O(\alpha_s^3)$ (N3LO) nonsingular remainder (the Y term) [not shown in this talk]
- Only missing ingredient to achieve full N3LL resummation: 4-loop cusp anomalous dim.

Profile scale for switching from resumed to fixed order

- The large logarithms only dominate the cross section at small pT
- Needs to switch to fixed order prediction at large pT.
 See also Bowen Wang's talk
- Use profile scale to smoothly switch from resumed region to fixed-order region
 [Tackmann, Ligeti, Stewart '08; Abbate, Fickinger, Mateu, Hoang, Stewart '10]
- pT profile function [Neill, Rothstein, Vaidya, '15]:

$$P(q_T) = 1 - \tanh\left[t_r\left(\frac{4q_T}{t_c} - 4\right)\right]$$

Suppression of nonperturbative effects

 $\sigma \sim \sigma_0 H(f \otimes C) \otimes (f \otimes C) e^{-S_g(b,Q)}$

Sudakov factor

- In the b-space resumed formalism, non-perturbative effects enter at large b
- Important effects for Drell-Yan
- Much less important for Higgs production
 - Large Sudakov
 suppression of integrand at large b [Berger, Qiu, 2002]

Dependence on nonperturbative parameter

$$b^* = \frac{b}{\sqrt{1 + b^2/b_{\max}^2}}$$

$$e^{-S_g} \to e^{-S_g} \exp\left[-cb^2\right]$$

- ☆ b_{max} scheme
- Use a simple exponential function to model N.P. effects
- Varying the N.P.
 parameter to estimate the N.P. uncertainties
- Higgs pT distribution is insensitive to N.P.
 corrections: less than 1% at peak region

Estimate of uncertainties

- Choose central scales such that large logarithms in the Wilson coefficients for hard, beam, and soft functions are minimized.
- Vary by a factor of two around central scale to estimate theory uncertainties

Uncertainty from hard scale variation

- Central scale for hard
 function chosen as μ=m_H/2
 to minimize large π² terms in
 Wilson coefficient.
- Leads to better perturbative convergence.
- Obvious reduction of scale uncertainty at low pT due to resummation
- At large pT, scale uncertainties dominated by fixed order perturbation theory.
- Implementing N3LO nonsingular reminder on the way

Uncertainty from soft scale variation

- Central soft scale chosen as 1/b
- Large soft scale
 dependence at low pT,
 improved order by
 order in RG improved
 perturbation theory
- As expected, little soft scale dependence at large pT
- Peaks at about 10 GeV.
 The typical soft scale far from nonperturbative region

Uncertainty from rapidity scale variation

- Central rapidity scale chosen as 1/b
- Absence of rapidity scale dependence at NLL, due to accidental vanishment of rapidity anomalous dim. at this order
- Important to compute higher order rapidity scale variation
- It turns out rapidity uncertainties is in general small in Higgs production

Corrections to the Higgs effective theory

- Our calculation performed in Higgs effective theory, with the quark loop integrated out
- Good approximation for top quark loop at small and moderate pT
- ☆ It turns out the full bottom quark loop effects are small at LO

Total N3LL_{partial} **uncertainties**

- Total scale uncertainties
 estimated as envelop of
 individual scale
 uncertainties
- Order by order reduction of uncertainties. Give confidence in the reliability of RG improved perturbation theory
- Remaining scale
 uncertainties at the level
 of < 5%
- Uncertainty due to unknown 4-loop cusp anomalous dim. at comparable level

Summary

- With the discovery of Higgs boson and lack of other new physics, studying its property, like pT distribution, is of great importance
- Recent advance in QCD make possible resummation of Higgs pT distribution at (partial) N3LL level
- Implementing the N3LO nonsingular remainder (Y term) is in progress. Stay tuned
- Ingredients for resumming the large pT logarithms in Drell-Yan production are also available
- Expect larger impact from N3LL corrections to DY distribution

$$\frac{B_3^{DY}(\alpha_s)}{B_2^{DY}(\alpha_s)} \simeq 1.317 \qquad \frac{B_3^{H}(\alpha_s)}{B_2^{H}(\alpha_s)} \simeq 0.109 \qquad \begin{array}{l} \mbox{Ye Li, HXZ} \\ \mbox{1604.01404} \end{array}$$

Summary

- With the discovery of Higgs boson and lack of other new physics, studying its property, like pT distribution, is of great importance
- Recent advance in QCD make possible resummation of Higgs pT distribution at (partial) N3LL level
- Implementing the N3LO nonsingular remainder (Y term) is in progress. Stay tuned
- Ingredients for resumming the large pT logarithms in Drell-Yan production are also available
- Expect larger impact from N3LL corrections to DY distribution

$$\frac{B_3^{DY}(\alpha_s)}{B_2^{DY}(\alpha_s)} \simeq 1.317 \qquad \frac{B_3^H(\alpha_s)}{B_2^H(\alpha_s)} \simeq 0.109$$

Ye Li, HXZ 1604.01404

Thank you for your attention!