Renormalization Issues on Long-Link Operators

Martha Constantinou Temple University

in collaboration with

H. Panagopoulos University of Cyprus

C. Alexandrou, K. Hadjiyiannakou Cyprus Institute

7th Workshop of the APS Topical Group on Hadronic Physics Washington DC, February 2, 2017

IN THIS TALK

- A. Motivation
- **B.** Introduction to quasi-PDFs
- C. Perturbative Renormalization
- **D.** Linear Divergence
- E. Non-perturbative Renormalization
- F. Summary and Prospects

MOTIVATION

Probing Nucleon Structure

Generalized Parton Distribution Functions

- Comprehensive description of hadron structure
- ★ Deep inelastic scattering (DIS) of leptons off nucleons
- necessary for the analysis of scattering data
- ★ Parametrization of off-forward matrix of a bilocal quark operator (light-like)

$$F_{\Gamma}(x,\xi,q^2) = \frac{1}{2} \int \frac{d\lambda}{2\pi} e^{ix\lambda} \langle p' | \bar{\psi}(-\lambda n/2) \mathcal{O} \underbrace{\mathcal{P}e^{\int d\alpha n \cdot A(n\alpha)}}_{p - \lambda/2} \psi(\lambda n/2) | p \rangle$$

 $q=p'-p, \bar{P}=(p'+p)/2, n$: light-cone vector ($\bar{P}.n=1$), $\xi=-n\cdot\Delta/2$

PDFs:

powerful tool to describe the structure of a nucleon

Thus:

- ★ first principle calculations of quark distributions are necessary
 - crucial test of QCD
- ★ Until recently direct lattice calculation inaccessible
- ★ On the lattice: moments of PDFs

$$f^n = \int_{-1}^1 dx \, x^n f(x)$$

moments related to local operators

However, reconstruction of PDFs seems unfeasible:

- ★ signal-to-noise is bad for higher moments
- ★ n > 3: operator mixing (unavoidable!)
- gluon moments: limited progress
 (discon. diagram, signal quality, operator mixing)

However, reconstruction of PDFs seems unfeasible:

- signal-to-noise is bad for higher moments
- n > 3: operator mixing (unavoidable!)
- gluon moments: limited progress
 (discon. diagram, signal quality, operator mixing)

Novel direct approach [X.Ji, arXiv:1305.1539]

★ compute a Pquasi-DF (accessible on the lattice)

★ contact with physical PDFs via a matching procedure Talk by J. Zhang, this session However, reconstruction of PDFs seems unfeasible:

- ★ signal-to-noise is bad for higher moments
- n > 3: operator mixing (unavoidable!)
- gluon moments: limited progress
 (discon. diagram, signal quality, operator mixing)

Novel direct approach [X.Ji, arXiv:1305.1539]

★ compute a Pquasi-DF (accessible on the lattice)

★ contact with physical PDFs via a matching procedure Talk by J. Zhang, this session

Currently exploratory studies:

- [H-W. Lin et al., arXiv:1402.1462], [Jiunn-Wei Chen et al., arXiv:1603.06664]
- [C.Alexandrou et al., arXiv:1504.07455], [C.Alexandrou et al., arXiv:1610.03689]

INTRODUCTION TO QUASI-PDFS

Access of PDFs on Euclidean lattice

rest frame: parton physics correspond to light-cone correlation BUT: same physics obtained from t-independent spatial correlation in the IMF Pquasi-DF (\tilde{q}) purely spatial for nucleons with finite momentum *

 $\left| \tilde{q}(x,\mu^2,P_3) = \int \frac{dz}{4\pi} e^{-i x P_3 z} \langle N(P_3) | \bar{\Psi}(z) \gamma^z \mathcal{A}(z,0) \Psi(0) | N(P_3) \rangle_{\mu^2} \right|$

• $\mathcal{A}(z, 0)$: Wilson line from $0 \to z$ • z: distance in any spatial direction (momentum boost in z direction)

★ At finite but feasibly large momenta on the lattice:

a large momentum EFT can relate Euclidean \tilde{a} to PDFs through a factorization theorem

- t use of Perturbation Theory for the matching
- Computation is difficult and costly

PERTURBATIVE RENORMALIZATION

★ Definition of Operator

$$\mathcal{O}^{\mu}_{\Gamma} \equiv \overline{\psi}(x) \, \Gamma \, \mathcal{P} \, e^{i \, g \, \int_{0}^{z} A(\zeta) d\zeta} \, \psi(x + z \hat{\mu})$$

$$\Gamma = \hat{1}, \quad \gamma^5, \quad \gamma^i, \quad \gamma^i \, \gamma^5, \quad \gamma^5 \, \sigma^{ij}, \quad \sigma^{ij}$$

★ Feynman Diagrams

★ Definition of Operator

$$\mathcal{O}^{\mu}_{\Gamma} \equiv \overline{\psi}(x) \, \Gamma \, \mathcal{P} \, e^{i \, g \, \int_{0}^{z} A(\zeta) d\zeta} \, \psi(x + z \hat{\mu})$$

$$\Gamma = \hat{1}, \quad \gamma^5, \quad \gamma^i, \quad \gamma^i \, \gamma^5, \quad \gamma^5 \, \sigma^{ij}, \quad \sigma^{ij}$$

★ Feynman Diagrams

★ Strategy:

A Perform calculation in Dimensional Regularization (DR)

★ Definition of Operator

$$\mathcal{O}^{\mu}_{\Gamma} \equiv \overline{\psi}(x) \, \Gamma \, \mathcal{P} \, e^{i \, g \, \int_{0}^{z} A(\zeta) d\zeta} \, \psi(x + z \hat{\mu})$$

$$\Gamma = \hat{1}, \quad \gamma^5, \quad \gamma^i, \quad \gamma^i \, \gamma^5, \quad \gamma^5 \, \sigma^{ij}, \quad \sigma^{ij}$$

★ Feynman Diagrams

★ Strategy:

- A Perform calculation in Dimensional Regularization (DR)
- Compute $Z^{DR,\overline{\mathrm{MS}}}$ from the poles (& anomalous dimension)

★ Definition of Operator

$$\mathcal{O}^{\mu}_{\Gamma} \equiv \overline{\psi}(x) \, \Gamma \, \mathcal{P} \, e^{i \, g \, \int_{0}^{z} A(\zeta) d\zeta} \, \psi(x + z \hat{\mu})$$

$$\Gamma = \hat{1}, \quad \gamma^5, \quad \gamma^i, \quad \gamma^i \, \gamma^5, \quad \gamma^5 \, \sigma^{ij}, \quad \sigma^{ij}$$

★ Feynman Diagrams

★ Strategy:

- A Perform calculation in Dimensional Regularization (DR)
- Compute Z^{DR,MS} from the poles (& anomalous dimension)
- B Compute Feynman diagrams in Lattice Regularization (LR)

★ Definition of Operator

$$\mathcal{O}^{\mu}_{\Gamma} \equiv \overline{\psi}(x) \, \Gamma \, \mathcal{P} \, e^{i \, g \, \int_{0}^{z} A(\zeta) d\zeta} \, \psi(x + z \hat{\mu})$$

$$\Gamma = \hat{1}, \quad \gamma^5, \quad \gamma^i, \quad \gamma^i \, \gamma^5, \quad \gamma^5 \, \sigma^{ij}, \quad \sigma^{ij}$$

★ Feynman Diagrams

★ Strategy:

- A Perform calculation in Dimensional Regularization (DR)
- Compute Z^{DR,MS} from the poles (& anomalous dimension)
- **B** Compute Feynman diagrams in Lattice Regularization (LR)
- Extract $Z^{LR,\overline{\mathrm{MS}}}$ using the difference between DR and LR

No linear divergence

A. Dimensional Regularization

- No linear divergence
- Poles: $\Lambda_{\mathcal{O}}^{d1}\Big|_{\frac{1}{2}} = 0$ $\Lambda_{\mathcal{O}}^{d2+d3+d4}\Big|_{\frac{1}{2}} = \frac{g^2 C_f}{16 \pi^2} \frac{1}{\epsilon} (4-\beta) \Lambda_{\mathcal{O}}^{tree}$
- Thus, $\overline{\mathrm{MS}}$ -scheme:

$$Z^{DR,\,\overline{\rm MS}}_{\mathcal{O}} = 1 - \frac{3}{\epsilon} \, \frac{g^2 \, C_f}{16 \, \pi^2} \quad {\rm real \ function}$$

A. Dimensional Regularization

- No linear divergence
- Poles: $\Lambda_{\mathcal{O}}^{d1}\Big|_{\frac{1}{\epsilon}} = 0$ $\Lambda_{\mathcal{O}}^{d2+d3+d4}\Big|_{\frac{1}{\epsilon}} = \frac{g^2 C_f}{16 \pi^2} \frac{1}{\epsilon} (4-\beta) \Lambda_{\mathcal{O}}^{tree}$
- Thus, $\overline{\mathrm{MS}}$ -scheme:

$$Z^{DR,\,\overline{\rm MS}}_{\mathcal{O}} = 1 - \frac{3}{\epsilon} \, \frac{g^2 \, C_f}{16 \, \pi^2} \qquad {\rm real\ function}$$

• *RI*-scheme:

$$Z_{\mathcal{O}}^{DR,RI} Z_{\psi}^{-1} \frac{1}{12} \operatorname{Tr} \left[\Lambda_{\mathcal{O}}^{1-loop} \Lambda_{\mathcal{O}}^{tree} \right] = 1 \qquad Z_{\psi} = \frac{1}{12} \operatorname{Tr} \left[S^{1-loop} \left(S^{tree} \right)^{-1} \right]$$

A. Dimensional Regularization

- No linear divergence
- Poles: $\Lambda_{\mathcal{O}}^{d1}\Big|_{\frac{1}{2}} = 0$ $\Lambda_{\mathcal{O}}^{d2+d3+d4}\Big|_{\frac{1}{2}} = \frac{g^2 C_f}{16 \pi^2} \frac{1}{\epsilon} (4-\beta) \Lambda_{\mathcal{O}}^{tree}$
- Thus, $\overline{\mathrm{MS}}$ -scheme:

$$Z^{DR,\,\overline{\rm MS}}_{\mathcal{O}} = 1 - \frac{3}{\epsilon} \, \frac{g^2 \, C_f}{16 \, \pi^2} \qquad {\rm real\ function}$$

• *RI*-scheme:

$$Z_{\mathcal{O}}^{DR,RI} Z_{\psi}^{-1} \frac{1}{12} \operatorname{Tr} \left[\Lambda_{\mathcal{O}}^{1-loop} \Lambda_{\mathcal{O}}^{tree} \right] = 1 \qquad Z_{\psi} = \frac{1}{12} \operatorname{Tr} \left[S^{1-loop} \left(S^{tree} \right)^{-1} \right]$$

• Complex Matrix Element $\Rightarrow Z_{\mathcal{O}}^{DR,RI}$: Complex function

Conversion Factor: RI to \overline{MS}

- $C_{\mathcal{O}}^{RI,\overline{\mathrm{MS}}}$: Complex function
- ★ Gauge dependent (Non-gauge invariant external states)
- ★ Necessary ingredient for non-perturbative renormalization
 - Applicable for alternative definitions of *RI*-type schemes

Renormalized Green's functions

★ do not depend on the regularization choice

 \star dependence on $\bar{\mu}$ matches $\bar{\mu}$ -dependence of the Z-function

$$\left| \Lambda_{\mathcal{O}}^{1-\text{loop}} \right|_{q=q_{\mu}} = \Lambda_{\mathcal{O}}^{\text{tree}} \left(\frac{\bar{\mu}^2}{q^2} \right)^{\left((4-\beta) \frac{g^2 C_f}{16 \pi^2} \right)} \left[1 + \frac{g^2 C_f}{16 \pi^2} F_{\mathcal{O}}(qz) \right]$$

• $F_{\mathcal{O}}(qz)$: complicated complex function, $F_{\mathcal{O}}(-qz) = F_{\mathcal{O}}^{\dagger}(qz)$

Renormalized Green's functions

★ do not depend on the regularization choice

 \star dependence on $\bar{\mu}$ matches $\bar{\mu}$ -dependence of the Z-function

$$\Lambda_{\mathcal{O}}^{1-\text{loop}} \bigg|_{q=q_{\mu}} = \Lambda_{\mathcal{O}}^{\text{tree}} \left(\frac{\bar{\mu}^2}{q^2}\right)^{\left((4-\beta)\frac{g^2 C_f}{16\pi^2}\right)} \left[1 + \frac{g^2 C_f}{16\pi^2} F_{\mathcal{O}}(qz)\right]$$

• $F_{\mathcal{O}}(qz)$: complicated complex function, $F_{\mathcal{O}}(-qz) = F_{\mathcal{O}}^{\dagger}(qz)$

B. Lattice Regularization 5</td

\star Linear divergence from tadpole diagram (d4): $\propto |z|/a$

★ Expected from Dotsenko & Vergeles: [Nucl. Phys. B169 (1980) 527]

$$\Lambda_{\mathcal{O}_{\Gamma}} = e^{-c \frac{|z|}{a}} \Lambda^R, \quad c \sim 1$$

\star Linear divergence from tadpole diagram (d4): $\propto |z|/a$

★ Expected from Dotsenko & Vergeles: [Nucl. Phys. B169 (1980) 527]

$$\Lambda_{\mathcal{O}_{\Gamma}} = e^{-c \frac{|z|}{a}} \Lambda^R, \quad c \sim 1$$

★ Condition to extract $Z_{\mathcal{O}}^{LR,\overline{\mathrm{MS}}}$ using DR results:

$$\langle \psi \, \mathcal{O}_{\Gamma} \, \bar{\psi} \rangle^{DR, \, \overline{\text{MS}}}_{\text{amp}} - \langle \psi \, \mathcal{O}_{\Gamma} \, \bar{\psi} \rangle^{LR}_{\text{amp}} = \frac{g^2 \, C_f}{16 \, \pi^2} \, e^{i \, q_\mu z} \, \times \mathcal{F}$$

Green's functions complicated functions of external momentum BUT

- \mathcal{F} : 0th degree polynomial in external momentum \Rightarrow
- extraction of $Z_{\mathcal{O}}^{LR,\overline{\mathrm{MS}}}$ without intermediate RI-type scheme

$$\mathcal{F} = \Gamma \left(c_1 + c_2 \beta + c_3 \frac{|z|}{a} + \log \left(a^2 \bar{\mu}^2 \right) (4 - \beta) \right) + \left(\Gamma \cdot \gamma_{\mu} + \gamma_{\mu} \cdot \Gamma \right) \left(c_4 + c_5 c_{\rm SW} \right)$$

$$\mathcal{F} = \Gamma\left(c_1 + c_2 \beta + c_3 \frac{|z|}{a} + \log\left(a^2 \bar{\mu}^2\right) (4-\beta)\right) + \left(\Gamma \cdot \gamma_{\mu} + \gamma_{\mu} \cdot \Gamma\right) \left(c_4 + c_5 c_{\rm SW}\right)$$

linear divergence

$$\mathcal{F} = \Gamma\left(c_1 + c_2 \beta + c_3 \frac{|z|}{a} + \log\left(a^2 \bar{\mu}^2\right) (4-\beta)\right) + (\Gamma \cdot \gamma_{\mu} + \gamma_{\mu} \cdot \Gamma) \left(c_4 + c_5 c_{SW}\right)$$

linear divergence mixing term

$$\mathcal{F} = \Gamma\left(c_1 + c_2 \beta + c_3 \frac{|z|}{a} + \log\left(a^2 \bar{\mu}^2\right) (4-\beta)\right) + (\Gamma \cdot \gamma_{\mu} + \gamma_{\mu} \cdot \Gamma) \left(c_4 + c_5 c_{\rm SW}\right)$$

linear divergence mixing term

Consequenses:

- \star Vector mixes with Scalar if γ^{μ} in same direction as Wilson line
- **★** HOWEVER for clover action at $c_{SW} = -c_4/c_5$: mixing vanishes
- **\star** Polarized & Transversity do not exhibit mixing (presence of γ^5)

$$\mathcal{F} = \Gamma\left(c_1 + c_2 \,\beta + c_3 \,\frac{|z|}{a} + \log\left(a^2 \bar{\mu}^2\right)(4-\beta)\right) + \left(\Gamma \cdot \gamma_{\mu} + \gamma_{\mu} \cdot \Gamma\right) \,\left(c_4 + c_5 \, c_{\rm SW}\right)$$

$$\blacksquare$$
linear divergence mixing term

Consequenses:

- \star Vector mixes with Scalar if γ^{μ} in same direction as Wilson line
- **★** HOWEVER for clover action at $c_{SW} = -c_4/c_5$: mixing vanishes

★ Polarized & Transversity do not exhibit mixing (presence of γ^5) Interestingly:

★ Vector with γ^μ perpendicular to the Wilson line does not mix
 Note that all above are valid to 1-loop Perturbation Theory

Consequently:

$$\begin{aligned} Z_{\mathcal{O}}^{LR,\overline{\text{MS}}} &= 1 + \frac{g^2 C_f}{16 \, \pi^2} \, \left(e_1 + e_2 \, \frac{|z|}{a} + e_3 \, c_{\text{SW}} + e_4 \, c_{\text{SW}}^2 - 3 \log \left(a^2 \bar{\mu}^2 \right) \right) \\ \star \, Z_{mix}^{LR,\overline{\text{MS}}} &= 0 + \frac{g^2 \, C_f}{16 \, \pi^2} \, \left(e_5 + e_6 \, c_{\text{SW}} \right) \end{aligned}$$

* Wherever mixing occurs

Consequently:

$$\begin{split} Z_{\mathcal{O}}^{LR,\overline{\text{MS}}} &= 1 + \frac{g^2 C_f}{16 \, \pi^2} \, \left(e_1 + e_2 \, \frac{|z|}{a} + e_3 \, c_{\text{SW}} + e_4 \, c_{\text{SW}}^2 - 3 \log \left(a^2 \bar{\mu}^2 \right) \right) \\ \star \, Z_{mix}^{LR,\overline{\text{MS}}} &= 0 + \frac{g^2 \, C_f}{16 \, \pi^2} \, \left(e_5 + e_6 \, c_{\text{SW}} \right) \\ \star \, \text{Wherever mixing occurs} \end{split}$$

Action	e_1	e_2	e_3	e_4	e_5	e_6
Wilson	24.3063	-19.9548	-2.24887	-1.39727	14.4499	-8.28467
Iwasaki	12.5576	-12.9781	-1.60101	-0.97321	9.93653	-6.52764

Results available for other gluonic actions

Consequently:

$$Z_{\mathcal{O}}^{LR,\overline{\text{MS}}} = 1 + \frac{g^2 C_f}{16 \pi^2} \left(e_1 + e_2 \frac{|z|}{a} + e_3 c_{\text{SW}} + e_4 c_{\text{SW}}^2 - 3 \log \left(a^2 \bar{\mu}^2 \right) \right)$$

$$\star Z_{mix}^{LR,\overline{\text{MS}}} = 0 + \frac{g^2 C_f}{16 \pi^2} \left(e_5 + e_6 c_{\text{SW}} \right)$$

★ Wherever mixing occurs

Action	e_1	e_2	e_3	e_4	e_5	e_6
Wilson	24.3063	-19.9548	-2.24887	-1.39727	14.4499	-8.28467
Iwasaki	12.5576	-12.9781	-1.60101	-0.97321	9.93653	-6.52764

Results available for other gluonic actions

★ $e_5 \& e_6$ have opposite signs ⇒ Mixing vanishes at a positive value of c_{SW}^0 (realistic for simulations) Wilson: $c_{SW}^0 \sim 1.74$, Iwasaki: $c_{SW}^0 \sim 1.52$

LINEAR

DIVERGENCE

$$\frac{\Delta h(P_{3},z)}{\Delta h(P_{3}^{\prime},z^{\prime})} = \frac{e^{-c\frac{|z|}{a}} Z_{\Delta h}^{-1}(a\bar{\mu}) \left(\frac{P_{3}}{\bar{\mu}}\right)^{2\gamma \Delta h} \Delta h^{R}(P_{3}z)}{e^{-c\frac{|z^{\prime}|}{a}} Z_{\Delta h}^{-1}(a\bar{\mu}) \left(\frac{P_{3}^{\prime}}{\bar{\mu}}\right)^{2\gamma \Delta h} \Delta h^{R}(P_{3}^{\prime}z^{\prime})} = e^{-c\frac{(|z|-|z^{\prime}|)}{a}} \left(\frac{P_{3}}{P_{3}^{\prime}}\right)^{-6\frac{g^{2}C_{f}}{16\pi^{2}}}$$

$$Ratio: real function$$

Polarized

Method not applicable for the unpolarized (mixing with scalar)
 Transversity: similar behavior with the helicity (zero Im part)

- **★** Suggested ratio: a function of z z' and P_3/P'_3
- **★** $N_f = 2 + 1 + 1$ Twisted Mass fermions, $m_{\pi} = 375$ MeV
- **★** Non-perturbative data for momenta: $P_3 = \frac{2\pi}{L}n$, n=1,2,3
- \star 32³ × 64, z ϵ [0 : 15]

several fit options for \mathbf{c}/\mathbf{a}

★ Data do not show dependence on operator (expected, 1-loop PT)

A: Axial T: Tensor

NON-PERTURBATIVE RENORMALIZATION

Non-perturbative Renormalization

★ Similar process as the renormalization of the local and covariant derivative currents

★ Compute Z-factor on each value of z (length of Wilson Line)

RI-scheme:

$$\frac{Z_{\mathcal{O}}^{DR,RI}}{Z_{\mathcal{O}}^{DR,RI}} Z_{\psi}^{-1} \frac{1}{12} \operatorname{Tr} \left[\mathcal{V}_{\mathcal{O}}^{1-loop} \mathcal{V}_{\mathcal{O}}^{tree} \right] = 1$$

Non-perturbative Renormalization

★ Similar process as the renormalization of the local and covariant derivative currents

★ Compute Z-factor on each value of z (length of Wilson Line)

RI-scheme:

$$Z_{\mathcal{O}}^{DR,RI} Z_{\psi}^{-1} \frac{1}{12} \operatorname{Tr} \left[\mathcal{V}_{\mathcal{O}}^{1-loop} \mathcal{V}_{\mathcal{O}}^{tree} \right] = 1$$

 $\star Z_{\mathcal{O}}^{DR,RI}$ includes the linear divergence

$$Z_{\mathcal{O}}^{DR,RI} \equiv \mathcal{Z}_{\mathcal{O}} e^{-c \frac{|z|}{a}}$$

(The vertex function $\ensuremath{\mathcal{V}}$ has the same divergence as the nucleon matrix element)

 \bigstar Use conversion factor and anomalous dimension to convert to the $\overline{\rm MS}$ and evolve to 2 GeV.

Numerical Results

For z=0 we get Z_A (local current)

Numerical Results

What's next?

- ★ In the process of renormalizing the nucleon matrix elements
- ★ Subtraction of lattice artifact (utilize our perturbative calculation)

[M. Constantinou et al., arXiv:1509.00213]

SUMMARY PROSPECTS

SUMMARY & PROSPECTS

Progress in understanding the renormalization of quasi-PDFs

- ★ Techniques to understand and remove linear divergence
- ★ Study of multiplicative renormalization (perturbatively and non-perturbatively)
- ★ Eliminate mixing where present using perturbation theory

SUMMARY & PROSPECTS

Progress in understanding the renormalization of quasi-PDFs

- ★ Techniques to understand and remove linear divergence
- ★ Study of multiplicative renormalization (perturbatively and non-perturbatively)
- ★ Eliminate mixing where present using perturbation theory

Many more things to be done

- ★ Apply smearing in perturbative calculation
- ★ Subtraction of lattice artifacts using perturbative results
- Mixing elimination non-perturbatively
- Investigation of cases with gamma matrix perpendicular to the Wilson line (to avoid mixing)

SUMMARY & PROSPECTS

Progress in understanding the renormalization of quasi-PDFs

- ★ Techniques to understand and remove linear divergence
- ★ Study of multiplicative renormalization (perturbatively and non-perturbatively)
- ★ Eliminate mixing where present using perturbation theory

Many more things to be done

- ★ Apply smearing in perturbative calculation
- ★ Subtraction of lattice artifacts using perturbative results
- ★ Mixing elimination non-perturbatively
- ★ Investigation of cases with gamma matrix perpendicular to the Wilson line (to avoid mixing)

THANK YOU !