Overview OO	EFT and LGT 0000	Polyakov loops 0000000	Polyakov loop correlators 00000000	Summary 00

Color screening in high temperature quark-gluon-plasma

J. H. Weber¹ in collaboration with A. Bazavov², N. Brambilla¹, P. Petreczky³ and A. Vairo¹ (**TUMQCD** collaboration)

¹Technische Universität München ²Michigan State University ³Brookhaven National Lab

Nuclear Physics Colloquium, Institut für Theoretische Physik, Johann Wolfgang Goethe-Universität Frankfurt, 01/02/2017

PRD 93 114502 (2016); MPL A31 no.35, 1630040 (2016); arXiv:1601:08001

Overview	EFT and LGT	Polyakov loops	Polyakov loop correlators	
•0				
Introduction				

Quark-Gluon-Plasma - the high-temperature phase of QCD

QCD Phase diagram

- Smooth crossover region
- Accidental symmetries are broken/restored in crossover.

Overview	EFT and LGT	Polyakov loops	Polyakov loop correlators	Summary
00				
Overview				

Color screening in a high temperature quark-gluon-plasma

- Introduction & Overview
- Effective field theories for heavy quarks
- Polyakov loops color screening for a single quark
- Polyakov loop correlators color screening for a quark-antiquark pair
- Summary

	EFT and LGT	Polyakov loops	Polyakov loop correlators	
	0000			
Effective field theories for hea	avy quarks			

Static potential at finite temperature

• Melting of quarkonia is controlled by the screened, complex static potential $V_S(r, T)$, which has been calculated at next-to-leading order:

$$V_{S}(r, T) = -C_{F}\alpha_{s}\left(\frac{e^{-rm_{D}}}{r} + m_{D} + iT - \frac{2iT}{rm_{D}}\int_{0}^{\infty} \mathrm{d}x\frac{\sin(rm_{D}x)}{(x^{2}+1)^{2}}\right) + \mathcal{O}(g^{4}).$$

M. Laine et al., JHEP 9703 054 (2007)

• Im $V_S \gg \operatorname{Re} V_S \Rightarrow$ color screening is not effective for melting at all!

P. Petreczky et al., NPA 855 125 (2011)

- No non-perturbative determination of $V_S(r, T > 0)$ with a controlled error budget to date *real-time properties such as complex potentials* at T > 0 from *imaginary-time simulations* are *extremely difficult* at best.
- \Rightarrow obtain constraints for *complex quantities* from purely *real quantities*.
 - Singlet free energy and real part of the **potential** appear to be related:

$$F_{\mathcal{S}}(r, T) = \operatorname{Re} V_{\mathcal{S}}(r, T) + \mathcal{O}(g^{4}) = -C_{\mathcal{F}}\alpha_{s}\left(\frac{e^{-m_{D}}}{r} + m_{D}\right) + \mathcal{O}(g^{4}).$$

N. Brambilla et al., PRD 82 (2010)

Lattice gauge theory at finite temperature

Lattice QCD at finite temperature

• A finite imaginary time direction acts as an inverse temperature:

$$\left(aN_{ au}=rac{1}{T}
ight)$$

- Always $N_{\tau} < \infty$ at finite a:
- ⇒ always at a finite temperature before continuum extrapolation.
 - The continuum limit (a → 0) at fixed temperature T is reached via concurrent modification of a and N_τ: continuum at N_τ → ∞.

	EFT and LGT	Polyakov loops	Polyakov loop correlators	
	0000			
Free energies				

Polyakov loops and free energies of static quark states

• The Polyakov loop L is the gauge-invariant expectation value of the traced propagator of a static quark (P) and related to its **free energy**: $L(T) = \langle P \rangle_T = \langle \operatorname{Tr} S_Q(x, x) \rangle_T = e^{-F_Q^{\rm b}/T}$. L needs renormalization.

A. M. Polyakov, PL 72B (1978); L. McLerran, B. Svetitsky, PRD 24 (1981)

- The Polyakov loop correlator is related to singlet & octet free energies $C_P(r, T) = e^{-F_{Q\bar{Q}}^{\rm b}(r, T)} = \frac{1}{9}e^{-F_S^{\rm b}/T} + \frac{8}{9}e^{-F_A^{\rm b}/T} = \frac{1}{9}C_S(r, T) + \frac{8}{9}C_A(r, T).$ S. Nadkarni, PRD 33, 34 (1986)
- The Polyakov loop correlator is related to the **potentials** of **pNRQCD** $C_P(r, T) = e^{-F_{QQ}^{\rm b}(r, T)} = \frac{1}{9}e^{-V_S^{\rm b}/T} + \frac{8}{9}L_A^{\rm b} e^{-V_A^{\rm b}/T} + \mathcal{O}(g^6) \text{ for } rT \ll 1.$ N. Brambilla et al., **PRD 82** (2010)

	EFT and LGT	Polyakov loops	Polyakov loop correlators	
		000000		
A single static quark				

Color screening for a single static quark

The Polyakov loop as an order parameter

The Polyakov loop as an order parameter

	EFT and LGT	Polyakov loops	Polyakov loop correlators	
		000000		
A single static quark				

Temperature derivative of LTemperature derivative of F_Q $\frac{dL}{dT}$ peaks at $T \sim 190$ MeV $S_Q = -\frac{dF_Q}{dT}$ peaks at $T \sim 160$ MeV $\frac{dL}{dT}$ is explicitly scheme dependent,though S_Q is a measurable quantity.
JHW, MPL A31 no.35, 1630040 (2016)

• T_{χ} defined via O(2) scaling of $\chi_{m,l}$ (O(4): 1–3.5 MeV lower T_{χ})

A. Bazavov et al., PRD 85 054503 (2012) [HotQCD]

• $T_S(N_\tau) \simeq T_{\chi}(N_\tau)$ for any N_τ despite different cutoff effects suggests a close connection of chiral symmetry and deconfinement.

• Hadron resonance gas (HRG) describes data below $T \sim 125$ MeV.

- The peak decreases for lower quark masses and for finer lattices.
- $\rightarrow\,$ interpret critical behavior as melting of the static-light mesons.
 - The entropy peaks at $T_S = 153^{+6.5}_{-5}$ MeV in the continuum limit.

- Discretization effects are very mild for T > 500 MeV.
- We compare $S_Q(T, 4)$ with a weak-coupling calculation for 3 flavors.

M. Berwein et al., PRD 93 034010 (2016)

- For $T \gtrsim 3$ GeV, $S_Q(T, 4)$ agrees with NNLO.
- Higher temperature than for quark number susceptibilities $(T_{\rm qns} \sim 300 \,{\rm MeV})$ due to static Matsubara mode contribution to S_Q .

EFT and LGT	Polyakov loops	Polyakov loop correlators	

Color screening for a static quark-antiquark pair

Free energy of a QQ̄ pair, F_{QQ̄}, is also called *color-averaged potential*: C_P(r, T) = ⟨P(0)P[†](r)⟩_T = e^{-F_{QQ̄}(r,T)}/_T = ¹/₉e^{-F_S(r,T)}/_T + ⁸/₉e^{-F_A(r,T)}/_T.
F_{QQ̄} - T log 9 is rather close to T=0 static energy V_S up to rT ~0.15.

Singlet free energy in Coulomb gauge

- Singlet free energy: $C_S(r, T) = \frac{1}{3} \left\langle \sum_{a=1}^3 W_a(0) W_a^{\dagger}(r) \right\rangle_T = e^{-F_S(r,T)/T}$
- Wilson line correlator requires explicit gauge fixing (Coulomb gauge)
- F_S is rather consistent with T=0 static energy $V_S(r)$ up to $rT \sim 0.35$.

	EFT and LGT	Polyakov loops	Polyakov loop correlators	
			0000000	
Polyakov loop correlators				

Effective coupling: confining and screening regimes

Effective coupling α_{QQ̄}(r, T) is a proxy for the force between Q and Q̄.
 α_{QQ̄}(r, T) = ^{r²}/_{C_F} ∂E(r,T)/∂r, E = {F_S(r, T), V_S(r)}
 α_{QQ̄} clearly distinguishes two different regimes at small and large r.

260

1.0 330 400 0.8 600 1200 0.6 2000 -2800 3600 0.4 Preliminary! Color screening 0.2 Coulomb-like 'Ifm 0.01 0.03 0.06 0.1 0.2 0.3 0.6 1.0

• Effective coupling $\alpha_{Q\bar{Q}}(r, T)$ is a proxy for the force between Q and \bar{Q} .

$$\alpha_{Q\bar{Q}}(r,T) = \frac{r^2}{C_F} \frac{\partial E(r,T)}{\partial r}, \ E = \{F_S(r,T), V_S(r)\}$$

• $\alpha_{\rho\bar{\rho}}$ clearly distinguishes two different regimes at small and large r.

Effective coupling: confining and screening regimes

Effective coupling α_{QQ̄}(r, T) is a proxy for the force between Q and Q̄.
 α_{QQ̄}(r, T) = ^{r²}/_{C_F} ∂E(r,T)/∂r, E = {F_S(r, T), V_S(r)}
 α_{QQ̄} clearly distinguishes two different regimes at small and large r.

	EFT and LGT	Polyakov loops	Polyakov loop correlators		
			0000000		
Confronting weak-coupling predictions					

Confronting weak-coupling predictions at short distances

- pNRQCD: C_P is given in terms of **potentials** V_S and V_A at T = 0 and of the adjoint Polyakov loop L_A at T > 0: $C_P(r, T) = e^{-F_{Q\bar{Q}}(r, T)} = \frac{1}{9}e^{-V_S/T} + \frac{8}{9}L_A e^{-V_A/T} + \mathcal{O}(g^6)$ for $rT \ll 1$.
- We reconstruct V_A from V_S and L_A from L via **Casimir scaling** and include the **Casimir scaling violation**: $\frac{8V_A}{r} + V_S = 3\frac{\alpha_s^3}{r} [\frac{\pi^2}{4} 3] + \mathcal{O}(\alpha_s^4)$.

Confronting weak-coupling predictions in the screening regime (I)

Hashed bands: LO Solid bands: NLO

Scale uncertainty $\mu = (1-4)\pi T$ due to resummation

• Leading order singlet free energy: F_S

$$F_{\mathcal{S}}(r,T) = -C_F \alpha_s \left[\frac{e^{-rm_D}}{r} + m_D \right].$$

- The singlet free energy in the electric screening regime was caluclated at NLO by Laine et al., JHEP 0703 054 (2007)
- Lattice and NLO results are compatible up to $rT\!\sim\!0.8.$

Confronting weak-coupling predictions in the screening regime (II)

- The perturbation series of $F_{Q\bar{Q}}$ breaks down in the screening regime: NLO exceeds LO, NNLO is non-perturbative! S. Nadkarni, PRD 33 (1986)
- The NLO result is much closer to the lattice data for $rT \lesssim 0.4.$

- energies must reach asymptotic screening behavior: $F = -a\frac{e^{-m}}{r} + c$.
- The asymptotic singlet screening mass m_5 exceeds the NLO Debye mass (electric mass in Electrostatic QCD). E. Braaten, A. Nieto, PRD 53 (1996).
- Asymptotic and rescaled NLO masses share similar T dependence.

O. Kaczmarek, **PoS CPOD07** (2007).

- The screening mass $m_{Q\bar{Q}}$ is already at $rT \sim 0.45$ asymptotic.
- $\frac{m_{Q\bar{Q}}}{T}$ is at most mildly temperature dependent for T > 200 MeV.
- $m_{Q\bar{Q}}$ is compatible with the magnetic mass m_M from smeared Polyakov loop correlators and with the ground state of massless $N_f = 3$ EQCD.

S. Borsányi et al., JHEP 1504 138 (2015) [BW coll.]; A. Hart et al., NPB 586 (2000)

	EFT and LGT	Polyakov loops	Polyakov loop correlators	Summary
				•0
Summary				

- We study color screening and deconfinement using the renormalized Polyakov loop and related observables.
- We see in the entropy $S_Q = -\frac{dF_Q}{dT}$ and in the ratio of Polyakov susceptibilities $R_T = \frac{\chi_T}{\chi_L}$ crossover behavior at $T \sim T_c$.
- We extract $T_s = 153^{+6.5}_{-5}$ MeV from the entropy, in agreement with $T_{\chi} = 160(6)$ MeV (chiral susceptibilities, O(2) scaling fits, $\frac{m_l}{m_s} = \frac{1}{20}$).

$N_{ au}$	∞	12	10	8	6
Ts	$153^{+6.5}_{-5}$	157.5(6)	159(4.5)	162(4.5)	167.5(4.5)
T_{χ}	160(6)	161(2)	$[162(2)]^*$	164(2)	171(2)

• Weak-coupling behavior of the Polaykov loop sets in for $T \sim 3 \,\mathrm{GeV}$.

Color screening permits to precisely measure the onset of deconfinement.

	EFT and LGT	Polyakov loops	Polyakov loop correlators	Summary
				00
Summary				

- Continuum limit of static quark correlators in $N_f = 2+1$ QCD up to $T \sim 2.8$ GeV and down to $r \sim 0.018$ fm.
- Static $Q\bar{Q}$ correlators show remnants of confinement, and up to $T \sim 300 \text{ MeV QGP}$ is strongly coupled.
- Onset of thermal effects is much stronger if **color-octet states** contribute.
- The free energy Fqq is given in terms of T=0 potentials and the adjoint Polyakov loop at T>0 in line with weakly-coupled *pNRQCD*.
- We confirm electric screening in both $F_{Q\bar{Q}}$ and F_S at $rT \sim 0.25$.
- The screening mass of $m_{Q\bar{Q}}$ is consistent with EQCD predictions for the lowest scalar glueball and has a trivial temperature dependence.

Color screening plays essentially no role in sequential melting, which is a consequence of quarkonium dissociation.

Details of the ensembles

- For each N_τ: 31 43 temperatures; T range from 0.72T_c up to 30T_c
 HISQ/Tree action, errors: O(α_sa², a⁴); taste-breaking much reduced.
- Ensembles: $\frac{N_{\sigma}}{N_{\tau}} = 4$, $m_l = \frac{m_s}{20} \Leftrightarrow m_{\pi} = 161 \text{ MeV} \text{ (most from HotQCD)}$ A. Bazavov et al., **PRD 85** 054503 (2012), **PRD 90** 094503 (2014) [HotQCD]
- Two ensembles: $\frac{N_{\sigma}}{N_{\tau}} = 6$ ensembles for $N_{\tau} = 4$
- Three ensembles each: $m_l = \frac{m_s}{5} \Leftrightarrow m_\pi = 322 \,\mathrm{MeV}, \,\mathrm{for} \,\, N_\tau = 8, 10, 12$

Scheme independence of the entropy

$$S_Q = -\frac{d(F_Q^{\text{bare}} + C_Q)}{dT} = -\frac{\partial \left(F_Q^{\text{bare}} + \frac{b}{a}\right)}{\partial T} + \frac{1}{T} \frac{\partial \left(c + \mathcal{O}(a^2)\right)}{\partial \log a} = -\frac{\partial F_Q}{\partial T} + \mathcal{O}(a^2).$$

Scheme dependence of the Polyakov loop

$$0 \stackrel{!}{=} \frac{1}{L} \frac{\partial^2 L}{\partial T_L^2} = \left[\frac{\partial f_Q}{\partial T_L} \right]^2 - \left[\frac{\partial^2 f_Q}{\partial T_L^2} \right] = \frac{F_Q^2 + 2[S_Q - 1]T_LF_Q}{T_L^4} + \frac{S_Q^2 - 2S_Q + T_L \frac{\partial S_Q}{\partial T_L}}{T_L^2}$$

T_c from chiral observables vs the peak of the entropy

 T_{χ} defined via O(2) scaling fits to $\chi_{m,l}$ A. Bazavov et al., PRD 85 054503 (2012) [HotQCD]

- Polyakov loop susceptibility: $\frac{\chi_A}{VT^3} = \left(\langle |P|^2 \rangle \langle |P| \rangle^2\right)$
- Mixes different representations: $9|P_3|^2=8P_8-1$
- Casimir scaling violations (P. Petreczky, H.-P. Schadler, PRD 92 094517 (2015))
- $\rightarrow\,$ no $Q\bar{Q}$ scheme, renormalize 2+1 flavor HISQ data via gradient flow
 - χ_A strongly f_t dependent, no indication for critical behavior

Ratios of Polyakov loop susceptibilities

 Longitudinal and transverse Polyakov loop susceptibilities: ^{χ_L}/_{VT³} = ⟨Re P²⟩ - ⟨Re P⟩², ^{χ_T}/_{VT³} = ⟨Im P²⟩

 R_A = χ_A/χ_L: step function behavior cannot be related to crossover.

Critical behavior of Polyakov loop susceptibilities

- Ratios of **longitudinal** and **transverse** Polyakov loop susceptibilities: $\frac{\chi_L}{VT^3} = \left[\langle \operatorname{Re} P^2 \rangle - \langle \operatorname{Re} P \rangle^2 \right], \quad \frac{\chi_T}{VT^3} = \langle \operatorname{Im} P^2 \rangle \quad \text{P. Lo et al., PRD 88 014506 (2013)}$ • We use gradient flow for renormalization. M. Lüscher, JHEP 1008 071 (2010)
- $R_T = \chi_T / \chi_L$: crossover pattern for $f_t \ge f_0$, exposes critical behavior.

• F_Q is for low T below and for high T above the older HISQ result, due to better continuum limit and renormalization constant.

• Hadron resonance gas agrees with our data up to $T \lesssim 135$ MeV.

G. Aarts et al., PRD 92 014503 (2015)

- Correlation functions for nucleons of different parity become degenerate at finite temperature.
- It is not obvious whether this modification must be factored into hadron resonance gas models.

High temperatures

High temperatures

Static energies from lattice and weak coupling approaches differ by unphysical additive divergences. Avoided when studying **derivatives**, i.e. static $Q\bar{Q}$ force or entropy **Cutoff effects** in $S_Q(T)$ are small.

We compare $S_Q(T,4)$ with weak coupling calculation for 3 flavors. M. Berwein et al., PRD 93 034010 (2016)

For $T \gtrsim 3$ GeV, $S_{Q}(T, 4)$ agrees with NNLO. The continuum limit should agree for lower T already.

LO

NNLO

T [MeV]

 $= -\log \langle P(0)P^{\dagger}(\mathbf{r})
angle_{T}$

Poylakov loop correlator $C_P(T, r)$

Static meson correlators at asymptotically LARGE distances

$$r \gg 1/T$$
: static $Q\bar{Q}$ decorrelate

$$\lim_{r \to \infty} C_P(T, r) = L(T)^2$$
Apparent due to color screening

Static meson correlators at asymptotically LARGE distances

$$r \gg 1/T$$
: static $Q\bar{Q}$ decorrelate

$$\lim_{r \to \infty} C_P(T, r) = L(T)^2$$
Apparent due to color screening
For any color configuration of $Q\bar{Q}$

$$\lim_{r \to \infty} C_P(T, r) = \langle I(T) \rangle^2$$

 $\lim_{r \to \infty} C_S(T, r) = \langle L(T) \rangle^2$ C₅ is defined in **Coulomb gauge** as $C_S(T, r) = \frac{1}{3} \sum_{a=1}^3 W_a(T, 0) W_a^{\dagger}(T, \mathbf{r})$

Static meson correlators at asymptotically LARGE distances

$$r \gg 1/T$$
: static $Q\bar{Q}$ decorrelate

$$\lim_{r \to \infty} C_P(T, r) = L(T)^2$$
Apparent due to color screening
For any color configuration of $Q\bar{Q}$

$$\lim_{r \to \infty} C_S(T, r) = \langle L(T) \rangle^2$$
 C_S is defined in Coulomb gauge as
 $C_S(T, r) = \frac{1}{3} \sum_{a=1}^{3} W_a(T, 0) W_a^{\dagger}(T, r)$

$$\frac{C_{S}^{r}}{C_{S}^{b}} = \frac{C_{P}^{r}}{C_{P}^{b}} = \frac{(L^{r})^{2}}{(L^{b})^{2}} = \exp\left[-2N_{\tau}c_{Q}\right]$$

25 / 25

Renormalization scheme: $Q\bar{Q}$ procedure

Fix the static energy $(V_S \equiv V)$ $V^{r}(\beta, r) = V^{b}(\beta, r) + 2c_{Q}(\beta)$ for each β (β omitted below) to $V^{r}(r) = \frac{V_{i}}{r_{i}}, r^{2} \frac{\partial V(r)}{\partial r} \bigg| = C_{i},$ with $V_0 = 0.954$, $V_1 = 0.2065$ and $C_0 = 1.65$, $C_1 = 1.0$ • Use HotQCD results for $2c_{0}$ A. Bazavov et al., PRD 90 094503 (2014) • Interpolate in β

• Add $N_{\tau}c_Q$ to $f_Q^{\text{bare}}(T[\beta, N_{\tau}])$.

Renormalization scheme: direct renormalization

How to renormalize for $\beta > 7.825$?

Direct renormalization scheme

S. Gupta et al., PRD 77 034503 (2008)

 $f_Q(T(\beta, N_\tau), N_\tau) = f_Q^{\rm b}(\beta, N_\tau) + N_\tau c_Q(\beta)$

$$T(\beta, N_{\tau}) = T(\beta^{\text{ref}}, N_{\tau}^{\text{ref}}) \text{ implies}$$

$$c_{Q}(\beta) = \frac{1}{N_{\tau}} \left\{ N_{\tau}^{\text{ref}} c_{Q}(\beta^{\text{ref}}) + f_{Q}^{\text{b}}(\beta^{\text{ref}}, N_{\tau}^{\text{ref}}) - f_{Q}^{\text{b}}(\beta, N_{\tau}) \right\}$$

$$\text{infer } c_{Q}(\beta) \text{ from } c_{Q}(\beta^{\text{ref}})$$

Essential caveat:

The approach is invalid if **cutoff effects persist after renormalization**.

Renormalization scheme: direct renormalization

$$\begin{split} T(\beta, N_{\tau}) &= T(\beta^{\text{ref}}, N_{\tau}^{\text{ref}}) \text{ implies} \\ c_Q(\beta) &= \frac{1}{N_{\tau}} \left\{ N_{\tau}^{\text{ref}} c_Q(\beta^{\text{ref}}) + \Delta_{N_{\tau}, N_{\tau}^{\text{ref}}} \right. \\ &+ f_Q^{\text{b}}(\beta^{\text{ref}}, N_{\tau}^{\text{ref}}) - f_Q^{\text{b}}(\beta, N_{\tau}) \right\} \\ &\text{infer } c_Q(\beta) \text{ from } c_Q(\beta^{\text{ref}}) \end{split}$$

Essential caveat:

The approach is invalid if **cutoff ef-fects persist after renormalization**.

- Compute cutoff effects for low β and include in relation.
- Estimate cutoff effects for high β and include as well.
- Finally check consistency! \checkmark

Renormalization scheme: gradient flow

Gradient flow approach

M. Lüscher, JHEP 1008 071 (2010)

Diffusion-type field evolution in an artificial **fifth dimension** t

 $\dot{V}_{\mu} = -g_0^2 \{\partial_{\mu} S[V]\} V_{\mu}$

Fields V_{μ} at finite flow time

$$V_{\mu} \equiv V_{\mu}(x,t), \ V_{\mu}(x,0) = U_{\mu}(x)$$

are smeared out over length scale $f_t = \sqrt{8t}$, have no short distance singularities, **no UV divergences**

fixed flow time t defines a specific renormalization scheme, if

$$\mathsf{a} \ll \mathsf{f}_t = \sqrt{8t} \ll 1/T = \mathsf{a}\mathsf{N}_{ au}$$

P. Petreczky, H.-P. Schadler, PRD 92 094517 (2015)

• $T \lesssim 400$ MeV: f_t dependence mild, constant differences.

• Cross-check of $Q\bar{Q}$ procedure with result at flow time f_t .

Larger N_{τ} needed to afford smaller flow times at higher temperatures

Reconstruction of the Polyakov loop correlator

Asymptotic screening of the singlet free energy

- The singlet screening mass is volume independent within errors.
- The screening mass reaches saturation at $rT\!\sim\!1\!-\!1.5.$
- Huge ensemble sizes are required due to large noise contamination.
- We estimate the asymptotic screening and its error from its value at intermediate distances: $m_5(r \rightarrow \infty) \simeq m_5(r \sim 0.7) + 0.5 \pm 0.1$.

Asymptotic screening of the free energy

- The screening mass is volume independent within errors.
- The screening mass reaches saturation at $rT\!\sim\!0.45.$
- Even huger ensemble sizes are required due to small signal.
- We estimate the asymptotic screening and its error from its value at intermediate distances: $m_{Q\bar{Q}}(r \rightarrow \infty) \simeq m_{Q\bar{Q}}(r \sim 0.24) 0.6 \pm 0.2$.

Thermal effects at short distances

Is F_S a good estimate for $\operatorname{Re} V_S$?

• Thermal modifications are small for $r \to 0 \to \text{study } V_S(r) - F_S(r, T)$. • $V_S(r)$ and $F_S(r, T)$ differ by up to 10 MeV for $rT \leq 0.27$.