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INTRODUCTION
Goal: Compute properties of hadrons from first principles 

Parton distribution functions (PDFs) 

Lattice QCD calculations is a first principles method  

For many years calculations focused on Mellin moments 

Can be obtained from local matrix elements of the proton in Euclidean space  

Breaking of rotational symmetry —> power divergences  

only first few moments can be computed 

Recently direct calculations of PDFs in Lattice QCD are proposed 

First lattice Calculations already available 

X. Ji, Phys.Rev.Lett. 110, (2013)

Y.-Q. Ma J.-W. Qiu (2014) 1404.6860  

H.-W. Lin, J.-W. Chen, S. D. Cohen, and X. Ji, Phys.Rev. D91, 054510 (2015) 

C. Alexandrou, et al, Phys. Rev. D92, 014502 (2015) 



QUASI-PARTON DISTRIBUTIONS

Defined as non-local (space), equal time matrix elements in 
Euclidean space 

Equal time: rotation to Minkowski space is trivial 

PDFs are obtained in the limit of infinite proton momentum 

Matching to the infinite momentum limit can be obtained 
through perturbative calculations 

X. Xiong, X. Ji, J. H. Zhang, Y. Zhao, Phys. Rev. D 90, no. 1, 014051 (2014) 
T. Ishikawa et al. arXiv:1609.02018 (2016)



QPDFS: DEFINITION

5

We denote bare light-front PDFs by f

(0)(⇠). Light-front PDFs are frequently represented by

f

(0)
j/N

(⇠), where j denotes the quark flavor and N the nucleon species, but here we will be considering

only non-singlet distributions, for which we can neglect mixing between parton species, and work

with su�cient generality that the nucleon species is not relevant to our discussion. We use light-

front coordinates, (x+, x�,xT) such that x

± = (t ± z)/
p
2, and define ⇠ = k

+
/P

+. We use ⇠

to distinguish this variable from the Bjorken-x parameter that characterizes the kinematics of

scattering experiments and is given in terms of the experimental momentum transfer Q

2 = �q

2

and hadron momentum P by x = Q

2
/(2P · q). The bare PDF is defined as [3]
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Here T is the time-ordering operator,  is a quark field, and the subscript C indicates that the

vacuum expectation value has been subtracted (in other words, only connected contributions are

included). The operator W (!�
, 0) is the Wilson line,
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with P the path-ordering operator, g0 the QCD bare coupling, and A

µ = A

µ

↵

T

↵

the SU(3) gauge

potential with generator T
↵

(summation over color index ↵ is implicit). The target state, |P i, is a
spin-averaged, exact momentum eigenstate with relativistic normalization
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We define the moments of bare PDFs as
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where f
(0)

(⇠) is the anti-quark PDF and the second equality follows from the relation of the quark

to anti-quark PDFs

f

(0)(�⇠) = �f

(0)
(⇠), (5)

which holds for the bare distributions if the quark and anti-quarks fields are classical, or quantized

using light-front quantization [33].

We can relate these bare moments, a(n)0 , to matrix elements of twist-two operators via

D
P |O{µ1...µn}

0 |P
E
= 2a(n)0 (Pµ1 · · ·Pµn � traces) . (6)
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Light-cone PDFs:
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Moments:
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Local matrix elements:
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Here the bare twist-two operators are

O{µ1···µn}
0 = i

n�1
 (0)�{µ1

D

µ2 · · ·Dµn}�
a

2
 (0)� traces . (7)

In these expressions the braces denote symmetrization, Dµ is the symmetric covariant derivative,

�

a are SU(2) flavor matrices, and the subtraction of the trace terms ensures that the operator

transforms irreducibly under SU(2)L ⌦ SU(2)R.

B. Renormalized PDFs

To this point we have considered the bare light-front PDFs, with the understanding that such

objects are evaluated with some regulator that renders the bare distributions finite. We now intro-

duce renormalized light-front PDFs. We stress that in this section we consider a renormalization

scheme that respects rotational symmetry and, for definiteness, one can have in mind the MS

scheme. Complications will arise if a regulator that breaks rotational invariance, such as the lat-

tice regulator, is used. We do not discuss such complications here, because we will avoid explicit

computations of moments at finite lattice spacing. All correlation functions computed on the lattice

can be renormalized and extrapolated to the continuum limit, provided that no power divergent

mixing exists. In the next section, we propose a smeared correlation function that does not have

power-divergent mixing.

In general, renormalized light-front PDFs are written in terms of a kernel, Z(⇣/⇠, µ), as
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where µ is some renormalization scale. We do not need to consider mixing between parton species

for non-singlet distributions. In terms of the renormalized light-front PDF, the renormalized Mellin

moments are
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which can be related to matrix elements of renormalized twist-two operators, O{⌫1...⌫n}(µ) =

ZO(µ)O{⌫1...⌫n}
0 , via

D
P |O{⌫1...⌫n}(µ)|P
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= 2a(n)(µ) (P ⌫1 · · ·P ⌫n � traces) . (10)

This relation holds provided the light-front PDFs and twist-two operators are renormalized in the

same scheme [33].



QPDFS: DEFINITION
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QPDFS: MAIN IDEA

X. Ji, Phys.Rev.Lett. 110, (2013)  

-2 -1 0 1 2
-2

-1

0

1

2
lim

Pz!1
q

(0) (x, Pz) = f(x)

z

t

Euclidean space time local matrix element  
is equal to the same  matrix element in 
Minkowski space 



Practical calculations require a regulator (Lattice) 

Continuum limit has to be taken 

renormalization 

Momentum has to be large compared to hadronic scales to suppress higher twist effects 

Practical issue with LQCD calculations at large momentum … signal to noise ratio

q (x, Pz) =

Z 1

�1

d⇠

⇠

e
Z

✓
x

⇠

,

µ

Pz

◆
f(⇠, µ) +O(⇤QCD/Pz,MN/Pz)

X. Xiong, X. Ji, J. H. Zhang, Y. Zhao, Phys. Rev. D 90, no. 1, 014051 (2014) 
T. Ishikawa et al. arXiv:1609.02018 (2016)

The matching kernel can be computed in perturbation theory 
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FIG. 3: The nucleon isovector quasi-PDFs of Eq. 50 for the quark density (left), helicity (middle) and transversity (right) as
functions of x. The di↵erent colors from Pz (in units of 2⇡/L) 1 (red), 2 (green), 3 (cyan). We see the data converging at large
Pz.

the helicity and transversity. The normalization of each distribution is then set by multiplying in the corresponding
vector, axial or tensor charge, as obtained on the same lattices by Ref. [34] using standard techniques.

The isovector nucleon quark, helicity and transversity quasi-distributions are shown in Fig. 3, using in the same
color scheme to indicate di↵erent boosted momenta. We see that our lattice-QCD result has nonzero values for q(x),
�q(x) and �q(x) at x � 1 and that it does not vanish until x ⇡ 1.5. In all three cases, the smallest momentum
has the widest distribution, spreading out to large positive and negative x, beyond |x| = 1. As we discussed after
Eq. 13, when P

z

is finite, the range of |x| is not bounded by unity. But as the boosted momentum increases, the
distribution sharpens and narrows, decreasing the contribution coming from the |x| > 1 regions, just what we would
expect in the lightcone distribution. This is not hard to understand (as we discussed in our earlier work [24]): in the
infinite-momentum frame, no constituents of the nucleon can carry more momentum than the nucleon as a whole.
However, since the momentum in our calculation is finite, the PDF does not have to vanish at x = 1. The peak
location for the density and helicity distributions remains roughly the same for P

z

= 2 and 3, but in the case of
the transversity, the peak shifts toward x = 0 for P

z

= 3. Note that there is a substantial di↵erence in magnitude
between P

z

= 2 and 3, and an even more severe di↵erence in shape between P
z

= 1 and the others. We note that
since x is defined as k/P

z

and k is arbitrary, we can make k as small as desired to obtain small-x physics. However,
the small-x region corresponds to long-distance physics, which requires longer physical links to probe. This is similar
to the finite-volume e↵ect commonly seen in LQCD calculations, except the large-z links are essential to obtain a
reasonable description of the physics in this region.

To improve the quasi-distribution closer to the infinite-momentum frame (IMF) proton distribution functions, we
follow the recipes described in Sec. III for the one-loop and mass corrections. The e↵ects of the one-loop (with ↵

s

set
to 0.2) and the final quark distribution (one-loop first, followed by mass correction) and original quasi-distribution
are shown in Fig. 4 for P

z

= 2 and P
z

= 3. We found that corrections for P
z

= 1 distributions are poorly behaved
due to the smallness of the boosted momentum; the results are ignored here. First, we compare the quasi- (green
band) and one-loop–corrected (red band) distributions. For quark density, helicity and transversity distributions, we
find a significant dip caused by the one-loop correction near x = 0. The depth of this dip increases as we increase
the resolution in x, dx, used in the integral; this artifact may disappear with proper one-loop renormalization in the
future calculations. We also observe a clear evidence of higher values of the peak in the positive-x area and pushing
outward of the peak location of the distribution. In the large-x region, the distribution is pulling back, making it
rarer for quarks to carry a large fraction of momentum as one approaches the IMF, which is what we expect. For
the P

z

= 3 distribution, the magnitude of the changes due to the one-loop correction decrease, as expected. As we
expand the reach of the lattice calculation to larger values of P

z

, the corrections will be even smaller. The pushing
outward in the large-x region may be caused by the validity of the one-loop correction requiring larger momentum.
Future calculations should be designed to study this further with larger momentum and higher statistics.

We then apply the mass-correction formula to the one-loop–corrected distribution, shown as blue bands in Fig. 4
for all distributions and both P

z

2 {2, 3}. The peaks are shifted toward x = 0, the distribution sharpens, and the
large-x region distribution is suppressed further, as expected. In both the quark density and transversity distributions,
the mass correction also reduces the depth of the dip caused by the one-loop correction formula, and the e↵ect of
the mass correction also diminishes for the P

z

= 3 case. However, for the helicity, the mass-correction causes a
significant unphysical spike rising near x = 0 due to the singularity in the double-integral terms. We note that the
peak significantly decreases between P

z

= 2 and P
z

= 3, and this should be reduced with larger P
z

data in the future.
The height of the peak depends on the resolution of the integral, but has very small e↵ect on the zeroth moment. In
addition, the mass-correction formulae used in this paper di↵er from what we used in our earlier publication, Ref. [24].
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FIG. 4: The nucleon isovector quasi-PDF (green), with one-loop correction (red), and with after one-loop and mass correction
(i.e. qII). (blue) for the quark density (left), helicity (middle) and transversity (right) as functions of x for the higher two
boosted momenta Pz = 2 (top row) and 3 (bottom row) in units of 2⇡/L.
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FIG. 5: The momentum-dependence of the nucleon isovector distributions after one-loop and mass correction (i.e. qII) for quark
density (left), helicity (middle) and transversity (right) as functions of x. The orange band shows the momentum extrapolation
using the higher two momenta.

This change shifts the central value of the unpolarized and longitudinally polarized up-down quark asymmetry and
increases the estimated errors. However, the results remain consistent within the given errors.

To further reduce the remaining O(⇤2

QCD

/P 2

z

) correction due to higher-twist operators, we extrapolate to infinite
momentum using the form a + b/P 2

z

at each x point. The resulting distribution, shown in Fig. 5, has |x| > 1 region
within 2 sigma of zero; thus, we recover the correct support for the physical distribution within error. Note that the
smallest reliable region of x is related to the largest momentum on available on the lattice O(1/a), which is roughly
the inverse of length of the lattice volume in the link direction; therefore, we expect large systematic uncertainty in
the region x 2 [�0.08, 0.08]. In the case of quark density, there are also indications of momentum convergence within
2 sigma from P

z

= 2 and 3 data. In addition, the final extrapolated distribution (orange band) is consistent with the
largest momentum distribution. However, for the polarized distributions, even larger P

z

calculations are needed to
improve the convergence rate and reduce the uncertainty due to extrapolation, especially for the helicity.

There are many aspects that need to be improved to get the systematics under control, as indicated at various
points in the earlier sections. The operator renormalization also needs to be determined to one-loop level or better
in the future calculations. We intend in this work mainly to demonstrate that one can achieve light-cone quantities
with reasonable accuracy using currently available computational resources, and it opens the door for many more
lattice-QCD calculations on parton physics.

Plots taken from: Chen et al. arXiv:1603.06664

Convergence with momentum extrapolation

Including the 1-loop matching kernel

First Lattice results (Chen et. al)

Similar results have been achieved by Alexandrou et. al (ETMC)

http://arxiv.org/abs/arXiv:1603.06664


Related ideas see: 

A more general point of view: Y.-Q. Ma J.-W. Qiu (2014) 1404.6860

because the PDFs are boost invariant. While the quasi distributions do not contain “real-
time” any more, there is a trade-off: an infinite hadron momentum, which cannot be realized
in the actual lattice QCD simulations. To make this accessible, Ji introduced the large
momentum effective theory and the quasi distribution with finite P

z

, which is calculable on
the lattice, is matched to the one with infinite P

z

, therefore normal distributions, as:

eq(x, ⇤, P
z

) = Z

✓

x,
⇤

P
z

,
µ

P
z

◆

⌦ q(x, µ) + O
 

⇤

2

QCD

P 2

z

,
M2

P 2

z

!

, (1.4)

where ⌦ represents a convolution with respect to x and M is a nucleon mass. As P
z

!
1, the matching factor Z goes to one and O(1/P 2

z

) corrections are dropped off. It is
claimed [7] that since the difference between quasi and normal distributions is just whether
the longitudinal momentum is finite or infinite, they could have the common IR structure,
which should not be changed by moving from one frame to the other. The matching factor
Z, therefore, could be IR divergence free and perturbatively calculable.

The fact that the matching factor in Ji’s approach is IR-safe reminds us of the QCD
collinear factorization. As mentioned earlier, in the high-energy scattering process with
large momentum scale Q, the scattering cross section can be factorized into hard parts and
nonperturbative functions such as PDFs and fragmentation functions up to an uncertainty
of O(⇤

2

QCD

/Q2

). All collinear divergences are absorbed into the nonperturbative functions,
the remaining hard part is, therefore, IR-safe and perturbatively calculable. Inspired by
Ji’s idea and extending it to more familiar picture based on the collinear factorization, two
of authors of the present paper introduced a concept of the collinear factorization into the
lattice calculable parton distribution functions [8, 9]. In this approach, we start with finding
“lattice cross sections” which can be factorized into hard parts and targeted nonperturbative
functions, along with the analogy of the collinear factorization in the high-energy scattering
process. This factorization is schematically expressed as

e�(x, eµ2, P
z

) =

X

↵={q,q,g}

H
↵

✓

x,
eµ

P
z

,
eµ

µ

◆

⌦ f
↵

(x, µ2

) + O
 

⇤

2

QCD

eµ2

!

, (1.5)

where the left-hand side is lattice calculable cross sections and it is factorizable into hard
parts H

↵

and nonperturbative functions f
↵

in the right-hand side. Depending on the
cross section in the left-hand side, quark (q), anti-quark (q) and gluon (g) distributions
could be involved. In the analogy with usual scatterings, eµ and P

z

correspond to the
momentum transfer (resolution) and the collision energy (parameter), respectively. As
several kinds of high-energy scattering cross section give common distribution functions
(universality), we could design bunch of types of lattice calculable cross sections to give
desired nonperturbative functions. From this view, the quasi distribution (1.2), introduced
by Ji, is a special case of the lattice cross section and the quasi quark distributions are
factorized into hard parts and normal distributions.

Several exploratory studies of the lattice computation for the quasi distributions have
been carried out since Ji’s original proposal of the method [10–12]. When the quasi
distributions or lattice calculable cross sections are computed on the lattice, the matching
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Minkowski space factorization:

computable in perturbation theory  

Detmold and Lin Phys.Rev.D73:014501,2006

K-F Liu Phys.Rev. D62 (2000) 074501



PROCEDURE OUTLINE

Compute equal time matrix elements in Euclidean space 
using Lattice QCD at sufficiently large momentum in 
order to suppress higher twist effects 

Take the continuum limit (renormalization) 

Equal time: Minkowski — Euclidean equivalence 

Perform the matching Kernel calculation  in the 
continuum 



GRADIENT FLOW SMEARING

Is  a way to obtain a finite matrix element in the continuum 
that can then be used to obtain the  light cone PDFs

Chen et al arXiv:1609.08102 (2016) 

T. Ishikawa et al. arXiv:1609.02018 (2016)

Issues related to the continuum limit 
have been also discussed in :



GRADIENT FLOW
It is a suitably chosen map of the fields to new fields that have UV 

fluctuations suppressed

Aµ ! Bµ[Aµ]

q !  [q̄, q, Aµ]q̄ !  ̄[q̄, q, Aµ]

Can be defined in the continuum as well as on the lattice

Correlation functions of the new fields can be studied perturbatively or 
non-perturbatively and used as probes of the underlying QFT.

Luscher [’10,’13] 



Diffusion equations (lattice version):

@

s

V

µ

(x, s) = �g

2
0@Vµ(x,s)Sw

V

µ

(x, s)

@s (x, s) =  (x, s)
 �
�

@s (x, s) =
�!
� (x, s)

Sw is the Wilson gauge action
Δ is the lattice covariant laplacian
s is the flow time

Integrate these equations for some time s resulting damping 
of the UV fluctuations down to scale 

µ = 1/
p
s

s=0 the fields take the value of the original fields in the path integral



Solutions to the flow equations (leading order in coupling constant) 

 (x, s) =

Z
K(x� y, s)q(y)d4y + · · ·

Bµ(x, s) =

Z
K(x� y, s)Aµ(y)d

4
y + · · ·

K(x, s) =
e

�x

2
/4s

(4⇡s)2

The “heat kernel” K is:

µ = 1/
p
s

Hence the exponential damping of UV fluctuations to scales: 



Correlation functions of “smeared” gauge 
fields are finite if the underlying theory is 
renormalized (BRST symmetry) 

Correlation functions of “smeared” fermion 
fields are finite if an additional wave function 
renormalization is included 

Fermion wave function renormalization can 
be removed using the “ringed” smeared 
fermion fields

Notable results (Luscher):

Local field

Smeared field

. H. Makino and H. Suzuki, PTEP 2014, 063B02 (2014), 1403.4772.  
. K. Hieda and H. Suzuki (2016), 1606.04193 



. H. Makino and H. Suzuki, PTEP 2014, 063B02 (2014), 1403.4772.  
. K. Hieda and H. Suzuki (2016), 1606.04193 

Ringed smeared fermions

Ringed fermion correlation functions require no additional renormalization



SMEARED QUASI-PDFS

[24], which can be removed by introducing ringed fermion fields [25, 26]. Third, the lat-

tice matrix elements of smeared fields remain finite in the continuum limit, provided the

flow time is fixed in physical units [24, 38]. In essence, the gradient flow allows one to

replace the lattice regulator with a new smearing-scale regulator. This last fact allows

one to determine the continuum limit of lattice matrix elements of, for example, twist-two

operators, without power-divergent mixing. In the continuum, because the gradient flow

respects rotational symmetry, the mixing between twist-two operators is then reduced to

ordinary mixing with coe�cients that depend on the smearing scale and not powers of the

inverse lattice spacing [38].

We denote the ringed fermion fields at flow time ⌧ by �(x; ⌧) and �(x; ⌧), and the

corresponding Wilson line at the same flow time, constructed from the smeared gauge

fields B
µ

(x; ⌧), by W(0, z; ⌧). We start with the matrix element

h
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✓
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,

p
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,
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C

,

(2.11)

which, being dimensionless, depends only on dimensionless combinations of scales. We note

that the flow time has units of length-squared. The subscript C indicates that disconnected

contributions to this matrix element have been removed. The ringed fermion fields require

no wave function renormalization and this smeared matrix element is finite provided the

flow time, ⌧ , is non-zero and fixed in physical units, because correlation functions con-

structed from smeared fields are finite [23, 24]. Note that divergences will appear in the

limit of vanishing flow time and the matrix element will then require renormalization.

We then define the quasi PDF [13, 14] as

q

(s)
�
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p
⌧P

z

,

p
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p
⌧MN
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=
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�1
dz

2⇡
e

i⇠zPz
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(s)(
p
⌧z,

p
⌧P

z

,

p
⌧⇤QCD,

p
⌧MN),

(2.12)

where ⇠ is a dimensionless parameter that can be naively interpreted as the longitudinal

momentum fraction of the parton in the nucleon N . This interpretation is not correct in

Euclidean space, however, and instead ⇠ should be viewed as a dimensionless momentum

variable in a Fourier transformation.

In practice, the smeared matrix element h is determined from lattice computations at

finite lattice spacing, a, as
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⌧/a is held fixed and
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τ is the flow time
χ is the ringed smeared quark field

W is the smeared gauge link 
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Euclidean space, however, and instead ⇠ should be viewed as a dimensionless momentum
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At fixed flow time the quasi-PDF is finite in the continuum limit



3 Relation to Light-front distributions

We discuss the relation between quasi and light-front PDFs by examining the Mellin mo-

ments of these distribution, and using the connection between Mellin moments and matrix

elements of local operators, which are twist-two in the case of light-front PDFs [39]. For

the quasi PDFs, the local operators corresponding to the Mellin moments do not have a

well-defined twist, but can be related to twist-two operators after subtracting higher twist

e↵ects and applying target-mass corrections [15, 18]. Although we are now considering

smeared matrix elements, the arguments regarding higher twist and target mass e↵ects in

[15, 18] still apply, because the flow time serves as an alternative gauge-invariant regulator

to the lattice spacing.

We connect the Mellin moments of the quasi PDF to matrix elements of local operators

in the following way. Working in axial gauge, B
z

(x; ⌧) = 0, the matrix element h(s) is

h

(s)

✓
zp
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,

p
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,
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2
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�

C

. (3.1)

We now substitute this expression into the definition of the quasi PDF, Equation (2.12),

and integrate the resulting expression over the full range of ⇠. In contrast to the light-front

PDF, this range extends from negative to positive infinity, giving
Z 1

�1
d⇠ q (s)
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p
⌧P

z

,

p
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p
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���
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.

(3.2)

Here we have used the relation �(zP
z

) = �(z)/P
z

, for P
z

> 0. We see that the first Mellin

moment of the quasi PDF can be expressed in terms of the Euclidean matrix element of a

local (smeared) operator.

We extend this argument to arbitrary moments of quasi PDFs by considering deriva-

tives of the quasi distribution with respect to the spatial separation z [3]. Inverting the

Fourier transform in Equation (2.12), we have

h
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Applying derivatives with respect to the displacement z, we obtain

✓
i

P

z

@

@z

◆
n�1

h

(s)

✓
zp
⌧

,

p
⌧P

z

,

p
⌧⇤QCD,

p
⌧MN

◆
=

Z 1

�1
d⇠ ⇠n�1

e

�i⇠zPz
q

(s)
�
⇠,

p
⌧P

z

,

p
⌧⇤QCD,

p
⌧MN

�
. (3.4)

,

Defining the moments of the smeared quasi PDF, b(s)
n

, as
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Using the previous definitions we have 

By introducing the moments  



and substituting the definition of the matrix element h

(s), given in Equation (2.11), into

Equation (3.4), in the limit that z ! 0, we obtain
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(3.6)

The perturbative coe�cients, c(s)
n

(
p
⌧P

z

), capture potential singularities in the righthand

side of Equation (3.4) in the limit of vanishing separation, and follow from a smeared

operator product expansion [38] approach to the nonlocal matrix element, as outlined in

[15].

We restore gauge invariance to obtain our final expression for the moments of quasi

PDFs in terms of Euclidean matrix elements of local operators:
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(3.7)

The local operators that appear in the matrix element on the right hand side of this

expression are not twist-two operators: they are not symmetric and traceless. The discrep-

ancy between these matrix elements and matrix elements of twist-two operators are given

by corrections that appear at O(M2
N/P

2
z

) [15, 18] and correspond to target mass corrections

[40, 41]. Although the appropriate interpretation of PDFs in the presence of these target

mass corrections is subtle [42, 43], for our purposes it is su�cient that these non-leading

corrections can be absorbed by writing [15, 18]
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where

K
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=

n/2X
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✓
n� j

j
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2
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4P 2
z

◆
j

. (3.9)

The corrected matrix elements on the right hand side of this equation can now be

expanded in a Taylor series with respect to ⇤2
QCD/P

2
z

. The coe�cients in this expansion

represent higher twist e↵ects that arise because the original matrix element is not a matrix

element of a twist-two operator. The leading coe�cient in this expansion is a twist-two

contribution that can depend only on the nucleon structure and the flow time:
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where, for ⇤2
QCD/P
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⌧ 1, the higher twist corrections can be ignored.
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after removing MN/Pz effects 

and substituting the definition of the matrix element h
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contribution that can depend only on the nucleon structure and the flow time:
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Taking the limit of z going to 0 we obtain:  

i.e. the moments of the quasi-PDF are related to local matrix elements of 
the smeared fields  

These matrix elements are not twist-2.  Higher twist effects enter as 
corrections that scale as powers of   

[ H.-W. Lin, et. al Phys.Rev. D91, 054510 (2015)]



In summary, we assume that: first, we can correct exactly for target mass corrections;

and second, we can take the momentum P

z

su�ciently large that higher twist e↵ects are

negligible. Then, under these assumptions, the moments of the smeared quasi PDFs are

dimensionless products of perturbative coe�cients and pure twist-two matrix elements,

which are only functions of the dimensionless quantity
p
⌧⇤QCD, that contain information

about the structure of the hadron.

3.1 Short distance expansion

We can now relate the moments of the smeared quasi PDF b

(s,twist�2)
n

�p
⌧⇤QCD

�
, which

are local matrix elements of smeared fields, to the renormalized moments of the light-front

PDFs, by using the properties of the gradient flow that arise from a short distance expansion

[23, 25, 26, 44, 45]. The exponentially local nature of the smearing procedure allows for a

short distance expansion of the smeared local operators in terms of renormalized operators

in some renormalization scheme, such as the MS scheme. It is straightforward to show

that this short distance expansion leads to
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the matrix element of a renormalized twist-two operator with the same gamma matrix and

derivative structure as the smeared operator that appears in the matrix element on the left
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Both the leading short distance coe�cient function, C(0)
n

(
p
⌧µ,

p
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), and the higher order

corrections can be computed in perturbation theory, so that this approximation can be

systematically improved.

For the rest of this discussion, we will assume that we work in a regime in which there

is a hierarchy of scales given by
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⌧ P

z

⌧ ⌧

�1/2
, (3.13)

so that power corrections and higher-twist e↵ects can be ignored. We also assume that

target mass corrections have been applied.
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=
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For the rest of this discussion, we will assume that we work in a regime in which there
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dimensionless products of perturbative coe�cients and pure twist-two matrix elements,
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Small flow time expansion: Luscher [’10,’13] 

The quasi-PDF moments then are:

are the moments of the PDFs



We introduce the inverse kernel through

C

(0)
n

(
p
⌧µ,

p
⌧P

z

) =

Z 1

�1
dx x

n�1 e
Z(x,

p
⌧µ,

p
⌧P
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), (3.16)

which leads to
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=
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d⇠
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Z
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⇠

,

p
⌧µ,

p
⌧P
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f(⇠, µ) +O(

p
⌧⇤QCD) (3.17)

Note that all of these relations are only valid if

⇤
QCD

,M

N

⌧ P

z

⌧ ⌧

�1/2
. (3.18)

Furthermore, the kernel functions can be computed in continuum perturbation theory,

following the methods introduced in [23] and the examples in [17, 20, 27, 28].

We stress that, in contrast to the original work by Ji, in which factorization occurs

in the limit of large nucleon momentum, P
z

, here we only require the momentum to be

much larger than the hadronic scales involved. In Ji’s approach, in the limit of infinitely

large nucleon momentum, the relation between the bare quasi PDFs and the light-front

PDFs is simple, as we demonstrate in Appendix A. Here the large nucleon momentum

serves only to suppress higher twist contributions. In addition, we have introduced a new

scale, the (inverse) flow time, ⌧�1, that needs to be large but finite. These requirements

on the hierarchy of scales, expressed in Equation (3.18), are no di↵erent in nature than the

requirements used to factor physical cross-sections into PDFs and Wilson coe�cients and

are similar in spirit to the factorization approach proposed in [20, 28]. In this approach,

the renormalization scale and the factorization scale are distinct and separate from the

large momentum, which suppresses higher twist e↵ects.

4 DGLAP-like equation for the matching kernel

Ignoring mixing between quark flavors and gluons (i.e. looking at the non-singlet distribu-

tions) the renormalized PDFs satisfy a DGLAP equation [46–48] that describes their scale

dependence

µ

d f(x, µ)

dµ
=

↵

s

(µ)

⇡

Z 1

x

dy

y

f(y, µ)P

✓
x

y

◆
. (4.1)

Here P (z) is a function whose moments are the anomalous dimensions �(n) of the moments

of the PDFs, Z 1

0
dxxn�1

P (x) = �

(n)
, (4.2)

where 
µ

d

dµ
� ↵

s

(µ)

⇡

�

(n)

�
a

(n)(µ) = 0, (4.3)

and ↵

s

(µ) is the (renormalized) strong coupling constant.

Similarly, we can derive a DGLAP-like equation for the matching kernel that relates

smeared quasi PDFs and light-front PDFs. We start from the small distance expansion
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Introducing a kernel function such that:

We can undo the Mellin transform:

Therefore smeared quasi-PDFs are related to PDFs if

In summary, we assume that: first, we can correct exactly for target mass corrections;

and second, we can take the momentum P

z

su�ciently large that higher twist e↵ects are

negligible. Then, under these assumptions, the moments of the smeared quasi PDFs are

dimensionless products of perturbative coe�cients and pure twist-two matrix elements,

which are only functions of the dimensionless quantity
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⌧⇤QCD, that contain information

about the structure of the hadron.
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, which
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CONCLUSIONS

Quasi-PDFs provide a novel way to study hadron structure in Lattice QCD 

Lattice calculations from several groups are on the way 

Several ideas for dealing with the continuum limit are now developing 

Here I presented gradient flow as a tool that allows us to obtain continuum quasi-
PDFs that can then be related to PDFs via a convolution to a perturbatively 
calculable kernel function. 

Lattice calculations to understand the effectiveness of this approach are underway 

Analytic calculations for obtaining the matching kernel are also being developed


