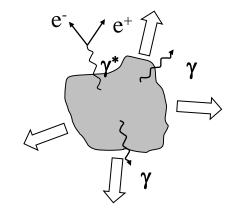
Direct Photon Emission from Heavy Ion Collisions

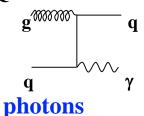
Axel Drees, Stony Brook University

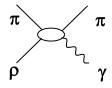
- Introduction
- Previous Results form PHENIX
 - High low p_T direct photon yield
 - Centrality dependence ~ N_{part}^{1.4}
 - Large direct photon angular anisotropy v₂ and v₃
- Comparison to Theoretical Models
 - Thermal Photon Puzzle
- New Direct Photon Measurements
 - Cu+Cu at 200 GeV
 - Au+Au at 62.4 and 39 GeV
- Outlook and Summary



Thermal Radiation from Hot & Dense Matter

Black Body Radiation

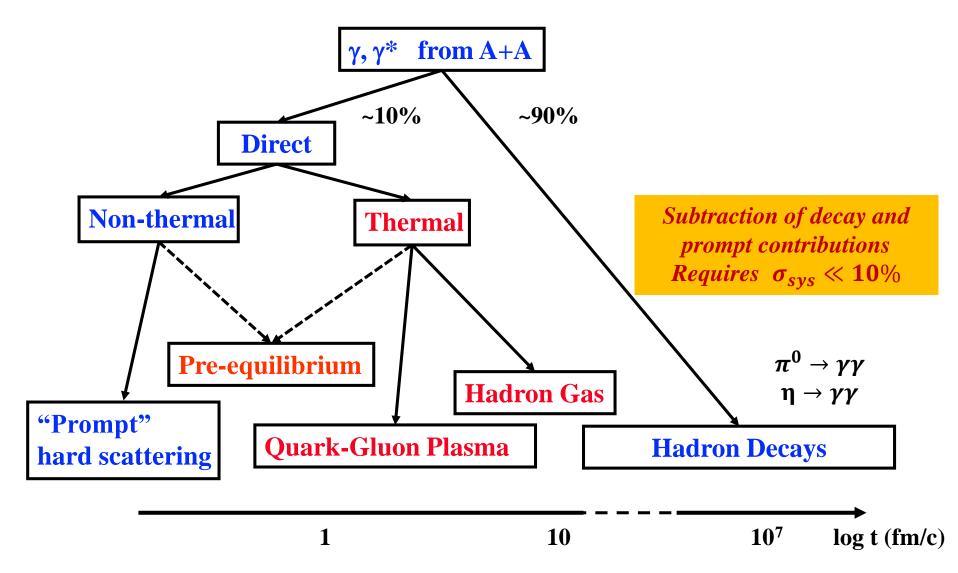

- Real or virtual photons
- Spectrum and yield sensitive to temperature
 Avg. inv. slope ∝ T, Rate ∝ T⁴
- Space-time evolution of matter
 collective motion → Doppler shift
 → anisotropy


High yield → high T → early emission Large Doppler shift → late emission

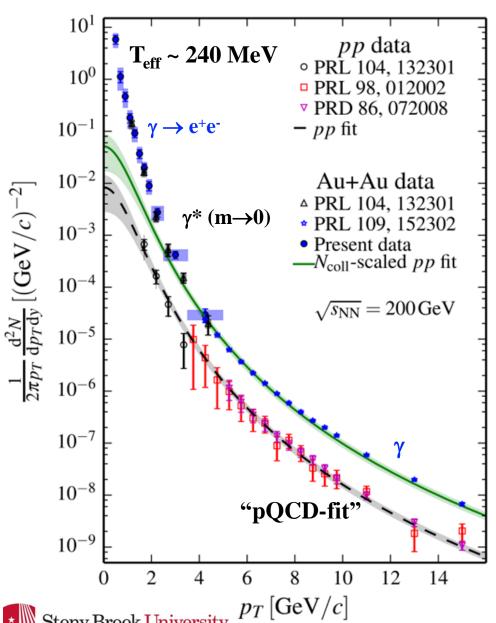
Microscopic view of thermal radiation

QGP:

hadron gas:


low mass lepton pairs

Direct photons data constrain initial conditions, space-time evolution, emission rates and γ sources

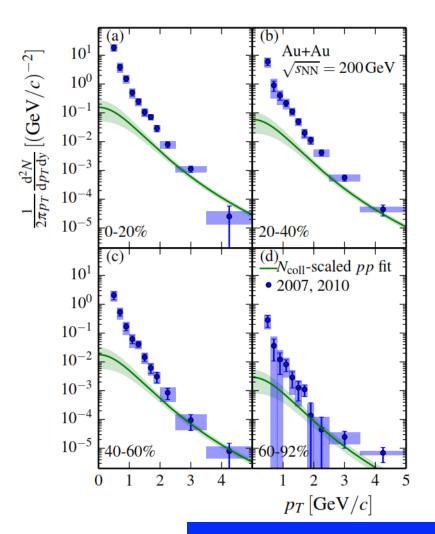

Experimental Issue: Isolate Thermal Radiation

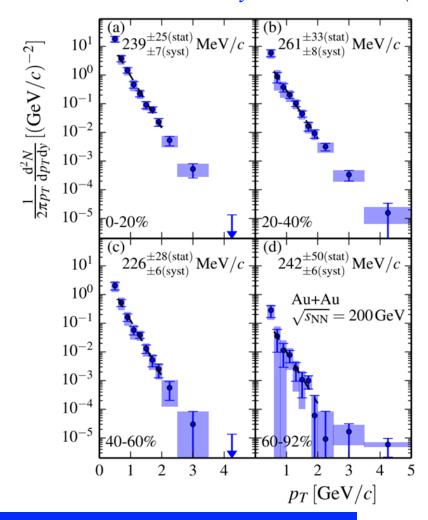
Direct Photons p+p and Au+Au at $\sqrt{s_{NN}}$ = 200 GeV

PHENIX: Phys. Rev. C 91 064904 (2015)

- **Direct photon yield well** established
 - pp consistent with pQCD
 - AuAu follows N_{coll} scaled pp above 4 GeV
 - Significant excess below 3 GeV in AuAu
 - **Excess has nearly** exponential shape

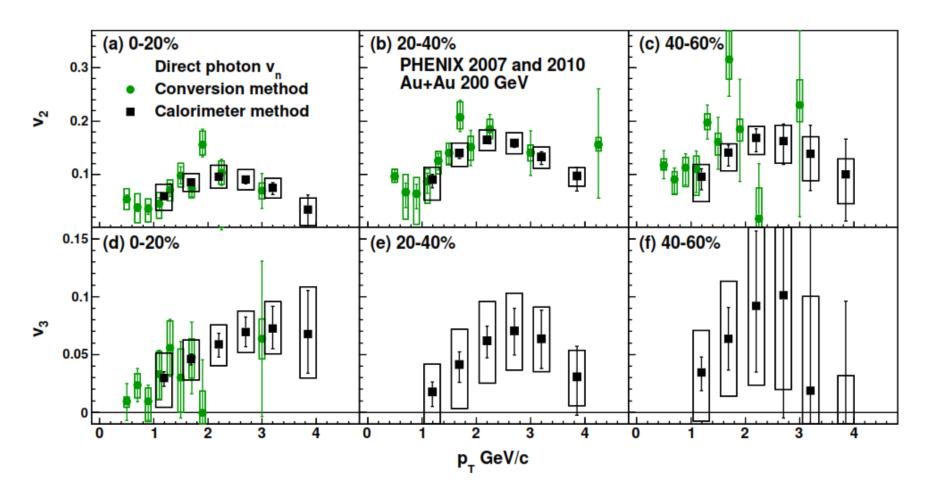
Significant low momentum direct photon production beyond prompt (pQCD) component


Qualitative consistent with expected thermal radiation



Centrality Dependence of Thermal Component

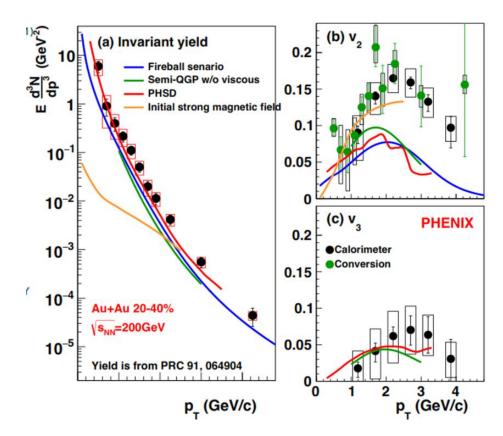
PHENIX: Phys. Rev. C 91 064904 (2015)


Large direct photon excess yield $\propto N_{part}^{1.38\pm0.3\pm0.07}$ with inv. slope T ~ 240 MeV

Anisotropic Emission of Direct Photons

PHENIX: Phys. Rev. C 91 064904 (2015)

Anisotropic emission of direct photon with large v₂ and v₃



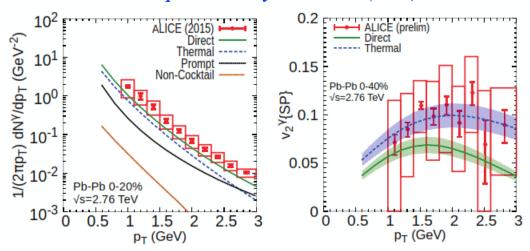
Direct Photon Puzzle

PHENIX: Phys. Rev. C 91 064904 (2015)

Many model calculations and consideration*:

- More traditional, large contribution from hadron gas
 - Thermal rate in QGP & HG, with hydro (viscous/non viscous) or blastwave evolution
 - Microscopic transport (PHSD)
- New early contributions
 - Non-equilibrium effects (glasma, etc.)
 - Enhanced thermal emission in large B-fields
 - Modified formation time and initial conditions
- New effects at phase boundary
 - Extended emission
 - Emission at hadronization

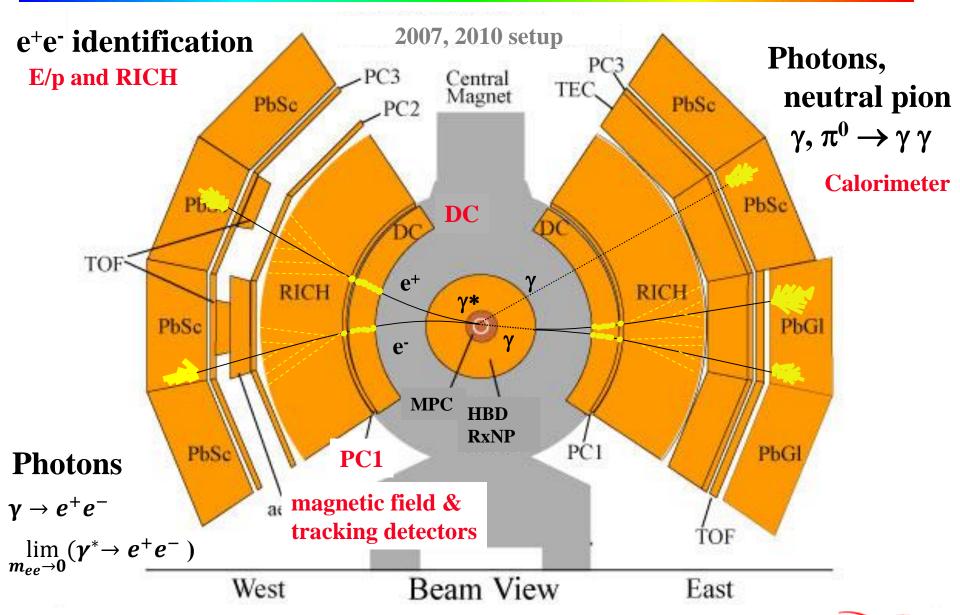
Large yield and v_n challenge understanding of sources, emission rates and space-time evolution


First Results from LHC

ALICE: Phys. Lett. B 574 (2016) 235

Central Pb+Pb 2.76 TeV:

JF. Paquet et al. Phys. Rev. C 93 (2016) 044906



Direct photon flow and yield at LHC: Similar trend as PHENIX, within large σ_{sys}

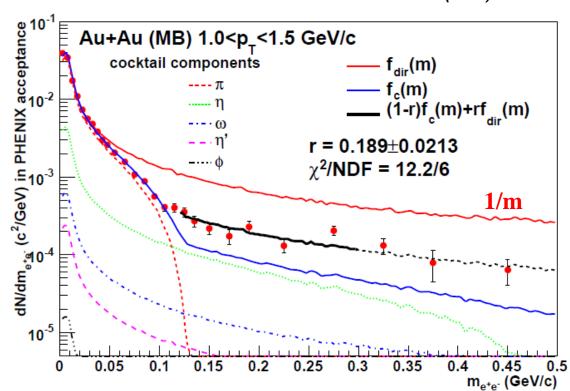
Photon Measurements with PHENIX

Using γ^* to Measure Direct Photons

- Searches for thermal photons ongoing since late 1980's at SPS
 - WA80 & successors, HELIOS, CERES ...
 - Established mostly upper limits in relevant range $p_T < \text{few GeV}$
- Breakthrough at PHENIX: Measuring direct photons via virtual photons published 2010 PHENIX Phys.Rev.Lett 104 (2010) 132301
 - Method originally proposed by UA1 for prompt photons
- Using virtual photons γ^* :
 - any process that radiates γ will also radiate γ^*
 - for $m \ll p_T$ γ^* are "almost real"
 - extrapolate $\gamma^* \to e^+e^-$ yield to $m=0 \Rightarrow$ direct γ yield
 - $m>m_\pi$ cut removes 90% of hadron decay background
 - S/B improves by factor 10 so that 10% direct $\gamma \rightarrow 100\%$ direct γ^*
 - measure ratio $\gamma^*_{direct}/\gamma^*_{inclusive}$ for sys. uncertainty cancelation

Fit e⁺e⁻ Mass Distribution to Extract the Direct Yield:

Example: one p_T bin for Au+Au collisions


PHENIX PRL104 (2010) 132301

$$\frac{d\sigma_{ee}}{dM^2 dp_T^2 dy} \cong \frac{\alpha}{3\pi} \frac{1}{M^2} L(M) \frac{d\sigma_{\gamma}}{dp_T^2 dy}$$

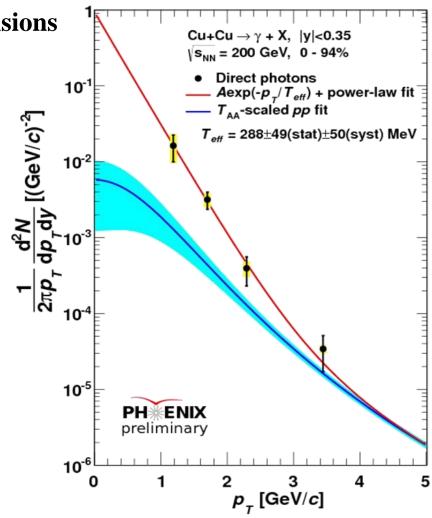
 $f_c(m_{ee})$ and $f_{dir}(m_{ee})$ normalized to data for $m_{ee} < 30 \, MeV$

$$r = \frac{\gamma_{dir}^*}{\gamma_{incl}^*} = \frac{\gamma_{dir}}{\gamma_{incl}}$$

$$\frac{dN_{\gamma}^{dir}}{dp_{T}} = \frac{r}{1-r} \frac{dN_{\gamma}^{had}}{dp_{T}}$$

Direct γ^* yield fitted in range 120 to 300 MeV Insensitive to π^0 yield

Fit e⁺e⁻ Mass Distribution to Extract the Direct Yield:


Example: one p_T bin for Au+Au collisions

$$\frac{d\sigma_{ee}}{dM^2 dp_T^2 dy} \cong \frac{\alpha}{3\pi} \frac{1}{M^2} L(M) \frac{d\sigma_{\gamma}}{dp_T^2 dy}$$

$$f_c(m_{ee})$$
 and $f_{dir}(m_{ee})$
normalized to data
for $m_{ee} < 30 \, MeV$

$$r = \frac{\gamma_{dir}^*}{\gamma_{incl}^*} = \frac{\gamma_{dir}}{\gamma_{incl}}$$

$$\frac{dN_{\gamma}^{dir}}{dp_{T}} = \frac{r}{1-r} \frac{dN_{\gamma}^{had}}{dp_{T}}$$

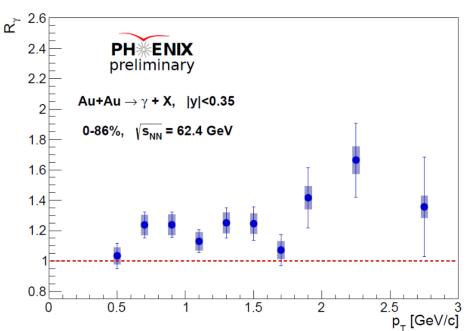
Clear direct photon signal in Cu+Cu data at $\sqrt{s_{NN}} = 200$ GeV! Inverse slopes consistent within large uncertainty with Au+Au

Direct Photons from Photon Conversions

- Double ratio tagging method (PHENIX: Phys. Rev. C 91 064904 (2015))
 - Clean photon sample with photon conversion in detector material (HBD)

$$\gamma \rightarrow e^+e^-$$

- Explicit cancelation of systematic uncertainties
- Data taken in 2010 together with published 200 GeV data


conditional tagging efficiency

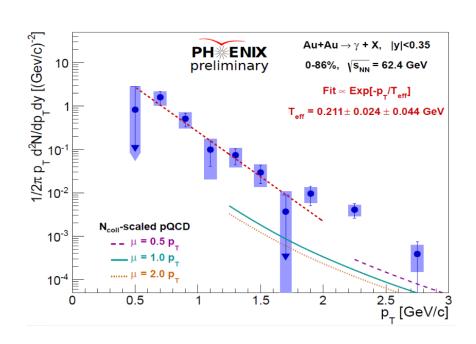
measured raw yields

$$R_{\gamma} = rac{N_{\gamma}^{incl}}{N_{\gamma}^{hadr}} = rac{\left\langle \mathcal{E}f
ight
angle}{\left(rac{N_{\gamma}^{incl}}{N_{\gamma}^{n^0}tag}
ight)^{MC}} \left(rac{N_{\gamma}^{hadr}}{N_{\gamma}^{\pi^0}}
ight)^{MC}$$

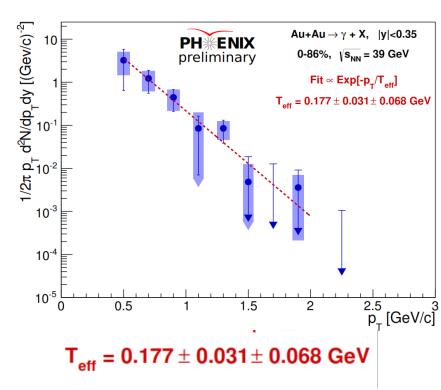
simulated based On hadron data

$$\frac{Y_{\gamma}^{incl}}{Y_{\gamma}^{\pi^{0}tag}} = \frac{N_{\gamma}^{incl} p_{conv} a_{ee} \varepsilon_{ee}}{N_{\gamma}^{\pi^{0}tag} p_{conv} a_{ee} \varepsilon_{ee} \langle \varepsilon f \rangle} = \frac{N_{\gamma}^{incl}}{N_{\gamma}^{\pi^{0}tag} \langle \varepsilon f \rangle}$$

New Au+Au data at 62.4 and 39 GeV!

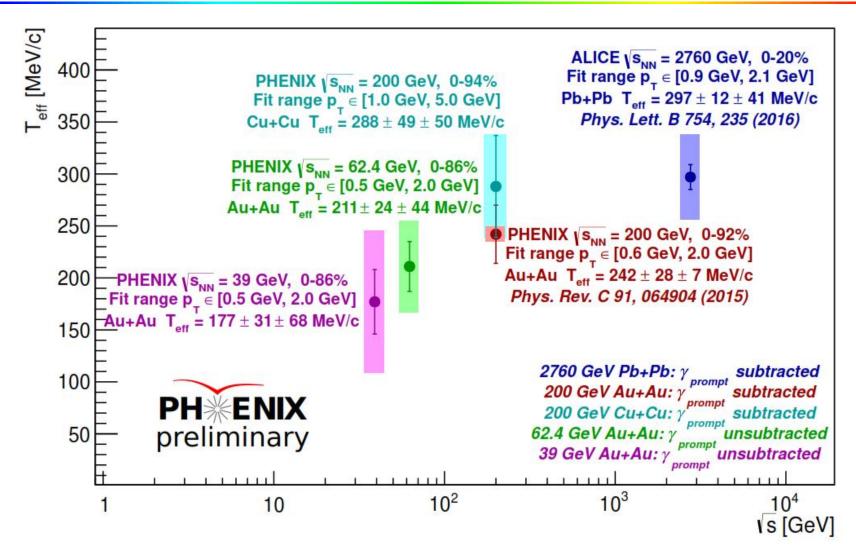


Au+Au Data at 62.4 GeV and 39 GeV


$$\frac{dN_{\gamma}^{dir}}{dp_{T}} = (R_{\gamma} - 1) \frac{dN_{\gamma}^{had}}{dp_{T}}$$

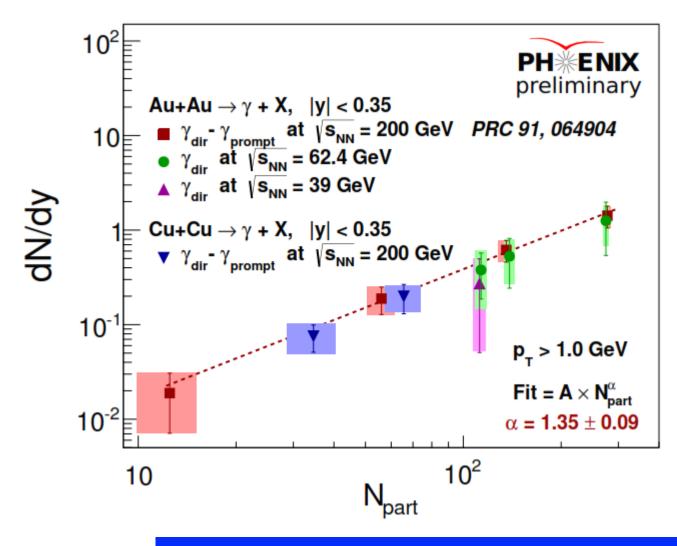
min. bias Au+Au 62.4 GeV

min. bias Au+Au 39 GeV



Clear direct photon signal in Au+Au at 62.4 GeV and 39 GeV

T_{eff} vs Collision Energy



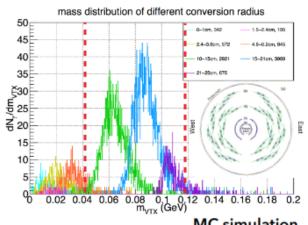
Possible increase of T_{eff} with increasing beam energy

Direct Photon Yield vs N_{part}

yield $\propto N_{part}^{CL}$ with $\alpha \sim 1.4$

 $N_{part} \propto \text{volume}$

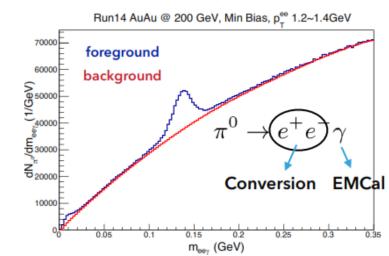
Similar increase with N_{part} for different systems Yield increases faster than reaction volume



New $\gamma \rightarrow e^+e^-$ Reconstruction Technique

Identify and reconstruct photons via external conversion to e⁺e⁻ pairs

- Previous method used single e⁺/e⁻ tracks (2010)
- Conversions at fixed radius (Hadron Blind Detector readout plane at 60cm, ~3%)
- New method used e⁺e⁻ pairs (>2011)
- Conversions at any material (VTX 3rd and 4th layer, ~10%)



MC simulation

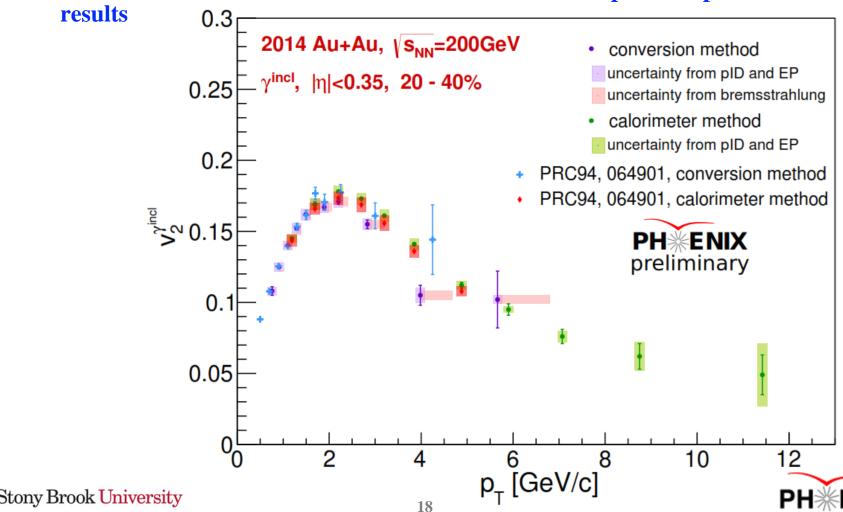
inclusive photon (e⁺e⁻) mass Run14 AuAu @ 200 GeV, Min Bias, p₊ee 1.2~1.4GeV

14000 foreground 12000 background 1,0000 1,0000 ₽ 6000 bkg/sig = 1.75%

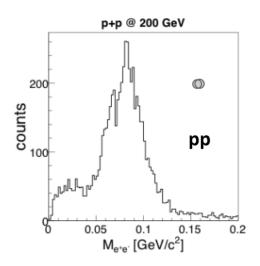
π^0 (e⁺e⁻ γ) mass

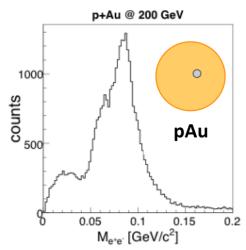
- Other systems: AuAu, CuAu, He3Au, pp, pA, dAu

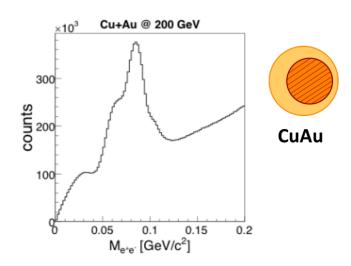
0.1 m_{ee} (GeV)



2000


Future Measurements: High Statistics Au+Au


- Comparison of inclusive photon v_2^{incl} from Au+Au at 200 GeV
 - Combined statistics 2007 & 2010 data PHENIX: Phys. Rev. C 91 064904 (2015)
 - 22% of 2014 data
 - 2014 + 2016 Au+Au data more than 10x statistics compared to published



Future Measurements: Different Systems

$2.0 < p_T < 2.5 \text{ GeV/c}$

Clear photon signal in all systems

- Data will provide interesting new information on:
 - Direct photon spectrum from p+p at low p_T
 - Search for thermal photons from small systems p+Au, d+Au and ³He+Au
 - Variation of collision geometry with Cu+Au to test origin of v₂

Summary and Outlook

- Well established measurement of low momentum direct photon in Au+Au at 200 GeV from PHENIX
 - Large yield above expected contribution from pQCD
 - Centrality dependence of yield $\sim N_{part}^{1.4}$
 - Large anisotropy v₂ with respect to reaction plan
- Consistent data from LHC in Pb+Pb at 2.76 TeV
- Thermal photon puzzle persists
- New data from Cu+Cu at 200 GeV and Au+Au at 62.4 & 39 GeV
 - Consistent with observed $\sim N_{part}^{1.4}$ dependence
 - Possible trend of inverse slope T_{eff} with beam energy
- More measurements to come in from future:
 - High statistics Au+Au data (factor >10) from 2014 & 2016
 - Data from different collision geometry Cu+Au
 - Low momentum data from p+p (2015)
 - Search for direct photons in small systems p+Au (2015), d+Au (2016), 3He+Au (2014)

Thank you

