Short-range NN interactions: Experimental Past and Future

7th Workshop of the APS Topical Group on Hadronic Physics

Nadia Fomin University of Tennessee February 1st, 2017

Independent Particle Shell Model :

$$S_{\alpha} = 4\pi \int S(E_m, p_m) p_m^2 dp_m \delta(E_m - E_{\alpha})$$

- For nuclei, S_α should be equal to 2j+1
 => number of protons in a given orbital
- However, it as found to be only ~2/3 of the expected value
- The bulk of the missing strength it is thought to come from short range correlations

High momentum nucleons

- Short Range Correlations

High momentum tails in A(e,e'p)

- E89-004: Measure of ³He(e,e'p)d
- Measured far into high momentum tail: Cross section is ~5-10x expectation

Difficulty

 High momentum pair can come from SRC (initial state)

OR

• Final State Interactions (FSI) and Meson Exchange Contributions (MEC)

A(e,e'p)

²H(e,e'p) Mainz PRC 78 054001 (2008)

E =0.855 GeV θ = 45° E'=0.657 GeV Q²=0.33 GeV² x=0.88

Unfortunately: FSI, MECs overwhelm the high momentum nucleons

FIG. 1: The experimental D(e,e'p)n cross section as a function of missing momentum measured at MAMI for $Q^2 = 0.33$ $(\text{GeV/c})^2$ [4] compared to calculations [5] with (solid curve) and without (dashed curve) MEC and IC. Both calculations include FSI. The low p_m data have been re-analyzed and used in this work to determine f_{LT} (color online).

High momentum nucleons

- Short Range Correlations

Try inclusive scattering! Select kinematics such that the initial nucleon momentum $> k_f$

High momentum nucleons

$$\frac{d\sigma^{QE}}{d\Omega dE'} \propto \int d\vec{k} \int dE \sigma_{ei} S_i(k, E) \delta(Arg)$$

$$Arg = v + M_A - \sqrt{M^2 + p^2} - \sqrt{M_{A-1}^{*2} + k^2}$$

$$F(y, \mathbf{q}) = \frac{d^2 \sigma}{d\Omega dv} \frac{1}{(Z \overline{\sigma}_p + N \overline{\sigma}_n)} \frac{\mathbf{q}}{\sqrt{M^2 + (y+q)^2}}$$

$$= 2\pi \int_{|y|}^{\infty} n(k) k dk \qquad \text{Ok for A=2}$$

E02-019: 2N correlations in A/D ratios

А	$\theta_e = 18^{\circ}$
³ He	$2.14{\pm}0.04$
$^{4}\mathrm{He}$	$3.66{\pm}0.07$
Be	$4.00 {\pm} 0.08$
\mathbf{C}	$4.88 {\pm} 0.10$
$\mathbf{C}\mathbf{u}$	$5.37 {\pm} 0.11$
Au	$5.34 {\pm} 0.11$
$\langle Q^2 \rangle$	$2.7 \ {\rm GeV}^2$
x_{\min}	1.5

Fomin et al, PRL **108** (2012) Jlab E02-019

Inclusive Scattering

- Relative measurement
- Reduced FSI
- Test scaling in x and Q^2
- No direct information on isospin structure
 - Only via target isospin structure
- No direct information on momentum distribution for A>2

Inclusive Scattering

Inclusive Scattering

- Relative measurement
- Reduced FSI
- Test scaling in x and Q²
- No direct information on isospin structure
 - Only via target isospin structure
- No direct information on momentum

Test scaling in x and Q²

2N knockout experiments establish NP dominance

- Knockout high-initialmomentum proton, look for correlated nucleon partner.
- For 300 < P_{miss} < 600 MeV/c all nucleons are part of 2N-SRC pairs: 90% np, 5% pp (nn)

R. Subedi et al., Science 320, 1476 (2008)

R. Shneor et al., PRL 99, 072501 (2007)

2N knockout experiments establish NP dominance

R. Subedi et al., Science 320, 1476 (2008)

R. Shneor et al., PRL 99, 072501 (2007)

NP dominance

Data mining using CLAS NP dominance continues for heavy nuclei

Slide courtesy O. Hen

Assuming scattering off 2N-SRC pairs:

- (e,e'p) is sensitive to *np* and *pp* pairs
- (e,e'pp) is sensitive to *pp* pairs alone
- => (e,e'pp)/(e,e'p) ratio is sensitive to the *np/pp* ratio

2N correlations

Linear relationship with EMC effect

More nucleons in a correlation

1.4<x<2 => 2 nucleon correlation 2.4<x<3 => 3 nucleon correlation

3N correlations (x>2 inclusive scattering)

Have we actually seen 3N SRC in ratios?

Douglas W. Higinbotham¹ and Or Hen²

3N correlations

3N correlations – are we there yet?

Coming very soon: [Jlab E12-11-112]

- Quasielastic electron scattering with ³H and ³He
- Study isospin dependence of 2N and 3N correlations
- Test calculations of FSI for well-understood nuclei

Coming very soon: [Jlab E12-11-112]

- Quasielastic electron scattering with ³H and ³He
- Study isospin dependence of 2N and 3N correlations
- Test calculations of FSI for well-understood nuclei

Jlab E12-06-105 && E12-10-008

- short-range nuclear structure
 - Isospin dependence
 - A-dependence
- Super-fast quarks

Summary

- SRCs and EMC effect have been under the microscope for many decades 6GeV era at Jlab has yielded interesting data
- 12 GeV experiments continue the search
- Upcoming experiments in Halls A/C
 - \rightarrow Study short range correlations in 3He/3H
 - \rightarrow Map out nuclear dependencies of clustering
 - → Study how quark distributions are modified in nuclei over free nucleons
- New results in the next few years!

