Latest Results from Gu

Spectrum of Mesons

- Quark model, lattice calculations
- The GlueX experiment
 - Status, performance
- Early physics
- Outlook

Elton S. Smith, Jefferson Lab GHP Meeting – February 3, 2017

$QCD \leftrightarrow Spectroscopy$

- Quark model is amazingly successful at describing the hadron spectrum.
- Yet most of the hadron mass is not due to quarks
- Search for glue using non-qq degrees of freedom

Pentaquarks and Tetraquarks (Heavy Quarks)

Normal Mesons – $q\bar{q}$ color singlet bound states

Spin/angular momentum configurations & radial excitations generate the known spectrum of light quark mesons.

Starting with **u** - **d** - **s** we expect to find mesons grouped in nonets - each characterized by a given J, P and C.

LQCD Meson spectrum for light quarks

Models for hybrid mesons

At m_{π} =400 MeV, mass (1⁻⁺) ~ 1.9 GeV, mass (0⁺⁻) ~ 2.5 GeV

All hybrids decay before detection

- Excited mesons are "resonances"
 - Lifetime ~ 10⁻⁸ femtosecond
 - Natural width of resonance is ~ 20% of resonance mass
 - Only decay products are observed in detector

[GHP: Production and Decays - Raul Briceno]

p (protons) $\pi^{-/+}$ (charged pions) π^{0} (neutral pions) -> $\gamma\gamma$ η (etas) -> $\gamma\gamma$ ω (omega) -> $\pi^{+} \pi^{-}\pi^{0}$

resonance

decay products preserve information about the parent resonance

.

Photoproduction

- Very little photoproduction data in this energy range
- Approximately the 70% of total cross section in the energy region $E_{\gamma} \sim 7-12$ GeV has multiple neutrals and is completely unexplored
- Polarized photons may help disentangle different production mechanisms

Couple to vector meson + exchanged particle $\pi_1 \Leftrightarrow \rho \pi$ $\eta_1 \Leftrightarrow \rho b_1, \omega \phi$ $\eta'_1 \Leftrightarrow \phi \omega$

Jefferson Lab / 12 GeV Project

Upgrade Goals

- Accelerator: 6 GeV \Rightarrow 12 GeV
- Halls A,B,C: e⁻ <11 GeV, < 100 μA
- Hall D: e^- 12 GeV $\Rightarrow \gamma$ -beam

Upgrade Status

- Halls A,D: finished
- Halls B,C: a year to go

Photon beam and experimental area

Linearly Polarized Photon Beam

Measured Spectrum

Jefferson Lab

Hall D – GlueX detector

Reconstructed Events

Tracks, calorimeter showers reconstructed

Detector performance

Modern method of signal capture: all pipeline

- 250MHz Flash ADC stores digitized signal in 8µs circular memory
- Trigger data contains detailed information useful for cluster finding, energy sum, etc.
- "Event" trigger extracts a window of the ADC data for pulse sum and time algorithms
- Hardware algorithms provide a huge data reduction by reporting only time & energy estimates for readout instead of raw samples

Collected triggers in spring 2016

- Status: Detector commissioning and engineering runs completed
- Useful data obtained during these preliminary periods

2γ mass peaks

4γ mass peaks

π^0 and η azimuthal asymmetry

π^{0} and η asymmetries

• π^0 and η azimuthal asymmetries measured for 0 < -t < 1.5 GeV^2

- Measurements are being compared to model calculations to understand particle exchange mechanisms
- First asymmetry measurements for η at this energy

Omega production and decay

Assuming Vector Meson Dominance (VMD), angles in helicity frame

$$\mathcal{A}^{\pi\gamma} = -\frac{1}{2} P \cos 2(\Phi - \phi) \qquad \mathcal{A}^{3\pi} = P \cos 2(\Phi - \phi)$$

Charm production near threshold

Brodsky PLB 498 (2001) 23

Program and upgrades

Experiment	Description	Beam Time (days)
GlueX I	Study spectrum of light mesons and gluonic excitations (low intensity)	80
GlueX II	Study of hadron decays to strange final states (high intensity)	200+220(*)
Primakoff eta	Eta radiative decay width	79
СРР	Charged pion polarizability measurement	25
Jlab Eta Factory	Rare eta decays	42 (conditional)

(*) May run concurrently

- $\hfill \ \ensuremath{\,\,}$ DIRC detector for enhanced $\pi/kaon$ identification will be installed starting this summer
- Online computer farm will be added for high intensity running
- High resolution calorimeter is needed for parts of the JEF program

Summary

- We have mounted the GlueX experiment in Hall D at Jefferson Lab devoted to the study of hybrid mesons. Their existence and properties will yield fundamental information regarding the force that confines quarks.
- Some measurements of the azimuthal asymmetry of particle production with a polarized photon beam have already been completed. First paper submitted to PRL!
- We are starting physics production data this week
- During the summer break we will begin installing the DIRC for improved particle identification

Backup Slides

Naming Scheme for u,d Mesons

Name (I=1, I=0)	L	S	JPC	^{2S+1} L _J	Examples
π, η	0	0	0- +	¹ S ₀	π, η
ρ, ω	0	1	1	³ S ₁	ρ(770), ω(782)
b, h	1	0	1+-	¹ P ₁	b ₁ (1235), h ₁ (1170)
a, f	1	1	0++	³ P ₀	a ₀ (980), f ₀ (980)
a, f	1	1	1++	³ P ₁	a ₁ (1260), f ₁ (1285)
a, f	1	1	2++	³ P ₂	a ₂ (1320), f ₂ (1270)
π, η	2	0	2-+	¹ D ₂	π ₂ (1670)
ρ, ω	2	1	1	³ D ₁	$ ho_1(1700), \omega_1(1600)$
ρ, ω	2	1	2	³ D ₂	
ρ, ω	2	1	3	³ D ₃	ρ ₃ (1670)
b, h	3	0	3+-	¹ F ₃	$P = (-1)^{L+1}$
a, f	3	1	2++	³ F ₂	$C = (-1)^{L+S}$
a, f	3	1	3++	³ F ₃	$PC = (-1)^{S+1}$
a, f	3	1	4 + +	³ F ₄	$G = C(-1)^{\mathrm{I}}$

Experimental Hall D

Resonances: intensities and phases

 $\mathcal{A} = rac{M\Gamma}{(E^2-M^2)+iM\Gamma}$ Use phases to extract small signals

COMPASS: Exotic 1⁻⁺ π₁(1600)->π⁺π⁻π⁻

Analysis of π -Pb $\rightarrow \pi^+\pi^-\pi^-$ Pb at COMPASS

PRL 104, 241803 (2010)

COMPASS: Phase Motion of Exotic

FIG. 3 (color online). Phase differences of the exotic $1^{-+}1^+\rho\pi P$ wave to the $1^{++}0^+\rho\pi S$ (a) and the $2^{-+}0^+f_2\pi S$ (b) waves. The data points represent the result of the fit in mass bins; the lines are the result of the mass-dependent fit.

Barrel and Forward Calorimeters

Elton S. Smith

February 3, 2017 GHP Meeting

Central and Forward Chambers

4 packages × 6 planes

Particle Identification

