Exotic hadrons at LHC

Claudia Patrignani for the ATLAS, CMS and LHCb Collaborations

UNIVERSITA DI BOLOGNA Campus di Rimini

Università di Bologna and I.N.F.N. *Claudia.Patrignani@bo.infn.it*

7th Workshop of the APS Topical Group on Hadronic Physics – February 1-3, Washington, D.C.

Outline:

Recent and new results from LHC experiments on (candidate) exotic hadrons with heavy constituent quarks

Standard and Exotic Hadrons

Mesons and baryons with other than $q\bar{q}$ or qqq configurations are not forbidden by QCD (as long as they remain colour-less)

Their possibility admitted as early as the quark model was introduced

6)

Volume 8, number 3 PHYSICS LETTERS 1 Pebruary 1964 A SCHEMATIC MODEL OF BARYONS AND MESONS * M. GELL-MANN California Institute of Technology, Pasadena, California Received 4 January 1964 A simpler and more elegant scheme can be constructed if we allow non-integral values for the

constructed if we allow non-integral values for the charges. We can dispense entirely with the basic baryon b if we assign to the triplet t the following properties: spin $\frac{1}{2}$, $z = -\frac{1}{3}$, and baryon number $\frac{1}{3}$. We then refer to the members u^3 , $d^{-\frac{1}{3}}$, and $s^{-\frac{1}{3}}$ of the triplet as "quarks" ⁶) q and the members of the anti-triplet as anti-quarks \bar{q} . Baryons can now be constructed from quarks by using the combinations (qqq), (qqqq \bar{q}), etc., while mesons are made out of (q \bar{q}), (qq $\bar{q}\bar{q}$), etc. It is assuming that the lowest baryon configuration (qqq) gives just the representations 1, 8, and 10 that have been observed, while 8419/TH.412 21 February 1964 AN SU₃ MODEL FOR STRONG INTERACTION SYMMETRY AND ITS BREAKING II *) G. Zweig **) CERN---Geneva

*) Version I is CERN preprint 8182/TH.401, Jan. 17, 1964.

In general, we would expect that baryons are built not only from the product of three aces, AAA, but also from AAAAA, AAAAAAA, etc., where A denotes an anti-ace. Similarly, mesons could be formed from AA, AAAA etc. For the low mass mesons and baryons we will assume the simplest possibilities. AA and AAA. that is. "deuces and treys".

C. Patrignani

no undisputed evidence yet in light hadrons

Exotic hadrons with heavy quarks

in the past decade a pletora of new states with constituent heavy $Q\bar{Q}$

which is their structure?

The "XYX" zoo

Some of these states appear close to some thresholds

State	J^{PC}	Process (mode) PDG16
X(3872)	1++	$B \to K \left(\pi^+ \pi^- J/\psi \right)$
		$p\bar{p} \rightarrow (\pi^+\pi^- J/\psi) + \dots$
		$B \to K \left(\omega J / \psi \right)$
		$B \to K \left(D^{*0} \overline{D}^0 \right)$
		$B o K (\gamma J/\psi)$
		$B \to K \left(\gamma \psi(2S) \right)$
		$pp \to (\pi^+ \pi^- J/\psi) + \dots$
$Z_{c}(3900)$	1+-	$Y(4260) \to \pi^{-}(\pi^{+}J/\psi)$
		$Y(4260) \to \pi^0(\pi^0 J/\psi)$
		$Y(4260) \to \pi^- (D\bar{D}^*)^+$
		$Y(4260) \to \pi^0 (D\bar{D}^*)^0$
$Z_{c}(4020)$	1+-	$Y(4260, 4360) \to \pi^-(\pi^+ h_c)$
		$Y(4260, 4360) \to \pi^0(\pi^0 h_c)$
		$Y(4260) \to \pi^- (D^* \bar{D}^*)^+$
		$Y(4260) \to \pi^0 (D^* \bar{D}^*)^0$
$Z_{b}(10610)$	1+-	$\Upsilon(10860) \to \pi^-(\pi^+\Upsilon(1S,2S,3S))$
		$\Upsilon(10860) \to \pi^-(\pi^+ h_b(1P, 2P))$
		$\Upsilon(10860) \to \pi^0(\pi^0\Upsilon(1S, 2S, 3S))$
		$\Upsilon(10860) \to \pi^- (B\bar{B}^*)^+$
$Z_b(10650)$	1+-	$\Upsilon(10860) \to \pi^-(\pi^+\Upsilon(1S, 2S, 3S))$
		$\Upsilon(10860) \to \pi^-(\pi^+ h_b(1P, 2P))$
		$\Upsilon(10860) \to \pi^- (B^* \bar{B}^*)^+$

State	J^{PC}	Process (mode) PDG16
X(3915)	0/2++	$B \rightarrow K (\omega J/\psi)$
		$e^+e^- \rightarrow e^+e^-\omega J/\psi$
$\chi_{c2}(2P)$	2++	$e^+e^- \rightarrow e^+e^-(D\bar{D})$
X(3940)	?*+	$e^+e^- \rightarrow J/\psi (D\overline{D}^*)$
		$e^+e^- ightarrow J/\psi ()$
Y(4008)	1	$e^+e^- \rightarrow \gamma (\pi^+\pi^- J/\psi)$
$Z_1(4050)^+$?	$B \rightarrow K (\pi^+ \chi_{c1}(1P))$
Y(4140)	??+	$B^+ \to K^+(\phi J/\psi)$
		$e^+e^- ightarrow e^+e^- \left(\phi J/\psi ight)$
X(4160)	??+	$e^+e^- \rightarrow J/\psi (D\overline{D}^*)$
$Z_{c}(4200)^{+}$	1+	$\bar{B}^0 \rightarrow K^-(J/\psi \pi^+)$
$Z_2(4250)^+$?	$B \rightarrow K (\pi^+ \chi_{c1}(1P))$
Y(4260)	1	$e^+e^- ightarrow \gamma \left(\pi^+\pi^- J/\psi\right)$
		$a^{\dagger}a^{-} \rightarrow (\pi^{\dagger}\pi^{-} I/b)$
		$e^+e^- \rightarrow (\pi^0\pi^0 I/\psi)$
		$e^+e^- \rightarrow (f_0(000) I/rb)$
		$e^+e^- \rightarrow (\pi^- Z_{-}(3000)^+)$
		$e^+e^- \rightarrow (\gamma X(3872))$
Y(4274)	??+	$B^+ \rightarrow K^+(\phi J/\psi)$
()		
X(4350)	0/2++	$e^+e^- ightarrow e^+e^- \left(\phi J/\psi ight)$
Y(4360)	1	$e^+e^- \rightarrow \gamma \; (\pi^+\pi^-\psi(2S))$
$Z(4430)^{+}$	1+	$\bar{B}^0 \to K^-(\pi^+\psi(2S))$
		$B^o \rightarrow (J/\psi \pi^+) K^-$
X(4630)	1	$e^+e^- \rightarrow \gamma (\Lambda^+ \Lambda^-)$
Y(4660)	1	$e^+e^- \rightarrow \gamma \left(\pi^+\pi^-\psi(2S)\right)$
T(10860)	1	$e^+e^- \rightarrow (B^{(*)}B^{(*)}(\pi))$
		$e^+e^- \rightarrow (\pi\pi\Upsilon(1S, 2S, 3S))$
		$e^+e^- \rightarrow (f_0(980)\Upsilon(1S))$
		$e^+e^- \rightarrow (\pi Z_b(10610, 10650))$
		$e^+e^- \rightarrow (\eta \Upsilon(1S, 2S))$
		$e^+e^- \rightarrow (\pi^+\pi^-\Upsilon(1D))$
		$e^+e^- \rightarrow (\pi^+\pi^-h_b(1P,2P))$
Υ(11020)	1	$e^+e^- \rightarrow (B^{(*)}_{(s)}\bar{B}^{(*)}_{(s)}(\pi))$

 $e^+e^- \rightarrow (\pi\pi\Upsilon(1S, 2S, 3S))$ $e^+e^- \rightarrow (\pi^+\pi^-h_b(1P, 2P))$

C. Patrignani

but not all

Exotic or not?

How can you tell if a state is exotic? not easy and not always straightforward!

Manifestly exotic

- quantum numbers not allowed for $q\bar{q}'$ or qq'q''
- \bullet > 3 valence quarks required

Undisputed

Patrignani

(but many possible exotic states would not fit)

"Cryptoexotic"

- mass/width not fitting in meson or baryon spectra
- overpopulation of the spectra
- production or decay properties incompatible with standard mesons/baryons

...endless disputes..

Many of these states observed in B-meson decays

- copiously produced at hadron machines

I will not discuss states only studied at B-factories or e^+e^- machines: see B. Fulsom's talk at APS, session K10

LHC

LHC provides collisions of high-luminosity and high-energy beams of protons and heavy ions

- two general-purpose experiments: CMS and ATLAS
- one experiment dedicated to heavy-ions: ALICE
- one experiment dedicated to flavour physics: LHCb

C. Patrignani

Run 1: $\sqrt{s} = 7 \div 8 \,\mathrm{TeV}$

Run 2: $\sqrt{s} = 13 \,\mathrm{TeV}$

The LHC experiments

INF

GHP17 - Feb. 1-3, Washington, D.C

7

Discovered by Belle as a narrow peak in $J/\psi \pi^+\pi^-$

The X(3872)

invariant mass in $B^+ \to (J/\psi \pi^+ \pi^-) K^+$ decays.

Well above open charm threshold

... yet very narrow: $\Gamma < 1.2\,{\rm MeV}$

– mass amazingly close to the $D^0 - D^{*0}$ threshold

– radiative decays to
$$J\!/\psi\,\gamma \Longrightarrow {\cal C}=+$$

- $J/\psi \pi^+\pi^-$ compatible with $J/\psi \rho$, yet significant $J/\psi \pi^+\pi^-\pi^0 (J/\psi \omega)$ I-spin violation?

Extremely difficult to identify as a conventional charmonium state, but some of its properties look like charmonium

loosely bound $D - D^*$ molecule?

X(3872) production in $p\bar{p}$ and pp collisions

Origin from B decays or primary interaction ("prompt")? Compare to $c\bar{c}$

prompt production rate too large for purely molecular state

GHP17 – Feb. 1-3, Washington, D.C

C. Patrignani

Determination of the X(3872) quantum numbers

CDF PRL 98 (2007) 132002 , Belle PRD 85 (2012) 052003 , BABAR PRD 82 (2010) 011101 1D angular distribution – all J^{PC} assignments excluded except 1^{++} or 2^{-+}

LHCb: PRL 110, 222001 (2013)

5D angular analysis of

$$B^+
ightarrow K^+ X(3872)
ightarrow K^+ J/\psi \, \pi^+ \pi^-$$

Angular correlations in the B^+ decay chain carry information on the J^{PC} of the X(3872)

$$\Omega = (\cos \theta_X, \cos \theta_{\pi\pi}, \Delta \phi_{X,\pi\pi}, \cos \theta_{J/\psi}, \Delta \phi_{X,J/\psi})$$

Matrix elements in the helicity formalism

$$J^{PC} = 1^{++}$$

X(3872) radiative decays

Predictions:

 $\mathcal{B}(\psi(2S)\gamma) \approx 0$ for purely molecular state

inconclusive results from B-factories

$$R_{\psi\gamma} = \frac{\mathcal{B}(X(3872) \rightarrow \psi(2S)\gamma)}{\mathcal{B}(X(3872) \rightarrow J/\psi\gamma)} = 2.46 \pm 0.64 \pm 0.29 \text{ (stat)} \text{ (syst)}$$

$X(3872) \rightarrow p\bar{p}?$

 $\mathcal{B}(X(3872) \rightarrow p\bar{p})$: predictions for regular charmonia larger (usually) than for other interpretations

Prospects for X(3872) of PANDA or other $p\bar{p}$ formation experiments depend on its value

12

GHP17 - Feb. 1-3, Washington, D.C

$Z(4430)^{+}$

Discovered by Belle in $B^0 o \psi(2S) \pi^- K^+$ PRL 100 (2008) 142001

PRD 80 (2009) 031104

PRD 88 (2013) 074026

not confirmed by BABAR PRD79 (2009) 112001

manifestly exotic: no charged standard mesons with valence $c\bar{c}$

$$Z(4430)^+$$
 in $B^0 \rightarrow \psi(2S)K^+\pi^-$ at LHCb

pprox 25k $B^0 o \psi(2S) K^+ \pi^-$ with pprox 4% combinatorial background

 $Z(4430)^+$ in $B^0 \rightarrow \psi(2S)K^+\pi^-$ at LHCb

PRL 112 (2014)222002

$$M = 4475 \pm 7^{+15}_{-25} \text{ MeV}/c^2$$

$$\Gamma = 172 \pm 13^{+37}_{-34}~{\rm MeV}$$

• $J^P = 1^+$

 Argand plot shows resonant behaviour

GHP17 - Feb. 1-3, Washington, D.C

Model independent confirmation of $Z(4430)^+$ in $B^0 \rightarrow \psi(2S)K^+\pi^-$ PRD 92 (2015) 112009

Check that $K^-\pi^+$ amplitudes only fail to describe the decay

K* resonances should contribute to low angular moments, while exotic $\psi\pi$ would contribute to all moments

Allow relative angular momenta up to ℓ_{max} and compare to unreasonably large $\ell_{max} = 30$

Exotic(?) states $X \rightarrow J/\psi \phi$?

PRL 118 (2017) 022003 PRD 95 (2017) 012002

Many experiments reported states decaying to $J/\psi\phi$:

X(4140) and/or other higher mass states in B decays, but also $\gamma\gamma$, double $c\bar{c}$.

600

500

 ϕ (1020)

The LHCb sample of $B^+ \rightarrow J/\psi \phi K^+$ from Run1 is the largest analysed so far

Signal yield/(10 MeV) m²/_{VV0} [GeV²] 120 LHCb 100 80 20 60 19 40 18 20 17 $4700 4800 \ m_{J/\psi\phi} [MeV]$ 3.54.5 4700 4100 42004300 4400 4500 4600 $m_{\phi \kappa}^2$ [GeV²] 300 LHCb 250 All previous results based on 1D projections Need to understand reflections of 100 interfering higher K^* 50 1400 $m_{\phi K} [MeV]$ 1500 1600 1700 1800 2000 2100 1900

$B^+ \rightarrow J/\psi \, \phi K^+$ Dalitz plot

C. Patrignani

PRL 118 (2017) 022003 PRD 95 (2017) 012002

GHP17 – Feb. 1-3, Washington, D.C

Amplitude fits

6D fit including K^* resonances + interfering NR background (0⁺⁺ not allowed)

Experimental knowledge + predictions to choose the states to include in the model

masses and widths not constrained

C. Patrignani

PRL 118 (2017) 022003

 K^* resonances alone don't describe data

Fits allowing exotic components

PRL 118 (2017) 022003 PRD 95 (2017) 012002

C. Patrignani

Add X and Z^+ components with various quantum numbers

 Z^+ components improve fit marginally Two 1⁺⁺ and two 0⁺⁺ states with large significance

Contri-	Sign.		Fit results	
bution	or Ref.	M_0 [MeV]	Γ_0 [MeV]	FF %
All $X(1^+$)			$16 \pm 3 + \ 6 \\ - \ 2$
X(4140)	8.4σ	$4146.5 \pm 4.5 {}^{+4.6}_{-2.8}$	$83 \pm 21 {}^{+21}_{-14}$	$13.0 {\pm} 3.2 {}^{+4.7}_{-2.0}$
ave.	Table 1	4147.1 ± 2.4	$15.7 {\pm} 6.3$	
X(4274)	6.0σ	$4273.3 \pm 8.3 {}^{+17.2}_{-3.6}$	$56 \pm 11 {}^{+8}_{-11}$	$7.1{\pm}2.5{}^{+3.5}_{-2.4}$
CDF	[26]	$4274.4^{+8.4}_{-6.7} \pm 1.9$	$32^{+22}_{-15}\pm 8$	
CMS	[23]	$4313.8 {\pm} 5.3 {\pm} 7.3$	$38^{+30}_{-15}\pm16$	
All $X(0^+$)			$28\pm~5\pm~7$
$\operatorname{NR}_{J/\psi \phi}$	6.4σ			$46{\pm}11 \ {}^{+11}_{-21}$
X(4500)	6.1σ	$4506 \pm 11 {}^{+12}_{-15}$	$92{\pm}21^{+21}_{-20}$	$6.6{\pm}2.4{}^{+3.5}_{-2.3}$
X(4700)	5.6σ	$4704 \pm 10 {}^{+14}_{-24}$	$120\pm31_{-33}^{+42}$	$12\pm 5 \ ^{+9}_{-5}$

Significance of $J^{PC} = 1^{++}$ incl. syst.: X(4140): 5.7 σ X(4274): 5.8 σ Significance of $J^{PC} = 0^{++}$ incl. syst. : X(4500): 4.0 σ X(4700): 4.5 σ

 K^* spectroscopy in $B^+
ightarrow J\!/\psi\,\phi K^+$

PRL 118 (2017) 022003 PRD 95 (2017) 012002

Our results for mass and widths of higher kaon excitations as red points

Excellent agreement with theory and previous experiments

J = 3 - 4 states not observed expected to be suppressed in B decays (angular momentum barrier)

C. Patrignani

$B_s^0 \pi^-$ spectroscopy

DØ reported observation (5.1 σ) of a tetraquark candidate $X(5568)^+ \rightarrow B_s^0 \pi^+$ with $\approx 5500 B_s^0$ signal events reconstructed in $J/\psi \phi$ PRL 117 (2016) 022003

Unique state with four different quarks $\bar{b}su\bar{d}$

PRL 117 (2016) 152003

LHCb: $B_s^0 \pi^-$ spectrum

Large and clean B_s^0 samples reconstructed in $J/\psi \phi$ and $D_s^- \pi^+$ Constrain J/ψ and D_s mass to improve resolution

pair π^+ from primary vertex with a displaced B_s^0

Fit spectrum with and without a narrow resonant structure.

LHCb: no evidence for $X(5568) \rightarrow B_s^0 \pi^+$

Set upper limit on the B_s^0 production ratio (including systematic)

$$\rho_X^{\text{LHCb}} \equiv \frac{\sigma(pp \to X(5568) + \text{anything}) \times \mathcal{B}(X(5568) \to B_s^0 \pi^{\pm})}{\sigma(pp \to B_s^0 + \text{anything})}$$

Set UL as a function of M_X for different values of Γ_X and different values of the minimum transverse B_s^0 momentum

for the X(5568) parameters reported by DØ and different values of the transverse B_s^0 momentum the limits are

$$ho_X^{ ext{LHCb}}(p_{ ext{T}} > 5 \, ext{GeV}/c) < 1.1 \ (1.2)\%$$
 at 90 (95)% CL $ho_X^{ ext{LHCb}}(p_{ ext{T}} > 10 \, ext{GeV}/c) < 2.1 \ (2.4)\%$ at 90 (95)% CL $ho_X^{ ext{LHCb}}(p_{ ext{T}} > 15 \, ext{GeV}/c) < 1.8 \ (2.0)\%$ at 90 (95)% CL

PRL 117 (2016) 152003

CMS and DØ (preliminary):

pentaquarks

		PDG1974		
		$S=1$ I=0 EXOTIC STATES (Z_0)		
## [Ζ ₀ (1780) SEE THE MINI-REVIEW PRECECTING THIS LISTING. MILSON 72 AND GLACOMELLI 14 FIND SOME SOLUTIONS MILSON 72 AND GLACOMELLI 14 FIND		
		05 740117801 NASS (MEV)		
		1780.0 10.0 COOL 70 CMTR + K+P, D TOTAL 1/71 SEEN DOWELL 70 CMTR + K+P, D TOTAL 1/70 SEE ALSO DISCUSSION OF LYNCH 70 WILSON 72 PWA K+P, D TOTAL 7/70 (1800.) WILSON 72 PWA K+N POI WAVE 3/72 (1750.) CARROLL 73 CMTR KN I=0 TCS.FIT 1 9/73 (1825.) CARROLL 73 CMTR KN I=0 TCS.FIT 1 9/73 (1825.) CARROLL 03 CMTR KN I=0 TCS.FIT 2 9/73 FIT 1=FIT OF SINGLE L=1 BW+BACKGROUND TI TO FOL		
		95 Z=C(1780) HIDTH (MEV)		
	¥ 1 1	(565.0) COOL 70 CMTR + K+P, D TDTAL 1/71 (300.) WILSON 72 PMA K+N PO1 WAVE 3/72 (600.) CARROLL 73 CMTR KN 1=0 TCS,FIT 1 9/73 (845.) CARROLL 73 CMTR KN 1=0 TCS,FIT 2 9/73 (300.) GIACOMEL 74 PMA .38-1.51 GEV/C 10/74*		
	$\begin{bmatrix} Z \text{ BARYONS} \\ (S = +1) \end{bmatrix} \text{PDG1992}$			

NOTE ON THE $S = \pm 1$ BARYON SYSTEM

The evidence for strangeness ± 1 baryon resonances was reviewed in our 1976 edition,¹ and has also been reviewed by Kelly² and by Oades.³ New partial-wave analyses^{4,5} appeared in 1984 and 1985, and both claimed that the P_{13} and perhaps other waves resonate. However, the results permit no definite conclusion — the same story heard for 20 years. The standards of proof must simply be more severe here than in a channel in which many resonances are already known to exist. The

Any experimental activity in this area, make it likely C. Patrignani GHP17 – Feb. 1-3, Washington, D.C

in about baryons not made of three quarks, and the

EXOTIC BARYONS

Minimum quark content: $\Theta^+ = u \, u \, d \, d\overline{s}, \, \Phi^- = s s \, d \, d\overline{u}, \, \Phi^+ = s s u \, u \, \overline{d}.$

Θ(1540)⁺

$$I(J^P) = 0(?^2)$$

It is difficult to deny a place in the Summary Tables for a state that six experiments claim to have seen. Nevertheless, we believe it reasonable to have some reservations about the existence of this state on the basis of the present evidence.

> Mass $m = 1539.2 \pm 1.6 \text{ MeV}$ Full width $\Gamma = 0.90 \pm 0.30 \text{ MeV}$

PDG2004

NK is the only strong decay mode allowed for a strangeness $S = \{1 \text{ resonance of this mass}\}$

θ(1540) ⁺ DECAY MODES	Fraction (Γ_I / Γ)	ρ (MeV/c)
KN	100%	270

Citation: W.-M. Yao et al. (Particle Data Group), J. Phys. G 33, 1 (2006) (URL: http://pdg.lbl.gov)

 $\Theta(1540)^+$

 $I(J^P) = 0(?^{?})$ Status: * - **PDG 2006**

OMITTED FROM SUMMARY TABLE

PENTAQUARK UPDATE

Written February 2006 by G. Trilling (LBNL).

In 2003, the field of baryon spectroscopy was almost revolutionized by experimental evidence for the existence of baryon states constructed from five quarks (actually four quarks and an antiquark) rather than the usual three quarks. In a 1997

26 LHCD

 $\Lambda_b^0 \to J/\psi p K^-$

This decay mode, not observed before, found to have large rates and low background

Used to measure the Λ_b^0 lifetime with 1 fb⁻¹ collected in 2011 PRL 111 (2013) 102003

Clean signal of 26,000 candidates with 5.4% background within $\pm 2\sigma$ in the whole Run 1 data sample (3 fb⁻¹)

... but the Dalitz plot has unusual features:

vertical bands for Λ^* 's

Horizontal band???

28

Dalitz plot projections

Amplitude Model

Six-dimensional amplitude fit: invariant mass, three helicity angles and two differences between decay planes. Allow for two interfering channels:

 $\Lambda_b^0 \to P_c^+ K^-$

	State	J^P	$M_0 ({ m MeV})$	$\Gamma_0 \ ({\rm MeV})$	# Reduced	# Extended
	$\Lambda(1405)$	$1/2^{-}$	$1405.1^{+1.3}_{-1.0}$	50.5 ± 2.0	3	4
	$\Lambda(1520)$	$3/2^{-}$	1519.5 ± 1.0	15.6 ± 1.0	5	6
	$\Lambda(1600)$	$1/2^{+}$	1600	150	3	4
	$\Lambda(1670)$	$1/2^{-}$	1670	35	3	4
all known Λ^* resonances (Extended)	$\Lambda(1690)$	$3/2^{-}$	1690	60	5	6
or	$\Lambda(1800)$	$1/2^{-}$	1800	300	4	4
just well motivated (Reduced)	$\Lambda(1810)$	$1/2^{+}$	1810	150	3	4
Just wen motivated (Reduced)	$\Lambda(1820)$	$5/2^{+}$	1820	80	1	6
	$\Lambda(1830)$	$5/2^{-}$	1830	95	1	6
Angular distribution in helicity	$\Lambda(1890)$	$3/2^{+}$	1890	100	3	6
formalism	$\Lambda(2100)$	$7/2^{-}$	2100	200	1	6
	$\Lambda(2110)$	$5/2^{+}$	2110	200	1	6
	$\Lambda(2350)$	$9/2^{+}$	2350	150	0	6
	A(2585)	?	≈ 2585	200	0	6

Amplitude Model: results

Two exotic states are required to obtain an adequate fit

Interference between two P_c of opposite parity required to explain the P_c decay angular distribution

	$P_{c}(4380)^{+}$	$P_c(4450)^+$		
J^P	$\frac{3}{2}$	$\frac{5}{2}^{+}$		
Mass $[MeV/c^2]$	$4380 ilde{\pm}8\pm29$	$4449.8 \pm 1.7 \pm 2.5$		
Width $[MeV/c^2]$	$205\pm18\pm86$	$39\pm5\pm19$		
Fit fraction [%]	$8.4\pm0.7\pm4.2$	$4.1\pm0.5\pm1.1$		
Significance	9σ	12σ		

significance from pseudo-experiments (includes systematic)

The combined significance $> 15\sigma$

Resonance?

Real and immaginary part of the amplitude determined independently in 6 bins between $M - \Gamma$ and $M + \Gamma$

The $P_c(4450)$ amplitude shows a phase variation consistent with what expected for a Breit-Wigner resonance

Not conclusive for $P_c(4380)$

Model independent analysis of $\Lambda_b^0 \rightarrow J/\psi p K^-$

PRL 117 (2016) 082002

The $\Lambda *$ spectrum is the largest systematic uncertainty in the P_c observation

The NR K^-p component could have non trivial mass-dependence

Model independent approach: no assumption on Λ^* , \varSigma or $N\!R$ structure

Only restrict maximum spin of Λ^* component in each interval of Kp invariant mass

Patrignani

Model independent analysis of $\Lambda_b^0 \rightarrow J/\psi p K^-$

PRL 117 (2016) 082002

Hypothesis: data can be described by Kp mass and angular structures

The hypothesis that data can be described by reflections of Kp structures is excluded at 9σ

Search for exotics in $\Lambda_b^0 \rightarrow J/\psi p \pi^-$

Cabibbo-suppressed – observed by LHCb JHEP 1407 (2014) 103

$$\frac{\mathcal{B}(\Lambda_b^0 \to J/\psi p \pi^-)}{\mathcal{B}(\Lambda_b^0 \to J/\psi p K^-)} = 0.0824 \pm 0.0025 \,(\text{stat}) \pm 0.0042 \,(\text{syst})$$

Observing the same P_c^+ states in a different decay mode could indicate they are really resonances and not some kinematical effects Wang et al; arXiv:1512.01959

Cabibbo-suppressed Λ_b^0 decays to baryonic exotic resonances

are predicted to have Cheng, Chua arXiv:1509.03708

Patrignani

$$R_{\pi^-/K^-} \equiv \frac{\mathcal{B}(\Lambda_b^0 \to \pi^- P_c^+)}{\mathcal{B}(\Lambda_b^0 \to K^- P_c^+)} \approx 0.07 - 0.08$$

$\Lambda_b^0 \to J/\psi p \pi^-$

Similar candidates selection as for $\Lambda_b^0 \to J/\psi p K^-$, with additional vetos for specific background sources $(\bar{B}^0 \to J/\psi K^+\pi^-, \bar{B}_s^0 \to J/\psi K^+K^-, \Lambda \to K^+\pi^-)$

No striking features in the Dalitz plot, perform amplitude analysis

As in the CF mode, six-dimensional fit to interfering amplitudes. In this case:

• $\Lambda^0_b \to J/\psi N^*$

• $\Lambda_b^0 \to P_c^+ \pi^-$

• $\Lambda_b^0 \to Z_c^- p$

C. Patrignani

 $Z_c(4200)^- \rightarrow J/\psi \pi^$ reported by Belle in $B^0 \rightarrow J\psi K\pi$ PRD 90 (2014) 112009

 $\Lambda_{h}^{0} \rightarrow Z_{c}^{+} p$

Amplitude model fits to $\Lambda_b^0 \rightarrow J/\psi p \pi^-$

State	J^P	$M_0~({ m MeV})$	$\Gamma_0 \ ({\rm MeV})$	$\mathbf{R}\mathbf{M}$	EM
NR $p\pi$	$1/2^{-}$	_	-	4	4
N(1440)	$1/2^{+}$	1430	350	3	4
N(1520)	$3/2^{-}$	1515	115	3	3
N(1535)	$1/2^{-}$	1535	150	4	4
N(1650)	$1/2^{-}$	1655	140	1	4
N(1675)	$5/2^{-}$	1675	150	3	5
N(1680)	$5/2^{+}$	1685	130	0	3
N(1700)	$3/2^{-}$	1700	150	0	3
N(1710)	$1/2^{+}$	1710	100	0	4
N(1720)	$3/2^{+}$	1720	250	3	5
N(1875)	$3/2^{-}$	1875	250	0	3
N(1900)	$3/2^{+}$	1900	200	0	3
N(2190)	$7/2^{-}$	2190	500	0	3
N(2220)	$9/2^{+}$	2250	400	0	0
N(2250)	$9/2^{-}$	2275	500	0	0
N(2600)	$11/2^{-}$	2600	650	0	0
N(2300)	$1/2^{+}$	2300	340	0	3
N(2570)	$5/2^{-}$	2570	250	0	3
Free para	meters			40	106

The $m(p\pi^-)$ projection is adequately described by fits with N^* only Exotic components seem not required

INFN

PRL 117 (2016) 082003

Include in the fit

- all known N^* (Extended)
- only well motivated (Reduced)

All L allowed

Limited sample size: fix P_c and Z_c parameters when testing if their amplitudes are required

Fits with and without exotic hadrons

The amplitude model without P_c or Z_c amplitudes may appear adequate in the projections, but exotic components are required for an acceptable fit in all regions of variable space

Differences in a six-dimensional fit often manifest only in restricted regions

Evidence for exotic components in $\Lambda_b^0 \to J/\psi p \pi^-$

The N^* -only (extended) model does not describe data in all variable space

The reduced models with exotic (2 P_c or Z_c , or both) have acceptable fits in all variables

The significance (including syst) for $2P_c$ without Z_c is 3.3σ None has individually large significance.

States	Fit fraction $(\%)$
$P_c(4380)^+$	$5.1 \pm 1.5^{+2.1}_{-1.6}$
$P_{c}(4450)^{+}$	$1.6^{+0.8+0.6}_{-0.6-0.5}$
$Z_c(4200)^-$	$7.7\pm2.8^{+3.4}_{-4.0}$

Ratios of CS/CF for exotic components compatible with 0.07 – 0.08 (albeit large errors!) Cheng, Chua arXiv:1509.03708

$$R_{\pi^{-}/K^{-}}(4380) = 0.050 \pm 0.016^{+0.020}_{-0.016} \pm 0.025$$

$$R_{\pi^{-}/K^{-}}(4450) = 0.033^{+0.016+0.011}_{-0.009} \pm 0.009$$

$$R_{\pi^-/K^-} \equiv \frac{\mathcal{B}(\Lambda_b^0 \to \pi^- P_c^+)}{\mathcal{B}(\Lambda_b^0 \to K^- P_c^+)}$$

GHP17 - Feb. 1-3, Washington, D.C

Conclusions: tetraquarks (and tetraquark candidates)

- X(3872): already a wealth of results
 - quantum numbers
 - Mass (and width?)
 - radiative decays
 - *p*_t dependence of prompt production
 - other decay modes? other than B^{\pm} ?
- Z(4430)⁺
 - confirmed with both amplitude analysis and model dependent approach
 - resonant behaviour
 - quantum numbers
- $B^+ \rightarrow J/\psi \phi K^+$
 - 4 $J/\psi \phi$ structures
- $X(5568) \to B_s^0 \pi^+?$

... different process (pp vs $\bar{p}p$), different energy, different kinematical region.... yet ...

Conclusions: pentaquarks

- Observation of $P_c(4450)^{\pm}$ and $P_c(4380)^{\pm} \rightarrow J/\psi p$ in $\Lambda_b^0 \rightarrow J/\psi p K^$ from both amplitude analysis and model independent approach
 - $c\bar{c}uud \Longrightarrow$ pentaquark!
 - resonant behaviour of $P_c(4450)^{\pm}$ amplitude
 - resonant behaviour inconclusive for $P_c(4380)^{\pm}$
- Evidence for exotic hadrons in $\Lambda_b^0 \to J/\psi \, p \pi^-$
 - compatible with P_c states in different decay mode
 - amplitude analysis limited by sample size

Still a lot to understand – and a lot of data at LHC! already on disk and more in the near future

For further discussion on how to interpret those states see also T. Skwarnicki's talk at APS, Session Y16

Extra Slides

The LHCb experiment

Patrignani

LHC has record numbers of *b* (and *c*) hadrons: $\sigma_{b\bar{b}} \approx 250 \ \mu b \ 0 \ 7 \ \text{TeV}$ $\sigma_{c\bar{c}} \approx 20 \times \sigma_{b\bar{b}}$ LHCb designed to study rare decays and CP violation in *b*-hadrons ideal place also for spectroscopy

ideal place also for spectroscopy

single-arm spectrometer covering the forward pseudorapidity region $2 < \eta < 5$

JINST 3 (2008) S08005 IJMP A30 (2015)1530022

excellent performance:

- vertexing and tracking: good time of flight and invariant mass resolution
- PID for pions, kaons, protons and muons
- calorimeter
- Trigger on high-*p*_t lepton or hadron from displaced vertexes **c and b-hadrons**

Extended Model fits to $\Lambda_b^0 \rightarrow J/\psi p K^-$

The extended fit without additional exotic resonances describes well the K^-p projection, fails to describe the $J/\psi p$ projection

adding one exotic resonance is not enough:

C. Patrignani

GHP17 – Feb. 1-3, Washington, D.C

Fit projections $\Lambda_b^0 \rightarrow J/\psi p K^-$

C. Patrignani

Reduced fit $+2 P_c$ describes data well in all fit variables, also in restricted variable ranges

GHP17 – Feb. 1-3, Washington, D.C

Efficiency and backround $\Lambda_b^0 \rightarrow J/\psi p \pi^-$

Figure 7: (a) Signal efficiency and (b) background distribution on the Dalitz plane.

Fit projections $B^+ \rightarrow J/\psi \phi K^+$

The fit with 4 X states describes well data in all angles

46

Test one of the cusp models which proposes to explain Z's just above $D^{(*)}\overline{D}^{(*)}$ thresholds (rescattering) Swanson arXiv:1504.07952

For the X(4140) the cusp amplitude gives a better fit than BW (by 1.6σ)

For all other X's this cusp model has a worse fit

C. Patrignani

GHP17 – Feb. 1-3, Washington, D.C

Model independent analysis of $\Lambda_b^0 \rightarrow J/\psi p K^-$

Hypothesis: data can be described by Kp mass and angular structures

In each bin of m(Kp), the $\cos \theta_{\Lambda*}$ distribution in terms of Legendre polynomial

C. Patrignani

$$\frac{dN}{d\cos\theta_{\Lambda^*}} = \sum_{l=0}^{l_{\max}} \langle P_l^U \rangle P_l(\cos\theta_{\Lambda^*})$$

Rank l_{max} < 2J_{max}

 J_{max} : highest spin in m(Kp) bin

Moments from data in bins of m(Kp)

$$\langle P_l^U
angle^k = \sum_{i=1}^{n_{ ext{cand}}^k} (w_i/\epsilon_i) P_l(\cos heta_{A^*}^i)$$

PRL 117 (2016) 0820