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Parton distribution functions
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Parton distribution functions
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Parton distribution functions

PDFs are intrinsically non-perturbative quantities defined on the light-cone

Hadrons can be viewed as constituted by point-like partons in high energy
collisions

Operator definition (unpolarized quark distribution)

- . e _ . S o _ .
[q(:r- p?) Z/f—ﬂe_”‘f PHPID(E )y T exp (—w/ﬂ dn~ A (n )) U(U)P>}

P* = (P°,0,0,P%),t = (t + 2)/\V2
Light-cone correlation at equal light-front time, expectation of light-front quark
number operator in the light-cone gauge

There has been long term effort on determining PDFs
CTEQ, NNPDF, MSTW...
Using a large variety of experimental data from DIS, Drell-Yan to jet production
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Parton distribution functions
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FIG. 4: The CT14 parton distribution functions at Q@ = 2 GeV and @ = 100 GeV for uw, T, d, d, s =7, and g.

T fo(x,Qo) = 2" (1 — )™ P,(x)
CTEQ

e Parametrize x-dependence of PDFs at a low scale

« Fitting parameters to experimental data
e DGLAP scale evolution
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Parton distribution functions
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Fig. 5. Reconstructed isovector valence quark distribution z(uv — dv) in the proton at Q? =
4 GeV2. The central fit curve (solid line) and error band (lightly shaded) are compared with the
envelope of the phenomenological distributions2" (darkly shaded).

Lattice QCD (Euclidean approach, cannot directly access light-cone
quantities such as the PDFs)
e Compute their moments, which are local operator matrix elements

e Parametrize PDFs with a smooth functional form and fit unknown parameters to
moments

e # of calculable moments limited due to mixing
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Large momentum effective theory

An effective theory framework that allows to compute light-cone or parton
observables from Euclidean quantities pi 141
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Large momentum effective theory

An effective theory framework that allows to compute light-cone or parton
observables from Euclidean quantities pi 141

For a light-cone observable, e.g. the PDFs or the gluon helicity, construct a
Euclidean quasi observable, which in general is frame-dependent, but
approaches the light-cone observable in the infinite momentum limit

[ O(P. 1) ‘=5 O(,u-)J
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Large momentum effective theory

An effective theory framework that allows to compute light-cone or parton
observables from Euclidean quantities pi 141

For a light-cone observable, e.g. the PDFs or the gluon helicity, construct a
Euclidean quasi observable, which in general is frame-dependent, but
approaches the light-cone observable in the infinite momentum limit

[ O(P, 1) 25° O(H)J

e The choice for quasi observable is not unique, for example

U=

e Instead of computing the light-cone observable directly, one can compute the quasi
observable at a finite hadron momentum P. The difference between quasi and light-
cone observables is in finite or infinite momentum, hence they shall have the same
IR physics
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Large momentum effective theory

 In general, both quasi and light-cone observables suffer from UV divergences. They
have different UV behavior because of different order of limits (the infinite
momentum limit and the UV regularization are not exchangeable)

Taking inf. mom. limit first — physical case, light-cone
Taking UV regularization first — frame dependent, but practically calculable
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Large momentum effective theory

 In general, both quasi and light-cone observables suffer from UV divergences. They
have different UV behavior because of different order of limits (the infinite
momentum limit and the UV regularization are not exchangeable)

Taking inf. mom. limit first — physical case, light-cone
Taking UV regularization first — frame dependent, but practically calculable

 The difference can be perturbatively computed and captured in a matching factor Z

] 172
{()(P. 1) = Z(%)O(n) + 0({;;)}
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Large momentum effective theory

 In general, both quasi and light-cone observables suffer from UV divergences. They
have different UV behavior because of different order of limits (the infinite
momentum limit and the UV regularization are not exchangeable)

Taking inf. mom. limit first — physical case, light-cone
Taking UV regularization first — frame dependent, but practically calculable

 The difference can be perturbatively computed and captured in a matching factor Z

] 172
[()(P. ) = Z(;)O(;f) + O(ii)}

* Analogous to an effective theory setup, e.g. the HQET. The role of heavy quark
mass is now played by the large hadron momentum
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Large momentum effective theory

 In general, both quasi and light-cone observables suffer from UV divergences. They
have different UV behavior because of different order of limits (the infinite
momentum limit and the UV regularization are not exchangeable)

Taking inf. mom. limit first — physical case, light-cone
Taking UV regularization first — frame dependent, but practically calculable

 The difference can be perturbatively computed and captured in a matching factor Z

- P, M?

* Analogous to an effective theory setup, e.g. the HQET. The role of heavy quark
mass is now played by the large hadron momentum

e Parton model is an effective theory for the nucleon moving at large momentum
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Large momentum effective theory

 In general, both quasi and light-cone observables suffer from UV divergences. They
have different UV behavior because of different order of limits (the infinite
momentum limit and the UV regularization are not exchangeable)

Taking inf. mom. limit first — physical case, light-cone
Taking UV regularization first — frame dependent, but practically calculable

 The difference can be perturbatively computed and captured in a matching factor Z

] 172
[um () = Z(f)O(ﬂJ + O(gz)}

* Analogous to an effective theory setup, e.g. the HQET. The role of heavy quark
mass is now played by the large hadron momentum

e Parton model is an effective theory for the nucleon moving at large momentum

e The Z factor contains logarithm of ln% when P becomes large, which reflects the

non-smooth light-cone limit. It can be resummed by RGE
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Large momentum effective theory

2/2/2017

In general, both quasi and light-cone observables suffer from UV divergences. They
have different UV behavior because of different order of limits (the infinite
momentum limit and the UV regularization are not exchangeable)

Taking inf. mom. limit first — physical case, light-cone
Taking UV regularization first — frame dependent, but practically calculable

The difference can be perturbatively computed and captured in a matching factor Z

] 172
[om () = Z(g)O(fo + 0(;2)}

Analogous to an effective theory setup, e.g. the HQET. The role of heavy quark
mass is now played by the large hadron momentum

Parton model is an effective theory for the nucleon moving at large momentum

The Z tactor contains logarithm of ln% when P becomes large, which reflects the

non-smooth light-cone limit. It can be resummed by RGE

Summary:
Euclidean quasi observable is potentially computable on the lattice

Perturbative matching allows to extract light-cone observable from the quasi
observable

A good approximation of the light-cone observable can be achieved at a moderately
large momentum
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Quasi parton distribution

[@(x.ﬂ, P) = [‘J f,z =R (P[)(0,0,, 2)7° exp (—ig/ dz' A*(0,0,, 2 }) {}}|P}J

e Equal time correlation, quark fields separated along z-direction, no time
dependence and can be accessed on lattice, x = k?/P? ji 131

(a) P, = finite, A =(0,0,0,-1)

(b) P, — oo, A=(0,0,0,-1)

(e) P, =0, A= (07,0,0,—y) with § — 1
(d) P, =0, M =0

or P, — oo, A2 =0,
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Quasi parton distribution

Matching relation pi13, i, Xiong, Zhang and Zhao, 137]

[ gz, A, P7) —f IEEZ (j ; }fd)q{y 1) J
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e The quasi distribution does not vanish outside [-1,1]

e Both distributions have soft and coll. div., soft div. cancels in themselves, coll. div.

~
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Quasi parton distribution

Matching relation pi13, i, Xiong, Zhang and Zhao, 137]

[ q(z, A, P7) —f IEEZ (j ; }fd)q{y 1) J

e @NLO
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e The quasi distribution does not vanish outside [-1,1]

e Both distributions have soft and coll. div., soft div. cancels in themselves, coll. div.
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Quasi parton distribution

Matching relation pi13, i, Xiong, Zhang and Zhao, 137]
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Exploratory studies on the lattice
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Exploratory studies on the lattice

Unpolarized, helicity and transversity distributions
e One-loop matching + mass corrections + higher-twist corrections
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Exploratory studies on the lattice

Helicity and transversity distributions
e One-loop matching + mass corrections + higher-twist corrections

0.8_' L L LA B L B I B T T
- xQSM :
0.6k KPSY15 ]
[ e RCBG15 1
'3 Sod Lattice
| I F
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e Sea flavor asymmetry Chen et. al. 16’
m,; = 310 MeV, L

=3fm,a =0.12fm
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Renormalization of power divergence

Power divergence comes from Wilson line self energy shikawa etal. 16/, Chen etal. 167

e At one-loop, a linear div. is associated with T

AP Py

e It is well-known that linear divergence associated with Wilson line can be removed
by a mass renormalization (e.g. in auxiliary z-field formalism)

* In a sense, the auxiliary field can be understood as a Wilson line extending between
[2, 0]

Z(z) = L(z,00) satisfies [0, —igA,(2)] Z(z) =0
e Analogous to a heavy quark field

e Non-local Wilson line can be interpreted as a two-point function of z-field
L(2,0) = Z(2)Z7(0)

e Renormalizes analogously to a heavy quark two-point function [Dotsenko and Vergeles 80,

Dorn 867] ‘
Lr‘en(g1 0) _ Zz—le—ém- z|L(£: 0)
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Renormalization of power divergence

One-loop illustration
e The Wilson line self energy diagram gives

lim /dﬂ-z &.SCF‘& [5 (kz - ng} — 5(1'1?3 }]pz

2m k2 4+ €2

e—+)

e Mass counterterm contributes

_ dz 1 — e
z|dm = — llmf p, e P=2 om

dz i(r—1)p.z

— —D:€
] 27 e—0 | 27 €

dkﬁ- 5 _ i - (S k‘? — T o

— _lim [ %=, 0&p:) — 0(k: — Tp;)

e—0 T Lg + €2
e Therefore
O
om = —GQWF (mA)

e Itis gauge-independent

Can be extended to higher-loop orders
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Improved quasi quark distribution
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Summary and outlook

PDFs are difficult to compute due to their non-perturbative and intrinsically
Minkowskian nature

Large momentum effective theory offers a practical possibility to directly
compute light-cone quantities such as the PDFs from Euclidean lattice

e Matching

e Renormalization

» Power corrections

Non-perturbative evolution for extrapolation from moderate to large momentum [Radyushkin 16,
171

Exploratory results show encouraging features

A lot more effort needed for lattice results to reach accuracy comparable with
phenomenological fits
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Pion distribution amplitfude
Improved pion quasi DA

0)

T i dz —i(z—1)P.z—8m|z VLT o z |
mmmﬁ=Tf%eim-“%ﬂmmwﬂmm@}

Mass counterterm [Musch et. al. 11]

e Choose a Wilson loop long in t-direction such that higher excitations are sufficiently

suppressed
e Fit the quark potential
I (Te[W(t,r)])
Vir)=—, imn (Te[W(t —a,r)])
to
. c1
Vir) = — + e + ear
gives

dm ~ —260 £ 200 MeV

2/2/2017 7th Workshop of the APS GHP, Washington DC, Feb. 1-3, 2017



Pion distribution amplitfude
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