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Abstract

We present a new analysis of AN in p"p ! ⇡ X within the collinear twist-3 factorization formalism. We incorporate
recently derived Lorentz invariance relations into our calculation and focus on input from the kinematical twist-3
functions, which are weighted integrals of transverse momentum dependent (TMD) functions. In particular, we use
the latest extractions of the Sivers and Collins functions with TMD evolution to compute certain terms in AN . Conse-
quently, we are able to constrain the remaining contributions from the lesser known dynamical twist-3 correlators.
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1. Introduction

The endeavor to probe the spin structure of the proton through transverse single-spin asymmetries (TSSAs), de-
noted AN , in high-energy single inclusive lepton-hadron and hadron-hadron scattering processes, i.e., A"+B! C+X 1,
has received considerable attention from both the experimental and theoretical communities [1, 2]. For the case where
the produced particle C’s transverse momentum PCT � ⇤QCD, TSSAs manifest themselves as sub-leading twist
(twist-3) e↵ects calculable within perturbative QCD (pQCD). The computational techniques and methodology of this
collinear twist-3 factorization framework was developed rigorously in Refs. [3–27]. Over the last 40 years, there have
been many measurements of large TSSAs [28–44], whose description, therefore, has become a fundamental test of
this pQCD formalism.

Schematically, one writes the (polarized) di↵erential cross section for A" + B! C + X as

d�(S T ) = H ⌦ fa/A(3) ⌦ fb/B(2) ⌦ DC/c(2) + H0 ⌦ fa/A(2) ⌦ fb/B(3) ⌦ DC/c(2) + H00 ⌦ fa/A(2) ⌦ fb/B(2) ⌦ DC/c(3) , (1)

where S T is the transverse spin vector of hadron A, fa/A(t) is the twist-t parton distribution function (PDF) associated
with parton a in hadron A (similarly for fb/B(t)), while DC/c(t) is the twist-t fragmentation function (FF) associated
with hadron C in parton c. The twist-3 correlators can either be of the 2-parton or 3-parton type and are categorized
into intrinsic, kinematical, and dynamical functions [1, 26]. The intrinsic functions are twist-3 Dirac projections of
collinear 2-parton correlators, while the kinematical functions are first transverse momentum moments of transverse
momentum dependent (TMD) 2-parton functions. The dynamical functions are 3-parton correlators. The factors

1One could also have C transversely polarized instead of A.
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• We perform a new phenomenological analysis of unpolarized
Transverse Momentum Dependent distribution and fragmentation 
functions in Gaussian framework with flavor separation

• HERMES data on multiplicities of unpolarized pion and Kaon 
production differential in transverse momentum is used

• For the first time we implement data selection that maximizes 
contribution from beam fragmentation region  using collinearity 
parameter R of Boglione et al 2017

• Results are compared to existing analyses

• This study gives us information on the intrinsic motion of quarks 
inside nucleons, which is encoded in TMDs
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Unpolarized structure functions in generalized parton model

We consider Hermes multiplicities data sets. 
The observable is defined as

We model the observable using 
the standard Gaussian ansatz
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Approximately Gaussian dependence is observed in the data 
Schweitzer et al, NPA (2004) & PRD (2010)
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FIG. 8 (color online). Multiplicities of pions (left panels) and kaons (right panels) for the proton and the deuteron as a function of
Ph?, xB, and Q2 in four z bins. Positive charge is on the left and negative charge is on the right of each panel. Uncertainties are as in
Fig. 4.

MULTIPLICITIES OF CHARGED PIONS AND KAONS . . . PHYSICAL REVIEW D 87, 074029 (2013)
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Airapetian et al, PRD (2013)
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Unpolarized structure function in TMD parton model

We use the Generalized Parton Model which utilizes a simple 
Gaussian form of transverse momentum dependence of TMDs

The result for unpolarized structure functions becomes very simple

See for instance: M. Anselmino et al. PRD	(2005)

Gaussian anzatz with flavor dependence
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Previous Extractions of unpolarized TMDs

Several papers reported results of extraction of unpolarized TMDs

TMD PDF width TMD FF width

Anselmino et al. 
PRD  (2005)

Anselmino et al. 
JHEP 2014  

Signori et al,  JHEP 
(2013)

hk2?i = 0.25 GeV2 hp2?i = 0.2 GeV2

hk2?i = 0.57± 0.08 GeV2 hp2?i = 0.12± 0.01 GeV2
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the necessary label for the parent hadron on PDFs is omitted and PDFs refer to the ones

of the proton. We remark also that each quark flavor is described by a single Gaussian

with a specific width. The multiplicity is then a sum of Gaussians and thus no longer a

simple Gaussian. The above expression can be used with minor modifications also if we

assume that the distribution and fragmentation functions for some flavor are themselves

sums of Gaussians. We will in fact adopt such an assumption for the up and down quarks,

where we distinguish a valence and a sea contribution, each one having a di↵erent Gaussian

width. For example, the up contribution to the multiplicities is
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, and similarly for the down quark.

Previous data obtained in unpolarized Drell-Yan and semi-inclusive DIS processes were

compatible with calculations based on a Gaussian ansatz for unpolarized TMD PDFs and

TMD FFs with flavor-independent constant widths. In this case, eq. (2.12) would display a

simple Gaussian behavior in PhT with the same width in every target-hadron combination.

However, the Hermes multiplicities display significant di↵erences between proton and

deuteron targets, and between pion and kaon final-state hadrons. Hence, they strongly

motivate our choice in eq. (2.9) for a flavor-dependent Gaussian ansatz.

2.2 Assumptions concerning average transverse momenta

As mentioned in the previous section, we introduce di↵erent widths for the Gaussian forms

of the valence and sea components of up and down TMD PDFs. However, we assume that

the Gaussian widths of all sea quarks (ū, d̄, s and s̄) are the same (i.e., they have the same

average square transverse momenta). State-of-the-art parametrizations of collinear PDFs

have a more complex structure and introduce di↵erences between sea quarks of di↵erent

flavors; we leave this flexibility to future studies.

We include the possibility that the average square transverse momentum depends on

the longitudinal fractional momentum x. This connection can certainly be useful in fitting

the data, but above all it is dictated by theoretical considerations, in particular by Lorentz

invariance. Many models predict such a connection (see, e.g., [10–19]), and similarly do

parametrizations of light-front wave functions (see, e.g., [44–46]).

We choose the following functional form for the average square transverse momentum

of flavor a:
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hk̂2

?,ai for a = uv, dv, sea. In total, we use five di↵erent parameters to describe all TMD

PDFs. Since the present data have a limited coverage in x, we found no need of more

sophisticated choices.

As for TMD FFs, fragmentation processes in which the fragmenting parton is in the

valence content of the detected hadron are usually defined favored. Otherwise the process

is classified as unfavored. The biggest di↵erence between the two classes is the number

of qq̄ pairs excited from the vacuum in order to produce the detected hadron: favored

processes involve the creation of at most one qq̄ pair. If the final hadron is a kaon, we

further distinguish a favored process initiated by a strange quark/antiquark from a favored

process initiated by an up quark/antiquark.

For simplicity, we assume charge conjugation and isospin symmetries. The latter is

often imposed also in the parametrization of collinear FFs [47], but not always [48]. In

practice, we consider four di↵erent Gaussian shapes:
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The last assumption is made mainly to keep the number of parameters under control,

though it could be argued that unfavored fragmentation into kaons is di↵erent from unfa-

vored fragmentation into pions.

As for TMD PDFs, also for TMD FFs we introduce a dependence of the average

square transverse momentum on the longitudinal momentum fraction z, as done in several

models or phenomenological extractions (see, e.g., refs. [15, 28, 41, 49–51]). We choose the

functional form
⌦
P 2

?,a
~

h

↵
(z) =

⌦
P̂ 2

?,a
~

h

↵(z� + �) (1 � z)�
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The free parameters �, �, and � are equal for all kinds of fragmentation functions. In

conclusion, we use seven di↵erent parameters to describe all the TMD FFs.

3 Analysis procedure

3.1 Selection of data

The Hermes collaboration collected a total of 2688 data points (336 points for each of the

8 combination of target and final-state hadrons), with the average values of (x,Q2) rang-

ing from about (0.04, 1.25 GeV2) to about (0.4, 9.2 GeV2), 0.1  z  0.9, and 0.1 GeV 
|PhT |  1GeV. The collaboration presented two distinct data sets, including or neglecting

vector meson contributions. Here, we use the data set where the vector meson contribu-

tions have been subtracted. In all cases, we sum in quadrature statistical and systematic

errors and we ignore correlations. We always use the average values of the kinematic

variables in each bin.

– 7 –

See talk of Alessandro Bacchetta
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New extraction of unpolarized TMDs

We revisit the HERMES data and attempt to isolate the current 
fragmentation data based on R criterion in SIDIS to see how this 
affects the determination of flavor dependence of widths

Boglione, Collins, Gamberg, Hernandez, Rogers, Sato  PLB (2017)

N.B. boundary between regions is not sharp 
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FIG. 1. Lowest order SIDIS graphs corresponding to (a) the current region (b) the target region and (c) the soft region.

however, at moderate values of Q, one must consider ex-
tremely small P

hT before current region TMD factoriza-
tion overlaps to reasonable accuracy with collinear fac-
torization, as has been illustrated in Ref. [14]. This is
especially problematic for moderate Q, where the avail-
able phase space for perturbatively generated transverse
momentum is already limited. The kinematical origins
of this issue will be made clearer in Sec. III. Such ob-
servations imply that improved treatments of large P

hT

behavior in perturbative QCD, particularly at moderate
Q values, can be obtained from an improved theoretical
treatment of the moderate-to-low zh behavior in low P

hT

factorization.
Before continuing, we warn that the exact meaning of

terms like “current region” vary somewhat depending on
context and purpose. We have identified at least three
di↵erent common usages of “current region”:

1. The hadron is in the current region if the kinemat-
ics are consistent with the assumptions needed for
a factorization derivation with standard (TMD or
collinear) fragmentation functions, with standard
definitions for parameters like zh.

2. The hadron is in the current region if it can be
described as the final product of a cascade of emis-
sions and decays from an initial struck quark. This
is natural in the context of Monte Carlo descrip-
tions, where the details of the full final state is what
is described.

3. The hadron is in the current region if it cannot be
described as the final product of the remnant pro-
ton. In other words, if it is not a target fragmen-
tation product, then it is said to be in the current
region.

A soft fragmentation region is rarely explicitly identified
as a separate fragmentation region of its own.

In this paper, we focus strictly on meaning 1 above. We
also do not address questions about how to characterize
regions of zh outside the current region (like the target
region), leaving that to future work.

In presentations, one frequently hears discussions of
the “Berger criterion” for identifying the current frag-
mentation region. We have traced this to Ref. [15], which

estimates that a rapidity separation of �y ⇡ 4 is large
enough for clusters of hadrons to be considered uncor-
related, and that the final state phase space accommo-
dates a rapidity range that grows like ⇠ lnW 2. When
W & 3 GeV, there is enough phase space to accommo-
date a hadron moving with large rapidity relative to the
target and other hadrons. Mulders elaborates on this
somewhat in Ref. [16] by defining two rapidities which he
then compares (See [16, Eqs. (17,18)]). We have found
a review of these issues in Ref. [17, Sec. 8.1] especially
useful. These methods for estimating the border of the
fragmentation region are rooted only in an estimate of
the absolute range of rapidities available to a final state
hadron. More detailed considerations are needed to es-
tablish whether a specific set of values for zh, xbj, Q, and
P
hT are consistent with the assumptions of a current re-

gion factorization formula and is in the current region
according to meaning 1 above.
In Sec. II, we give a detailed explanation of our con-

ventions and notation for SIDIS. In Sec. III we explain
how to estimate the border of the current region, and we
provide examples. We refer to these in Sec. III to com-
ment on the necessity to extend factorization to di↵erent
kinematical regions at low P

hT.

II. KINEMATICS

We will use the Breit frame in the following descrip-
tion of the kinematics. The exchanged photon has mo-
mentum q, the incoming hadron has momentum P , and
l, l0 are the incoming and scattering lepton momenta re-
spectively. Q, xbj, zh and W are the usual kinematical
variables of SIDIS:

Q2 = �q2 = �(l � l0)2; W = (q + P )2 , (2)

xbj =
Q2

2P · q ; zh =
P · P

h

P · q = 2xbj
P · P

h

Q2
. (3)

and P
hT is the transverse momentum of a produced

hadron. Figure 1(a) illustrates our conventions for la-
beling momentum; P , q and P

h

are the four-momenta of
the proton, photon, and hadron respectively. The final
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FIG. 1. Lowest order SIDIS graphs corresponding to (a) the current region (b) the target region and (c) the soft region.

however, at moderate values of Q, one must consider ex-
tremely small P

hT before current region TMD factoriza-
tion overlaps to reasonable accuracy with collinear fac-
torization, as has been illustrated in Ref. [14]. This is
especially problematic for moderate Q, where the avail-
able phase space for perturbatively generated transverse
momentum is already limited. The kinematical origins
of this issue will be made clearer in Sec. III. Such ob-
servations imply that improved treatments of large P

hT

behavior in perturbative QCD, particularly at moderate
Q values, can be obtained from an improved theoretical
treatment of the moderate-to-low zh behavior in low P

hT

factorization.
Before continuing, we warn that the exact meaning of

terms like “current region” vary somewhat depending on
context and purpose. We have identified at least three
di↵erent common usages of “current region”:

1. The hadron is in the current region if the kinemat-
ics are consistent with the assumptions needed for
a factorization derivation with standard (TMD or
collinear) fragmentation functions, with standard
definitions for parameters like zh.

2. The hadron is in the current region if it can be
described as the final product of a cascade of emis-
sions and decays from an initial struck quark. This
is natural in the context of Monte Carlo descrip-
tions, where the details of the full final state is what
is described.

3. The hadron is in the current region if it cannot be
described as the final product of the remnant pro-
ton. In other words, if it is not a target fragmen-
tation product, then it is said to be in the current
region.

A soft fragmentation region is rarely explicitly identified
as a separate fragmentation region of its own.

In this paper, we focus strictly on meaning 1 above. We
also do not address questions about how to characterize
regions of zh outside the current region (like the target
region), leaving that to future work.

In presentations, one frequently hears discussions of
the “Berger criterion” for identifying the current frag-
mentation region. We have traced this to Ref. [15], which

estimates that a rapidity separation of �y ⇡ 4 is large
enough for clusters of hadrons to be considered uncor-
related, and that the final state phase space accommo-
dates a rapidity range that grows like ⇠ lnW 2. When
W & 3 GeV, there is enough phase space to accommo-
date a hadron moving with large rapidity relative to the
target and other hadrons. Mulders elaborates on this
somewhat in Ref. [16] by defining two rapidities which he
then compares (See [16, Eqs. (17,18)]). We have found
a review of these issues in Ref. [17, Sec. 8.1] especially
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hadron. More detailed considerations are needed to es-
tablish whether a specific set of values for zh, xbj, Q, and
P
hT are consistent with the assumptions of a current re-

gion factorization formula and is in the current region
according to meaning 1 above.
In Sec. II, we give a detailed explanation of our con-

ventions and notation for SIDIS. In Sec. III we explain
how to estimate the border of the current region, and we
provide examples. We refer to these in Sec. III to com-
ment on the necessity to extend factorization to di↵erent
kinematical regions at low P

hT.

II. KINEMATICS
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hT before current region TMD factoriza-
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factorization.
Before continuing, we warn that the exact meaning of

terms like “current region” vary somewhat depending on
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described as the final product of the remnant pro-
ton. In other words, if it is not a target fragmen-
tation product, then it is said to be in the current
region.
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In this paper, we focus strictly on meaning 1 above. We
also do not address questions about how to characterize
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The Collinearity Parameter & improved cuts

We impose a stronger cut of R< 0.3 in order to get data samples that 
are more consistent with TMD factorization
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|R| (zh = 0.8)

|R|�1(zh = 0.8)

Figure 3: The relationship between PhT, the collinearity parameter R, and the produced hadron’s rapidity yh in the Breit frame. Each column shows a typical
kinematical configuration: JLab-like (left), HERMES/COMPASS-like (middle), HERA-like (right). In each panel, the purple(pink) band on the left(right) represents
the ranges of rapidities spanned by Eq. (26), for the outgoing(incoming) quark. Top panels: PhT versus yh for three di↵erent values of zh, as indicated in the legend.
Bottom panels: The collinearity |R| (filled band) and its inverse |R|�1 (hashed bands), corresponding to the ranges of Eq. (26). In the HERA-like kinematics (right
panels), the current fragmentation region is very easily identifiable since for most yh . 0, R is small. The picture is less clear at the HERMES/COMPASS-like
kinematics (middle panels). For the JLab-like kinematics (left panels), the distinction of the current region starts to fade.

The top row of Fig. 3 illustrates the interplay between zh and
PhT in determining the proximity to the current region. If zh is
small, PhT needs to be very small for the produced hadron to
move with a rapidity close to that of the outgoing struck quark.
At Q2 = 2 GeV2, the quark rapidity bands are not much more
than a unit of rapidity apart so that hadron rapidity switches
easily between the di↵erent quark rapidity bands and the cen-
tral region with only small changes in PhT. The small rapid-
ity di↵erence yi � yf also indicates that the applicability of the
hard-scattering picture is quite marginal. When zh ⇡ 0.8, yh is
a unit or more negative for PhT up to about half a GeV, show-
ing that there is a significant range of PhT where the hadron is
collinear to the outgoing quark. By contrast, when zh ⇡ 0.2 and
Q2 = 2 GeV2, yh and the purple yf -band are almost completely
non-overlapping. Furthermore, varying PhT by a few hundred
MeVs causes yh to shift rapidly between the current and tar-
get regions. Similar trends still appear, though to a much less
severe extent, for Q2 = 10 GeV2.

The results are rather di↵erent for the much larger value of
Q2 = 103 GeV2. Here the quark rapidity bands are separated
by nearly eight units of rapidity. Even for zh = 0.2 and PhT ⇡
1 GeV, yh is more than a unit to the left of yh = 0 and more

than five units to the left of yi. At very large Q, there is a much
broader range of yh that can be clearly labeled as current region.

Notice, from the lower kinematic limit in (22), that when
PhT is comparable to Q, yh cannot be in the current fragmen-
tation region. This happens even though in this case zh can be
large, i.e., of order unity.

3.4. Errors at small and large Q

In this section, we quantify the applicability of collinear
kinematics by defining a quantity we call collinearity, and plot
samples of its values in the bottom row of Fig. 3.

The error estimates in Eq. (17) involve the quark and hadron
rapidities. It is instructive to find a single quantity that quanti-
fies to what extent Ph is in a current or target fragmentation
region. To this end, we note from Eqs. (8–12) that, for Ph in the
current region, we have Ph ·kf ⌧ Ph ·ki. Likewise, if the hadron
is collinear to the incoming quark, then we have Ph ·ki ⌧ Ph ·kf .
We therefore define the ratio

R(yh, zh, xbj,Q) ⌘ Ph · kf

Ph · ki
, (27)

6
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• We assume different widths for TMD PDF light 
valence uv, dv and sea quarks (the same width 
for all sea quarks): 3 parameters.

• We assume different widths favored and 
unfavored for TMD FFs: 2 parameters.

• We perform two types of fits
1) Standard Cuts:
2) More restrictive:  Standard + R < 0.3

• Use CJ15LO  pdfs and DSS LO collinear FFs

9

The Setup

z < 0.6 0.2 < PhT < 0.9 GeV

Accardi,	Brady,	Melnitchouk,	Owens,	Sato Phys.	Rev.	D	93,	114017
de	Florian,	Sassot,Stratmann Phys.	Rev.	D75	(2007)
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Data Selection

Upper plots: standard cuts, bottom plots: R < 0.3 cuts
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New extraction of unpolarized TMDs: proton-charged pion

Upper plots: standard cuts, bottom plots: R < 0.3 cuts



Standard Cuts Standard + R < 0.3 Cuts

Number of points 978 Number of points 152

12

Results

hp2?ifav = 0.12± 0.01 GeV2

hk2?iuv = 0.54± 0.02 GeV2

�

2
/d.o.f. = 1.16

hk2?idv = 0.55± 0.06 GeV2

hk2?isea = 0.69± 0.05 GeV2

hp2?iunfav = 0.14± 0.02 GeV2

hk2?iuv = 0.28± 0.05 GeV2

hk2?idv = 0.32± 0.14 GeV2

hk2?isea = 0.55± 0.17 GeV2

hp2?ifav = 0.17± 0.01 GeV2

hp2?iunfav = 0.15± 0.02 GeV2

�

2
/d.o.f. = 0.91
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Extraction of unpolarized TMDs

Several papers reported results of extraction of unpolarized TMDs
TMD PDF width TMD FF width

Anselmino et al. 
PRD  (2005)

Anselmino et al. 
JHEP 2014  

Signori et al,  JHEP 
(2013)

Albright et al,  
(2017) in 
preparation

hk2?i = 0.25 GeV2 hp2?i = 0.2 GeV2

hk2?i = 0.57± 0.08 GeV2 hp2?i = 0.12± 0.01 GeV2

J
H
E
P
1
1
(
2
0
1
3
)
1
9
4

the necessary label for the parent hadron on PDFs is omitted and PDFs refer to the ones

of the proton. We remark also that each quark flavor is described by a single Gaussian

with a specific width. The multiplicity is then a sum of Gaussians and thus no longer a

simple Gaussian. The above expression can be used with minor modifications also if we

assume that the distribution and fragmentation functions for some flavor are themselves

sums of Gaussians. We will in fact adopt such an assumption for the up and down quarks,

where we distinguish a valence and a sea contribution, each one having a di↵erent Gaussian

width. For example, the up contribution to the multiplicities is
⇥
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u
1

⌦ D
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~

h
1
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⇥
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⇤
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?,ūi + hP 2
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~

hi
�

,

(2.13)

where f

uv
1

= f

u
1

� f

ū
1

, and similarly for the down quark.

Previous data obtained in unpolarized Drell-Yan and semi-inclusive DIS processes were

compatible with calculations based on a Gaussian ansatz for unpolarized TMD PDFs and

TMD FFs with flavor-independent constant widths. In this case, eq. (2.12) would display a

simple Gaussian behavior in PhT with the same width in every target-hadron combination.

However, the Hermes multiplicities display significant di↵erences between proton and

deuteron targets, and between pion and kaon final-state hadrons. Hence, they strongly

motivate our choice in eq. (2.9) for a flavor-dependent Gaussian ansatz.

2.2 Assumptions concerning average transverse momenta

As mentioned in the previous section, we introduce di↵erent widths for the Gaussian forms

of the valence and sea components of up and down TMD PDFs. However, we assume that

the Gaussian widths of all sea quarks (ū, d̄, s and s̄) are the same (i.e., they have the same

average square transverse momenta). State-of-the-art parametrizations of collinear PDFs

have a more complex structure and introduce di↵erences between sea quarks of di↵erent

flavors; we leave this flexibility to future studies.

We include the possibility that the average square transverse momentum depends on

the longitudinal fractional momentum x. This connection can certainly be useful in fitting

the data, but above all it is dictated by theoretical considerations, in particular by Lorentz

invariance. Many models predict such a connection (see, e.g., [10–19]), and similarly do

parametrizations of light-front wave functions (see, e.g., [44–46]).

We choose the following functional form for the average square transverse momentum

of flavor a:

⌦
k2

?,a

↵
(x) =

⌦
k̂2

?,a

↵ (1 � x)↵x�

(1 � x̂)↵x̂�
, where

⌦
k̂2

?,a

↵
⌘

⌦
k2

?,a

↵
(x̂), and x̂ = 0.1. (2.14)

hk̂2

?,ai, ↵, �, are free parameters. For sake of simplicity, we keep the same exponents ↵

and � for all flavors. According to the above assumptions, we have three more parameters:
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hk̂2

?,ai for a = uv, dv, sea. In total, we use five di↵erent parameters to describe all TMD

PDFs. Since the present data have a limited coverage in x, we found no need of more

sophisticated choices.

As for TMD FFs, fragmentation processes in which the fragmenting parton is in the

valence content of the detected hadron are usually defined favored. Otherwise the process

is classified as unfavored. The biggest di↵erence between the two classes is the number

of qq̄ pairs excited from the vacuum in order to produce the detected hadron: favored

processes involve the creation of at most one qq̄ pair. If the final hadron is a kaon, we

further distinguish a favored process initiated by a strange quark/antiquark from a favored

process initiated by an up quark/antiquark.

For simplicity, we assume charge conjugation and isospin symmetries. The latter is

often imposed also in the parametrization of collinear FFs [47], but not always [48]. In

practice, we consider four di↵erent Gaussian shapes:
⌦
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~

K�
↵

⌘
⌦
P 2

?,uK

↵
, (2.16)

⌦
P 2

?,s̄
~

K+

↵
=

⌦
P 2

?,s
~

K�
↵

⌘
⌦
P 2

?,sK

↵
, (2.17)

⌦
P 2

?,all others

↵
⌘

⌦
P 2
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↵
. (2.18)

The last assumption is made mainly to keep the number of parameters under control,

though it could be argued that unfavored fragmentation into kaons is di↵erent from unfa-

vored fragmentation into pions.

As for TMD PDFs, also for TMD FFs we introduce a dependence of the average

square transverse momentum on the longitudinal momentum fraction z, as done in several

models or phenomenological extractions (see, e.g., refs. [15, 28, 41, 49–51]). We choose the

functional form
⌦
P 2

?,a
~

h

↵
(z) =

⌦
P̂ 2

?,a
~

h

↵(z� + �) (1 � z)�

(ẑ� + �) (1 � ẑ)�
where

⌦
P̂ 2

?,a
~

h

↵
⌘

⌦
P 2

?,a
~

h

↵
(ẑ), and ẑ = 0.5.

(2.19)

The free parameters �, �, and � are equal for all kinds of fragmentation functions. In

conclusion, we use seven di↵erent parameters to describe all the TMD FFs.

3 Analysis procedure

3.1 Selection of data

The Hermes collaboration collected a total of 2688 data points (336 points for each of the

8 combination of target and final-state hadrons), with the average values of (x,Q2) rang-

ing from about (0.04, 1.25 GeV2) to about (0.4, 9.2 GeV2), 0.1  z  0.9, and 0.1 GeV 
|PhT |  1GeV. The collaboration presented two distinct data sets, including or neglecting

vector meson contributions. Here, we use the data set where the vector meson contribu-

tions have been subtracted. In all cases, we sum in quadrature statistical and systematic

errors and we ignore correlations. We always use the average values of the kinematic

variables in each bin.
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The new entry!

hk2?iuv = 0.28± 0.05 GeV2

hp2?ifav = 0.12± 0.01 GeV2hk2?iuv = 0.54± 0.02 GeV2

Standard cuts

Standard + R cuts
hp2?ifav = 0.17± 0.01 GeV2
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• New analysis of unpolarized TMD widths has 
been performed 

• We have used for the first time ever the 
collineality parameter as a discriminator for the 
current region 

• We find that value s of parameters are very 
sensitive to the R-cut and thus its future 
exploration is very important for understanding 
of TMDs and low Q

• Future directions of our research will include 
Hybrid Monte Carlo fits in order to reliably 
estimate parameters. We plan to include 
COMPASS data as well.
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CONLCUSIONS


