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Plan of Talk

• Jets and SCET (Soft Collinear Effective Theory)

• Jet Algorithms, Radii, and the soft-collinear scale

• SCET+, SCET++, and subjets



Exclusive Jet Cross Sections in QCD

• Example: e+e- to two jet cross section:
R

jet radius
jet veto

E0

• One-loop cross section in QCD:

• in a cone algorithm:  
 
 

• in a kT-type recombination (or Sterman-Weinberg) algorithm:  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• Natural to use SCET to factorize and resum, but structure of logs is 
surprisingly subtle. Let’s first review an application of standard SCET…



Global measurements
• Contrast a global event shape measurement:

• One-loop cross section in QCD:

L R

collinear 
jets

soft 
radiation

thrust 
axis

� = 1� |pL|+ |pR|
Q

e.g. Thrust:

• Soft and collinear divergences controlled by same measurement:  
small thrust constrains all energetic radiation to be collimated along jet axis

• All soft radiation in the event captured in the single measurement and 
probed at a single scale
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• EFT must match IR behavior of QCD for jet kinematics:

EFT for Jets

k

p��µ i(p�+ k�)

(p+ k)2
p = Q

n

2 Qn · k = QEk(1� cos ✓k)

singular when Ek ! 0 ✓k ! 0or

soft collinear

• EFT thus needs modes with soft and collinear momentum scalings

• EFT should reproduce QCD Feynman rules order-by-order in power 
expansion around soft and collinear limits:

e.g. collinear propagator 
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Separation of scales
• Large logs in QCD arise from large ratios of physical scales defining the 

measurement or degree of exclusivity of a jet cross section.

• For jet cross sections, these are precisely ratios of hard to soft scales 
and ratios of collinear momentum components.

• e.g. measurement of jet mass
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J
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J

µH = Q

µJ = mJ

µS =
m2

J

Q

Hierarchy of scales 
Hard

Jet

Soft

Factorize cross section into 
pieces depending on only 
one of these scales at a time.

p = (n̄ · p, n · p, p?)



Soft Collinear Effective Theory
• SCETI • SCETII

Theory for jets constrained by mass Theory for jets constrained by transverse momentum  
or for exclusive collinear hadrons

soft

collinear
hard

Q

anti-collinear
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Q�2
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a = 0

Remove hard modes 
from theory
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Q

Q�2
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Q
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Q
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Remove 
hard modes

• Hard, collinear, soft all separated by virtuality

• Collinear/soft decoupling and factorization

• Dim. Reg. regulates all divergences

• Hard separated from coll. and soft by virtuality, 
collinear & soft separated by rapidity

• Inherits SCETI collinear-soft decoupling

• Dim. Reg. regulates virtuality divergences but not 
rapidity divergences       need additional regulator

Bauer, Fleming, Luke (2000)  
Bauer, Fleming, Pirjol, Stewart (2001)

Bauer, Fleming, Pirjol, Rothstein, Stewart (2002)

Chiu, Jain, Neill, Rothstein (2011, 2012)
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Collins, Soper, Sterman

Bauer, Fleming, CL, Sterman (2008)
Fleming, Hoang, Mantry, Stewart (2007)

Factorization
• Consider hemisphere jet mass (thrust) 

distribution:

• Factorized cross section takes the form:

Collinear matrix elements 
with measurement of jet 
mass

Soft Wilson line matrix 
elements with measurement of 
small light-cone contribution to 
jet mass

p2c = tn

kS = n · ks

Q⌧ = m2
J

Glaubers and factorization violation in SCET:  
see Rothstein, Stewart (2016) and others



• Each function contains logs only of its single relevant physical scale, over the 
arbitrary factorization scale in DR

• If each function could be evaluated at its natural scale, the logs would be zero. But 
we can only pick one    .

• RG Evolution tells us how to evolve or run each function to another scale.

• Full cross section in QCD is independent of this 
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Attempt: SCET for jet rates?
• Naive construction of SCET for  

an exclusive jet rate: R

jet radius
jet veto

E0

• Naive factorization:

µH = QHard

Jet

Soft

µJ = QR

µS = E0 ps = (E0, E0, E0)

pc = Q(1, R2, R)

�alg
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• No convolution between jet and soft since they do not “talk” or 
contribute to the same measurement

Ellis, Hornig, CL, Vermilion, Walsh (2010)



Attempt: SCET for jet rates?
• “Unmeasured” jet function:

• Jet veto soft function:

• note: different double log than “measured” jet function. puzzle: why?

• puzzle: what is the correct soft scale?
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Clue to the soft-collinear mode
• Jet veto soft function can be rewritten:

Becher, Neubert, Rothen, Shao (2015)
Chien, Hornig, CL (2015)
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• Sensitivity to a new scale: 2E0R

µH = QHard

Jet

Soft

µJ = QR

µS = 2E0

Soft-collinear
µsc = 2E0R

• The soft radiation at E0 is sensitive 
to the cone angle by being forced 
outside of it:

R

jet radius
jet veto

E0



Soft and Soft-Collinear phase space
• collinear and soft phase space for cone and kT algorithms:

Chien, Hornig, CL (2015)
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Soft and Soft-Collinear phase space
• Soft phase space splits into two, single-scale-sensitive regions:

Chien, Hornig, CL (2015)
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Finer probe: Jet thrust
• We can learn much about the factorization structure of the jet cross 

section by measuring a more differential probe like jet thrust:

R

jet radius
jet veto

E0
jet thrust ⌧ =

1

2EJ

X

i2J

n · pi

• “Measured” jet function same as global thrust jet function,  
plus algorithm-dependent power correction:
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Jet thrust+veto soft function

• One-loop soft function:

• Suggests further separation of scales:
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larger in-jet soft 
scale, by 1/R!
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SCET+ and Subjets
• First introduced for (sub)jets that get close together:

• “Collinear-soft” scale appears here because of squeezing by cone:

Bauer, Tackmann, 
Walsh, Zuberi (2011)

Q⌧
⇣ 1

R2
, 1,

1

R

⌘
Q⌧(1, 1, 1)

Chien, Hornig, CL (2015)
Ellis, Hornig, CL, Vermilion, Walsh (2010)

smallest component is measured, 
others increase by collinearity R

soft

csoft



Soft-collinear mode

• Soft-c mode, in contrast, appears due to cone size sensitivity outside:

• Effect of cone restriction is opposite to csoft mode, reducing scale:

E < E0 E < E0

E < E0

= -

measuring energy constrains largest 
component of momentum, others 
decrease by collinearity R

E0(1, 1, 1) �! E0(1, R
2, R)



SCET++

µS = Q⌧/R

Hard scale

Jet scale

Global soft 
(veto) scale

µH = Q

µ⇤ = 2⇤

µsc = 2⇤R

µJ = Q
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Csoft scale

Soft-collinear  
scale
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Chien, Hornig, CL (2015)



Checks and Consequences
• 1-loop factorization is easy to check: see above

• First nontrivial check is at two loops

• Luckily, the full (but unrefactorized) two-loop jet thrust + veto soft 
function                          was computed

• Disentangling this result to achieve factorization and resummation of logs 
R required identifying all the scales in SCET++.

• Showed it takes exactly the form predicted by the SCET++ 

factorization

• Extracted evolution               to 2 loops from vMSZ result, and in fact 
proved an all-orders relation to global thrust soft anom. dim.            
which is known to three loops             

von Manteuffel, Schabinger, Zhu (2013)

Chien, Hornig, CL (2015)

S(k,E0, R, µ)

�hemi

• Leads to confidence in all orders factorization, but some extensions and 
formal proofs are still needed. work in progress:  

Chien, Neill, CL, Ringer (2017)

�in,ss,sc



Jet thrust+veto soft function
• Two-loop soft function:

von Manteuffel, 
Schabinger, Zhu (2013)



Factored 2-loop soft function

• Recognizing presence of csoft, soft, and soft-collinear scales:

• Structure only apparent once relevant scales are all identified:



Factored 2-loop soft function
• Collinear-soft function:

• Global (veto) soft function: • Soft-collinear function:

Chien, Hornig, CL (2015)



Resummed jet thrust cross section

• Resummed cross section from RG evolution in SCET++

• Thanks to this organized structure, we were able to deduce the cusp anomalous 
dimensions to three loops and non-cusp anomalous dimensions of each piece to two loops

• and an all-orders relation:

Chien, Hornig, CL (2015)
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Resummed jet thrust cross section
• Integrated jet thrust in e+e-:
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No s-c refactorization
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With s-c refactorization
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c
(⌧
,⇤

,R
)

NLL
NNLL

R = 0.2,⇤ = 10 GeV, Q = 100 GeV

• Improved perturbative convergence thanks to additional logs resummed 
after soft-collinear refactorization

Chien, Hornig, CL (2015)



Resummed jet thrust cross section
• pp jet angularity differential distribution:

• Larger impact on a differential shape

A. Hornig, Y. Makris, T. Mehen (2016)

without soft-collinear 
refactorization

with soft-collinear 
refactorization



Integrate to get the jet rate

• Note the merging of hard collinear and collinear-soft scales:

• Leads to the identification:

• Explains factor two in double log vs. measured jet function: unmeasured jet 
function contains extra contribution from csoft radiation 

µS = Q⌧/R

Jet scale µJ = Q
p
⌧

Csoft scale

• We can integrate jet thrust up to                to get the total (cone) 2-jet rate ⌧ = R2
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function• Requires keeping “power-suppressed” algorithm-dependent part of 

measured jet function

Chien, Hornig, CL (2015)



Unmeasured jet function
• 1-loop unmeasured jet function:

• 2-loop unmeasured jet function:
Chien, Hornig, CL (2015)

• consistent with the form of a multiplicatively renormalized function, with

�Jun = �J + �in = ��H
2



Check to two loops

• Agrees with full QCD in all ln R terms and all nf terms: these come from 
emissions from one collinear subjet in the cone

• To capture additional soft logs, we need to include additional subjets

• Leads to the prediction for the rate: Chien, Hornig, CL (2015)

work in progress:  
Chien, Neill, CL, Ringer (2017)



Additional sources of soft logs

• one subjet: 
included in our 
factorization 
theorem so far

• two collinear subjets: not 
yet included, but allowed 
by a restriction only cone 
angle (as opposed to 
invariant mass). Will 
generate single soft logs at 
2 loops.

• a soft subjet: emissions 
from it going out of the 
jet region responsible for 
the leading non-global log 
at 2 loops

Larkoski, Moult, Neill 
(2015)



Conclusions

• SCET++ provides first separation of all scale ratios of R 

• hard ratio: Q to QR for energetic collinear modes confined inside jets

• soft ratio: E0 to E0 R for soft radiation outside cones, sensitive to cone boundary

• resolves several mysteries about structure of factorization and evolution of 
exclusive jet cross sections, and the relation with integrated jet thrust

• Resummation of logs of R to all orders 

• showed resummation to NNLL

• Provides framework to go forward to include effects to capture additional 
soft logs of jet veto 

• soft subjets and collinear subjets



Backup



collinear Wilson lines 
(required by gauge invariance)

SCET Operators
• Match QCD currents onto SCET operators

• e.g. for e+e- to 2 jets, DIS, or Drell-Yan processes:

EM current
collinear quark fields  
(in separate directions)

decouples 
different 
collinear 
directionscollinear to +z

collinear to -z

(also, arise from emission of collinear 
particles from other hard directions)

jµ =  ̄�µ �! C2(p̃1 ·p̃2, µ)[⇠̄n1Wn1 ]p1�
µ[W †

n2
⇠n2 ]p2

matching coefficient 
(UV regulator dependent)

• Determine matching coefficient C2 by equating matrix elements of both 
sides. Must agree in IR. Mismatch in UV compensated by matching coeff.

= C2O2

Manohar (2003)  
Bauer, CL, Manohar, Wise (2003)



Soft-Collinear Decoupling
• At leading power, soft-collinear interactions are eikonal:

• They can be summed up into soft Wilson lines:  

• Perform a field redefinition:

⇠̄n(in ·D)⇠n = ⇠̄n(in · @ + gn ·As)⇠n
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h
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Dµ
s = @µ � igAµ

sin ·DsYn = 0

no soft gluons

soft gluons “see” 
only direction and 
color of jet

p

k

p+ k

collinear

soft

⇠ p� ig�µta

(p+ k)2
p� keep leading order part of diagram nµta

n · k
n�
2

independent of p and 
collinear splittings

use:

Bauer, Pirjol, Stewart (2001)

• Soft Wilson lines then reappear in operators: O2 = �̄nYn�
µY †

n̄�n̄



Soft-Collinear Decoupling
• At leading power, soft-collinear interactions are eikonal:

• They can be summed up into soft Wilson lines:  

• Perform a field redefinition:

⇠̄n(in ·D)⇠n = ⇠̄n(in · @ + gn ·As)⇠n

Yn(x) = P exp

h
ig

Z 0

�1
ds n ·As(ns+ x)

i

⇠n(x) = Yn(x)⇠
(0)
n (x) ⇠̄n(in ·Ds)⇠n �! ⇠̄(0)n (in · @)⇠(0)n

Dµ
s = @µ � igAµ

sin ·DsYn = 0

no soft gluons

soft gluons “see” 
only direction and 
color of jet

p

k

p+ k

collinear

soft

⇠ p� ig�µta

(p+ k)2
p� keep leading order part of diagram nµta

n · k
n�
2

independent of p and 
collinear splittings

use:

decouples 
soft from 
collinear

Bauer, Pirjol, Stewart (2001)

• Soft Wilson lines then reappear in operators: O2 = �̄nYn�
µY †

n̄�n̄



Matching Computation
• Match matrix elements in QCD and SCET, e.g. quark-(anti)quark external 

states:

QCD:

SCET:

Bauer, Fleming, Pirjol, Rothstein, Stewart (2002);  
Bauer, CL, Manohar, Wise (2003)

regulating UV and IR divergences in pure dim reg:

(no UV divergence as this current is conserved/not renormalized in QCD)

These diagrams are actually scaleless 
in pure dim reg and thus zero (the 
scale p1.p2 does not flow through the 
loops)
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(can also identify coefficients of IR poles by using explicit IR regulator like quark off-shellness)
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� ln2

µ2

�2p1 · p2
� 3 ln

µ2

�2p1 · p2

i
Z2 = 1 +

↵s(µ)CF

4⇡

h
� 2

✏2UV

� 2

✏UV
ln

µ2

�2p1 · p2
� 3

✏UV

i

Matching coefficient: Operator renormalization:



Counting of Logs
• QCD perturbative expansion takes the form:

• Reorganize the series:

Next-to-  
Leading 

Log  
(NLL)

Leading 
Log  
(LL)

NNLL

ln�(⌧) ⇠ ↵s(ln
2 ⌧ + ln ⌧)

+ ↵2
s(ln

3 ⌧ + ln2 ⌧ + ln ⌧)

+ ↵3
s(ln

4 ⌧ + ln3 ⌧ + ln2 ⌧ + ln ⌧)

+
...

...
...

...

�(⌧) ⌘
Z ⌧

0
d⌧ 0

1

�0

d�

d⌧ 0
= 1 +

↵s

4⇡

⇣
F12 ln

2 ⌧ + F11 ln ⌧ + F10

⌘

+
⇣↵s

2⇡

⌘2⇣
F24 ln

4 ⌧ + F23 ln
2 ⌧ + F22 ln

2 ⌧ + F21 ln ⌧ + F20

⌘

ln ⌧ ⇠ 1

↵s

Heuristic power counting:

1

↵s
1 ↵s



• Effective theory gives equations for evolution of hard, jet, and soft 
functions in factorization theorem with energy scale    . 

• Solutions of these equations sum logs to all orders in 

Q

• Solutions of evolution equations contain logs resummed to 
all orders in

Full QCD

soft + collinear EFT
Q
�
�

soft EFT
Q�

H ⇠ 1 + �n
s lnm

µ

Q

J ⇠ 1 + �n
s lnm

µ

Q
p
⇥

S ⇠ 1 + �n
s lnm

µ

Q⇥

↵s

evolution with  
calculable

µ

µ

evolve each function in 
factorization theorem from scale 

where logs are minimized

Resummation from Evolution 

(essentially, RGEs describe variation with respect to arbitrary boundaries between hard, jet, and soft regions)

↵s


