Gluonic Transversity from lattice QCD

Phiala Shanahan, MIT

Gluonic Structure

- Past 60+ years: detailed view of quark structure of nucleons
- Gluonic structure (beyond gluon density) relatively unexplored
- Electron-lon Collider
- Priority in 2015 long range plan

Cover image from EIC whitepaper arXiv:: 12 I 2.1701

- "Understanding the glue that binds us all"
- What can LQCD do to help?

Lattice QCD for the EIC

Electron-lon Collider

Precision gluon structure Timescale~ 2025

Electron Ion Collider: The Next QCD Frontier

Lattice QCD

Gluonic observables challenging! Few results so far:

- Gluon momentum fraction [Meyer\&Negele; Gockeler et al.; Yang et al.]
- Gluon contribution to helicity [Liu et al, Alexandru et al.]

K.F. Liu, C. Lorce, arXiv:1508.00911

Gluonic Structure

What does a proton look like?

Boosted

Bag Model: Gluon field distribution is wider than the fast moving quarks. Gluon radius > Charge Radius

Constituent Quark Model: Gluons and sea quarks hide inside massive quarks. Gluon radius ~ Charge Radius

Lattice Gauge theory (with slow moving quarks), gluons more concentrated inside the quarks:
Gluon radius < Charge Radius

Gluonic Structure

Studying gluonic structure of hadrons/nuclei is hard

- Gluon probed only indirectly in electron scattering from hadrons/nuclei (does not couple to photon)
- Other processes less clean: heavy flavour production

Gluonic Structure

Studying gluonic structure of hadrons/nuclei is hard

- Gluon probed only indirectly in electron scattering from hadrons/nuclei (does not couple to photon)
- Other processes less clean: heavy flavour production
- Quarks and gluons mix via evolution
- Uniquely quarky: nonsinglet quantities
- Uniquely gluonic: double helicity flip/ gluonic transversity

Gluonic Structure

Studying gluonic structure of hadrons/nuclei is hard

- Gluon probed only indirectly in electron scattering from hadrons/nuclei (does not couple to photon)
- Other processes less clean: heavy flavour production
- Quarks and gluons mix via evolution
- Uniquely quarky: nonsinglet quantities
- Uniquely gluonic: double helicity flip/ gluonic transversity

Gluonic Transversity

Double helicity flip structure function $\Delta\left(\mathrm{x}, \mathrm{Q}^{2}\right)$

- Purely gluonic observable
- Well-defined
- Hadrons: Gluonic Transversity
- Nuclei: Exotic Glue
- gluons not associated with individual nucleons in nucleus
- operator in nucleon $=0$ operator in nucleus $\neq 0$
$\langle p| \mathcal{O}|p\rangle=0$
$\langle N, Z| \mathcal{O}|N, Z\rangle \neq 0$

Gluonic Transversity

Double helicity flip structure function $\Delta\left(\mathrm{x}, \mathrm{Q}^{2}\right)$

- Purely gluonic observable
- Well-defined
- Hadrons: Gluonic Transversity
- Nuclei: Exotic Glue
- gluons not associated with individual nucleons in nucleus
- operator in nucleon $=0$ operator in nucleus $\neq 0$

$$
\begin{gathered}
\langle p| \mathcal{O}|p\rangle=0 \\
\langle N, Z| \mathcal{O}|N, Z\rangle \neq 0
\end{gathered}
$$

Double Helicity Flip Gluon Structure Function

Targets with $\mathrm{J} \geq \mathrm{I}$ have leading twist gluon parton distribution $\Delta\left(\mathrm{x}, \mathrm{Q}^{2}\right)$: double helicity flip [Jaffe \& Manohar 1989]

- Unambiguously gluonic: no analogous quark PDF at twist-2
- Vanishes in nucleon: measure of exotic glue in nuclei
- Experimentally measurable
- Nitrogen target: JLab Lol 2015 [J. Maxwell]
- Polarised nuclei at EIC [R. Milner]
- Moments calculable in LQCD

Double Helicity Flip Gluon Structure Function

Hadronic tensor for inelastic lepton scattering from a polarized spin-one target:

$$
\begin{aligned}
W_{\mu \nu}^{\Delta=2}=\frac{1}{2}\{ & {\left[\left(E_{\mu}^{\prime *}-\frac{q \cdot E^{\prime *}}{\kappa \nu}\left(p_{\mu}-\frac{M^{2}}{\nu} q_{\mu}\right)\right)\left(E_{\nu}-\frac{q \cdot E}{\kappa \nu}\left(p_{\nu}-\frac{M^{2}}{\nu} q_{\nu}\right)\right)+(\mu \leftrightarrow \nu)\right] \quad \text { function } } \\
& \left.-\left[g_{\mu \nu}-\frac{q_{\mu} q_{\nu}}{q^{2}}+\frac{q^{2}}{\kappa \nu^{2}}\left(p_{\mu}-\frac{\nu}{q^{2}} q_{\mu}\right)\left(p_{\nu}-\frac{\nu}{q^{2}} q_{\nu}\right)\right]\left[E^{\prime *} \cdot E+\frac{M^{2}}{\kappa \nu^{2}} q \cdot E^{\prime *} q \cdot E\right]\right\} \Delta\left(x, Q^{2}\right)
\end{aligned}
$$

Double Helicity Flip Gluon Structure Function

Hadronic tensor for inelastic lepton scattering from a polarized spin-one target:

$$
\begin{aligned}
W_{\mu \nu}^{\Delta=2}=\frac{1}{2}\{ & {\left[\left(E_{\mu}^{\prime *}-\frac{q \cdot E^{\prime *}}{\kappa \nu}\left(p_{\mu}-\frac{M^{2}}{\nu} q_{\mu}\right)\right)\left(E_{\nu}-\frac{q \cdot E}{\kappa \nu}\left(p_{\nu}-\frac{M^{2}}{\nu} q_{\nu}\right)\right)+(\mu \leftrightarrow \nu)\right] \quad \text { function } } \\
& \left.-\left[g_{\mu \nu}-\frac{q_{\mu} q_{\nu}}{q^{2}}+\frac{q^{2}}{\kappa \nu^{2}}\left(p_{\mu}-\frac{\nu}{q^{2}} q_{\mu}\right)\left(p_{\nu}-\frac{\nu}{q^{2}} q_{\nu}\right)\right]\left[E^{\prime *} \cdot E+\frac{M^{2}}{\kappa \nu^{2}} q \cdot E^{\prime *} q \cdot E\right]\right\} \Delta\left(x, Q^{2}\right)
\end{aligned}
$$

Helicity amplitude basis:

$$
\begin{gathered}
W_{\mu \nu}\left(p, q, E, E^{\prime}\right)=E^{\prime * \alpha} E^{\beta} W_{\mu \nu, \alpha \beta}(p, q) \\
W_{\mu \nu, \alpha \beta}(p, q)=\sum_{h H, h^{\prime} H^{\prime}} P\left(h H, h^{\prime} H^{\prime}\right)_{\mu \nu, \alpha \beta} A_{h H, h^{\prime} H^{\prime}}(p, q) .
\end{gathered}
$$

Changes both photon and target helicity by 2 units: $\quad \Delta\left(x, Q^{2}\right)=A_{\| \#, \# \#}$

Double Helicity Flip Gluon Structure Function

Measurable in unpolarised electron DIS on transversely polarised target as azimuthal variation

- Nitrogen target: JLab Lol 20 I5 [J. Maxwell]
- Polarised nuclei at EIC [R. Milner]

Double Helicity Flip Gluon Structure Function

Measurable in unpolarised electron DIS on transversely polarised target as azimuthal variation

- Nitrogen target: JLab Lol 2015 [J. Maxwell]
- Polarised nuclei at EIC [R. Milner]

Parton model interpretation

$$
\Delta\left(x, Q^{2}\right)=-\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} \operatorname{Tr} \mathcal{Q}^{2} x^{2} \int_{x}^{1} \frac{d y}{y^{3}}\left[g_{\hat{x}}\left(y, Q^{2}\right)-g_{\hat{y}}\left(x, Q^{2}\right)\right]
$$

$g_{\hat{x}, \hat{y}}\left(y, Q^{2}\right)$: probability of finding a gluon with momentum fraction y linearly polarised in \hat{x}, \hat{y} direction
"How much more momentum of transversely polarized particle carried by gluons aligned rather than perpendicular to it in the transverse plane"

Double Helicity Flip Gluon Structure Function

Moments of $\Delta\left(x, \mathrm{Q}^{2}\right)$ are calculable in LQCD

$$
\begin{array}{|l}
\text { Moment of Structure Function } \\
\int_{0}^{1} d x x^{n-1} \Delta\left(x, Q^{2}\right) \\
\hline \text { Reduced Matrix Element } \\
3 \pi \\
n+2
\end{array}, \frac{\alpha_{s}\left(Q^{2}\right)}{A_{n}\left(Q^{2}\right)}, n=2,4,6 \ldots,
$$

Determined by matrix elements of local gluonic operators
Symnetrize and tocac sultratat in μ_{1}, \ldots, μ_{n} $\left\langle p E^{\prime}\right| \underline{S}\left[G_{\mu \mu_{1}} \overleftrightarrow{D}_{\mu_{3}} \ldots \overleftrightarrow{D}_{\mu_{n}} G_{\nu \mu_{2}}\right]|p E\rangle$ symmetrize and trace subtract in μ_{1}, \ldots, μ_{n}

$$
\begin{array}{r}
=(-2 i)^{n-2} \underline{S}\left[\left(\left[p_{\mu} E_{\mu_{1}}^{\prime *}-p_{\mu_{1}} E_{\mu}^{\prime *}\right)\left(p_{\nu} E_{\mu_{2}}-p_{\mu_{2}} E_{\nu}\right)\right.\right. \\
\left.+(\mu \leftrightarrow \nu)] p_{\mu_{3}} \ldots p_{\mu_{n}} A_{\text {R }}\left(Q^{2}\right)\right] \\
\text { Reduced Matrix Element }
\end{array}
$$

LQCD Calculation

First LQCD calculation ${ }^{[W}$ Detmold \& PES PRD 94 (2016), 014507$]$

- First moment in φ meson (simplest spin- I system, eventually \rightarrow nuclei)
- Lattice details: clover fermions, Lüscher-Weisz gauge action

L / a	T / a	β	$a m_{l}$	$a m_{s}$
24	64	6.1	-0.2800	-0.2450
$a(\mathrm{fm})$	$L(\mathrm{fm})$	$T(\mathrm{fm})$	$m_{\pi}(\mathrm{MeV})$	$m_{K}(\mathrm{MeV})$
$0.1167(16)$	$2.801(29)$	$7.469(77)$	$450(5)$	$596(6)$
$m_{\phi}(\mathrm{MeV})$	$m_{\pi} L$	$m_{\pi} T$	$N_{\text {cfg }}$	$N_{\text {src }}$
$1040(3)$	6.390	17.04	1042	10^{5}

- Many systematics not addressed (yet)!
- Quark mass effects
- Discretisation
- Volume effects
- Renormalisation

LQCD Calculation

Calculate lowest moment of $\Delta\left(x, Q^{2}\right)$:

$$
\begin{aligned}
& \text { Moment of Structure Function } \\
& \int_{0}^{1} d x x^{n-1} \Delta\left(x, Q^{2}\right)=\frac{\alpha_{s}\left(Q^{2}\right)}{3 \pi} \frac{A_{n}\left(Q^{2}\right)}{n+2}, \quad n=2,4,6 \ldots,
\end{aligned}
$$

Ratio of LQCD correlators $R_{j k}(t, \tau, \vec{p})$:

$$
\propto A_{2}, \quad 0 \ll \tau \ll t
$$

LQCD Calculation

Calculate lowest moment of $\Delta\left(x, Q^{2}\right)$:

$$
\begin{aligned}
& \text { Moment of Structure Function } \\
& \int_{0}^{1} d x x^{n-1} \Delta\left(x, Q^{2}\right)=\frac{\alpha_{s}\left(Q^{2}\right)}{3 \pi} \frac{A_{n}\left(Q^{2}\right)}{n+2}, \quad n=2,4,6 \ldots,
\end{aligned}
$$

Ratio of LQCD correlators $R_{j k}(t, \tau, \vec{p})$:

operator insertion time

$$
0 \ll \tau \ll t
$$

LQCD Calculation

More specifically,
ratio depends on

$$
\begin{aligned}
C_{j k}^{3 \mathrm{pt}}(t, \tau, \vec{p}) & =\sum_{\vec{x}} \sum_{\vec{y}} e^{i \vec{p} \cdot \vec{x}}\left\langle\eta_{j}(t, \vec{p}) \mathcal{O}(\tau, \vec{y}) \eta_{k}^{\dagger}(0, \overrightarrow{0})\right\rangle \\
= & Z_{\phi} e^{-E t} \sum_{\lambda \lambda^{\prime}} \epsilon_{j}^{(E)}(\vec{p}, \lambda) \epsilon_{k}^{(E) *}\left(\vec{p}, \lambda^{\prime}\right)\langle\vec{p}, \lambda| \mathcal{O}\left|\vec{p}, \lambda^{\prime}\right\rangle \\
C_{j k}^{2 \mathrm{pt}}(t, \vec{p})= & \sum_{\vec{x}} e^{i \vec{p} \cdot \vec{x}}\left\langle\eta_{j}(t, \vec{x}) \eta_{k}^{\dagger}(0, \overrightarrow{0})\right\rangle \\
= & Z_{\phi}\left(e^{-E t}+e^{-E(T-t)}\right) \sum_{\lambda \lambda^{\prime}} \epsilon_{j}^{(E)}(\vec{p}, \lambda) \epsilon_{k}^{(E) *}\left(\vec{p}, \lambda^{\prime}\right)
\end{aligned}
$$ polarisations, momentum

$$
R_{j k}(t, \tau, \vec{p})=\frac{C_{j k}^{3 \mathrm{pt}}(t, \tau, \vec{p})+C_{j k}^{3 \mathrm{pt}}(T-t, T-\tau, \vec{p})}{C_{j k}^{2 \mathrm{pt}}(t, \vec{p})}
$$

$$
\begin{aligned}
\epsilon^{\mu}(\vec{p}, \lambda) & =\left(\frac{\vec{p} \cdot \vec{e}_{\lambda}}{m}, \vec{e}_{\lambda}+\frac{\vec{p} \cdot \vec{e}_{\lambda}}{m(m+E)} \vec{p}\right) \\
\vec{e}_{ \pm} & =\mp \frac{m}{\sqrt{2}}(0,1, \pm i) \\
\vec{e}_{0} & =m(1,0,0) .
\end{aligned}
$$

LQCD Calculation

More specifically,
ratio depends on

$$
\begin{aligned}
C_{j k}^{3 \mathrm{pt}}(t, \tau, \vec{p}) & =\sum_{\vec{x}} \sum_{\vec{y}} e^{i \vec{p} \cdot \vec{x}}\left\langle\eta_{j}(t, \vec{p}) \mathcal{O}(\tau, \vec{y}) \eta_{k}^{\dagger}(0, \overrightarrow{0})\right\rangle \\
= & Z_{\phi} e^{-E t} \sum_{\lambda \lambda^{\prime}} \epsilon_{j}^{(E)}(\vec{p}, \lambda) \epsilon_{k}^{(E) *}\left(\vec{p}, \lambda^{\prime}\right)\langle\vec{p}, \lambda| \mathcal{O}\left|\vec{p}, \lambda^{\prime}\right\rangle \\
C_{j k}^{2 \mathrm{pt}}(t, \vec{p})= & \sum_{\vec{x}} e^{i \vec{p} \cdot \vec{x}}\left\langle\eta_{j}(t, \vec{x}) \eta_{k}^{\dagger}(0, \overrightarrow{0})\right\rangle \\
= & Z_{\phi}\left(e^{-E t}+e^{-E(T-t)}\right) \sum_{\lambda \lambda^{\prime}} \epsilon_{j}^{(E)}(\vec{p}, \lambda) \epsilon_{k}^{(E) *}\left(\vec{p}, \lambda^{\prime}\right)
\end{aligned}
$$

polarisations, momentum

$$
R_{j k}(t, \tau, \vec{p})=\frac{C_{j k}^{3 \mathrm{pt}}(t, \tau, \vec{p})+C_{j k}^{3 \mathrm{pt}}(T-t, T-\tau, \vec{p})}{C_{j k}^{2 \mathrm{pt}}(t, \vec{p})}
$$

- All polarisation combinations (j,k)
- Boost momenta up to (I,I,I)
- Examine all elements of each hypercubic irrep.

$$
\begin{aligned}
\epsilon^{\mu}(\vec{p}, \lambda) & =\left(\frac{\vec{p} \cdot \vec{e}_{\lambda}}{m}, \vec{e}_{\lambda}+\frac{\vec{p} \cdot \vec{e}_{\lambda}}{m(m+E)} \vec{p}\right) \\
\vec{e}_{ \pm} & =\mp \frac{m}{\sqrt{2}}(0,1, \pm i) \\
\vec{e}_{0} & =m(1,0,0)
\end{aligned}
$$

LQCD Calculation

Ratio of correlation functions determines reduced matrix elt.

- $p=(0,0,0)$

$$
\left.\begin{array}{l}
\rho_{0} \\
\rho_{+} \\
\rho_{-}
\end{array} \begin{array}{ccc}
\rho_{0} & \rho_{+} & \rho_{-} \\
\frac{2 m^{2} A_{2}}{\sqrt{3}} & 0 & 0 \\
0 & -\frac{m^{2} A_{2}}{\sqrt{3}} & 0 \\
0 & 0 & -\frac{m^{2} A_{2}}{\sqrt{3}}
\end{array}\right)
$$

LQCD Calculation

Ratio of correlation functions determines reduced matrix elt.

- $p=(0,0,0)$

$$
\begin{aligned}
& \rho_{0} \\
& \rho_{+} \\
& \rho_{-} \\
& \left.\begin{array}{ccc}
\rho_{0} & \rho_{+} & \rho_{-} \\
\frac{2 m^{2} A_{2}}{\sqrt{3}} & 0 & 0 \\
0 & -\frac{m^{2} A_{2}}{\sqrt{3}} & 0 \\
0 & 0 & -\frac{m^{2} A_{2}}{\sqrt{3}}
\end{array}\right)
\end{aligned}
$$

- $\mathrm{p}=(\mathrm{I}, \mathrm{I}, \mathrm{I})$ (lattice units)

$$
\begin{aligned}
& \rho_{0} \\
& \rho_{+}
\end{aligned}
$$

LQCD Calculation

Lattice QCD quantity $\propto A_{2}, \quad 0 \ll \tau \ll t$

LQCD Calculation

Lattice QCD quantity $\propto A_{2}, \quad 0 \ll \tau \ll t$

LQCD Calculation

Lattice QCD quantity $\propto A_{2}, \quad 0 \ll \tau \ll t$

LQCD Calculation

Lattice QCD quantity $\propto A_{2}, \quad 0 \ll \tau \ll t$

LQCD Calculation

Lattice QCD quantity $\propto A_{2}, \quad 0 \ll \tau \ll t$

LQCD Calculation

Lattice QCD quantity $\propto A_{2}, \quad 0 \ll \tau \ll t$

LQCD Calculation

Lattice QCD quantity $\propto A_{2}, \quad 0 \ll \tau \ll t$

LQCD Calculation

Lattice QCD quantity $\propto A_{2}, \quad 0 \ll \tau \ll t$

LQCD Calculation

Lattice QCD quantity $\propto A_{2}, \quad 0 \ll \tau \ll t$

LQCD Calculation

LQCD Calculation

Gluonic Radii

Off-forward matrix elements are complicated

- Eg: moments of $\Delta\left(x, Q^{2}\right)$ related to many form factors

$$
\begin{aligned}
& \left\langle p^{\prime} E^{\prime}\right| S\left[G_{\mu \mu_{1}} \stackrel{\leftrightarrow}{D}_{\mu_{3}} \ldots \stackrel{\leftrightarrow}{D}_{\mu_{n}} G_{\nu \mu_{2}}\right]|p E\rangle \\
& =\sum_{\substack{m \text { odd } \\
m=3}}^{n}\left\{A_{1, m-3}^{(n)}\left(t, \mu^{2}\right) S\left[\left(P_{\mu} E_{\mu_{1}}-E_{\mu} P_{\mu_{1}}\right)\left(P_{\nu} E_{\mu_{2}}^{\prime *}-E_{\nu}^{\prime *} P_{\mu_{2}}\right) \Delta_{\mu_{3}} \ldots \Delta_{\mu_{m-1}} P_{\mu_{m}} \ldots P_{\mu_{n}}\right]\right. \\
& +A_{2, m-3}^{(n)}\left(t, \mu^{2}\right) S\left[\left(\Delta_{\mu} E_{\mu_{1}}-E_{\mu} \Delta_{\mu_{1}}\right)\left(\Delta_{\nu} E_{\mu_{2}}^{\prime *}-E_{\nu}^{* *} \Delta_{\mu_{2}}\right) \Delta_{\mu_{3}} \ldots \Delta_{\mu_{m-1}} P_{\mu_{m}} \ldots P_{\mu_{n}}\right] \\
& +A_{3, m-3}^{(n)}\left(t, \mu^{2}\right) S\left[\left(\left(\Delta_{\mu} E_{\mu_{1}}-E_{\mu} \Delta_{\mu_{1}}\right)\left(P_{\nu} E_{\mu_{2}}^{\prime *}-E_{\nu}^{\prime *} P_{\mu_{2}}\right)-\left(\Delta_{\mu} E_{\mu_{1}}^{\prime *}-E_{\mu}^{\prime *} \Delta_{\mu_{1}}\right)\left(P_{\nu} E_{\mu_{2}}-E_{\nu} P_{\mu_{2}}\right)\right)\right. \\
& \left.\times \Delta_{\mu_{3}} \ldots \Delta_{\mu_{m-1}} P_{\mu_{m}} \ldots P_{\mu_{n}}\right] \\
& +A_{4, m-3}^{(n)}\left(t, \mu^{2}\right) S\left[\left(E_{\mu} E_{\mu_{1}}^{\prime *}-E_{\mu_{1}} E_{\mu}^{\prime *}\right)\left(P_{\nu} \Delta_{\mu_{2}}-P_{\mu_{2}} \Delta_{\nu}\right) \Delta_{\mu_{3}} \ldots \Delta_{\mu_{m-1}} P_{\mu_{m}} \ldots P_{\mu_{n}}\right] \\
& +\frac{A_{5, m-3}^{(n)}\left(t, \mu^{2}\right)}{M^{2}} S\left[\left((E \cdot P)\left(P_{\mu} \Delta_{\mu_{1}}-\Delta_{\mu} P_{\mu_{1}}\right)\left(\Delta_{\nu} E_{\mu_{2}}^{\prime *}-E_{\nu}^{\prime *} \Delta_{\mu_{2}}\right)\right.\right. \\
& \left.\left.+\left(E^{\prime *} \cdot P\right)\left(P_{\mu} \Delta_{\mu_{1}}-\Delta_{\mu} P_{\mu_{1}}\right)\left(\Delta_{\nu} E_{\mu_{2}}-E_{\nu} \Delta_{\mu_{2}}\right)\right) \Delta_{\mu_{3}} \ldots \Delta_{\mu_{m-1}} P_{\mu_{m}} \ldots P_{\mu_{n}}\right] \\
& +\frac{A_{6, m-3}^{(n)}\left(t, \mu^{2}\right)}{M^{2}} S\left[\left((E \cdot P)\left(P_{\mu} \Delta_{\mu_{1}}-\Delta_{\mu} P_{\mu_{1}}\right)\left(P_{\nu} E_{\mu_{2}}^{\prime *}-E_{\nu}^{* *} P_{\mu_{2}}\right)\right.\right. \\
& \left.\left.-\left(E^{\prime *} \cdot P\right)\left(P_{\mu} \Delta_{\mu_{1}}-\Delta_{\mu} P_{\mu_{1}}\right)\left(P_{\nu} E_{\mu_{2}}-E_{\nu} P_{\mu_{2}}\right)\right) \Delta_{\mu_{3}} \ldots \Delta_{\mu_{m-1}} P_{\mu_{m}} \ldots P_{\mu_{n}}\right] \\
& +\frac{A_{7, m-3}^{(n)}\left(t, \mu^{2}\right)}{M^{2}}\left(E^{\prime *} \cdot E\right) S\left[\left(P_{\mu} \Delta_{\mu_{1}}-\Delta_{\mu} P_{\mu_{1}}\right)\left(P_{\nu} \Delta_{\mu_{2}}-\Delta_{\nu} P_{\mu_{2}}\right) \Delta_{\mu_{3}} \ldots \Delta_{\mu_{m-1}} P_{\mu_{m}} \ldots P_{\mu_{n}}\right] \\
& \left.+\frac{A_{8, m-3}^{(n)}\left(t, \mu^{2}\right)}{M^{4}}(E \cdot P)\left(E^{\prime *} \cdot P\right) S\left[\left(P_{\mu} \Delta_{\mu_{1}}-\Delta_{\mu} P_{\mu_{1}}\right)\left(P_{\nu} \Delta_{\mu_{2}}-\Delta_{\nu} P_{\mu_{2}}\right) \Delta_{\mu_{3}} \ldots \Delta_{\mu_{m-1}} P_{\mu_{m}} \ldots P_{\mu_{n}}\right]\right\}
\end{aligned}
$$

Gluonic Radii

Off-forward matrix elements are complicated

- Eg: moments of $\Delta\left(x, Q^{2}\right)$ related to many form factors

$$
\begin{aligned}
& \left\langle p^{\prime} E^{\prime}\right| S\left[G_{\mu \mu_{1}} \stackrel{\leftrightarrow}{D}_{\mu_{3}} \ldots \stackrel{\leftrightarrow}{D}_{\mu_{n}} G_{\nu \mu_{2}}\right]|p E\rangle \\
& =\sum_{\substack{m \text { odd } \\
m=3}}^{n}\left\{A_{1, m-3}^{(n)}\left(t, \mu^{2}\right) S\left[\left(P_{\mu} E_{\mu_{1}}-E_{\mu} P_{\mu_{1}}\right)\left(P_{\nu} E_{\mu_{2}}^{\prime *}-E_{\nu}^{\prime *} P_{\mu_{2}}\right) \Delta_{\mu_{3}} \ldots \Delta_{\mu_{m-1}} P_{\mu_{m}} \ldots P_{\mu_{n}}\right]\right. \\
& \begin{array}{l}
+A_{2, m-3}^{(n)}\left(t, \mu^{2}\right) S\left[\left(\Delta_{\mu} E_{\mu_{1}}-E_{\mu} \Delta\right.\right. \\
+A_{3, m-3}^{(n)}\left(t, \mu_{1}\right) \\
+A_{4, m-3}^{(n)}\left(t, \mu^{2}\right) S \Delta_{\mu} E_{\mu_{1}}-\Delta_{\mu_{m}} \\
+\frac{A_{5, m-3}^{(n)}\left(t, \mu^{2}\right)}{M^{2}} S\left[\left((E \cdot P) \left(P_{\mu} \Delta_{\mu}\right.\right.\right.
\end{array} \\
& +E^{*} \text {. form factor at } \mathrm{Q}^{2}=\mathrm{t}=0 \\
& +\frac{A_{6, m-3}^{(n)}\left(t, \mu^{2}\right)}{M^{2}} S\left[\left((5 \cdot P)\left(P_{\mu} / \mu_{1}-\Delta_{\mu} P_{\mu_{1}}\right)\left(P_{\nu} E_{\mu_{2}}^{\prime *}-E_{\nu}^{\prime *} P_{\mu_{2}}\right)\right.\right. \\
& \left.\left.\left(E^{\prime *}\right)\left(P_{\mu} \Delta_{\mu_{1}}-\Delta_{\mu} P_{\mu_{1}}\right)\left(P_{\nu} E_{\mu_{2}}-E_{\nu} P_{\mu_{2}}\right)\right) \Delta_{\mu_{3}} \ldots \Delta_{\mu_{m-1}} P_{\mu_{m}} \ldots P_{\mu_{n}}\right] \\
& +\frac{A_{7, m-3}^{(n)}\left(t, \mu^{2}\right)}{M^{2}}\left(E^{\prime *}, E\right) S\left[\left(P_{\mu} \Delta_{\mu_{1}}-\Delta_{\mu} P_{\mu_{1}}\right)\left(P_{\nu} \Delta_{\mu_{2}}-\Delta_{\nu} P_{\mu_{2}}\right) \Delta_{\mu_{3}} \ldots \Delta_{\mu_{m-1}} P_{\mu_{m}} \ldots P_{\mu_{n}}\right] \\
& \left.+\frac{A_{8, m-3}^{(n)}\left(t, \mu^{2}\right)}{M^{4}}(E \cdot P)\left(E^{\prime *} \cdot P\right) S\left[\left(P_{\mu} \Delta_{\mu_{1}}-\Delta_{\mu} P_{\mu_{1}}\right)\left(P_{\nu} \Delta_{\mu_{2}}-\Delta_{\nu} P_{\mu_{2}}\right) \Delta_{\mu_{3}} \ldots \Delta_{\mu_{m-1}} P_{\mu_{m}} \ldots P_{\mu_{n}}\right]\right\}
\end{aligned}
$$

Gluonic Radii

Gluonic Structure circa 2025

Electron-lon collider will dramatically alter our knowledge of the gluonic structure of hadrons and nuclei

- Work towards a complete 3D picture of parton structure (PDFs, GPDs,TMDs)
- $\Delta\left(x, Q^{2}\right)$ has an interesting role

Purely gluonic
Non-nucleonic: directly probe nuclear effects

- Compare quark and gluon distributions in hadrons and nuclei
- Lattice QCD calculations in hadrons and light nuclei will be available

