The Strange Proton Strange quarks in nucleon structure from lattice QCD

Phiala Shanahan Massachusetts Institute of Technology

Strange nucleon form factors

- 'Hidden flavour' contributions to nucleon observables
- Test for nonperturbative QCD

Strange nucleon form factors

- 'Hidden flavour' contributions to nucleon observables
- Test for nonperturbative QCD

Strange nucleon form factors

- 'Hidden flavour' contributions to nucleon observables
- Test for nonperturbative QCD

Generated entirely by interactions with the vacuum

Strange nucleon form factors

- 'Hidden flavour' contributions to nucleon observables
- Test for nonperturbative QCD

Generated entirely by interactions with the vacuum

Strange quarks Lightest of the 'sea only' quarks play the largest role

- 1. Strange quark electromagnetic form factors
- 2. **Strange sigma terms** relevant to dark matter direct detection experiments

Strange nucleon form factors

- 'Hidden flavour' contributions to nucleon observables
- Test for nonperturbative QCD

Experimental measurements limited by lack of theory knowledge of
 Charge symmetry violating (CSV) form factors

Strange nucleon form factors

- 'Hidden flavour' contributions to nucleon observables
- Test for nonperturbative QCD

Experimental measurements limited by lack of theory knowledge of
 Charge symmetry violating (CSV) form factors

Approach **both** problems through lattice QCD simulations of

Nucleon and hyperon EM form factors

Quantum Chromodynamics

Lattice QCD

- Numerical first-principles approach
- ullet Euclidean space-time t o i au
 - Finite lattice spacing a
 - Volume $L^3 \times T \approx 32^3 \times 64$
 - Boundary conditions
- Finite but large number of d.o.f (10^{12})

Approximate the QCD path integral by Monte Carlo

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}A\mathcal{D}\overline{\psi}\mathcal{D}\psi\mathcal{O}[A,\overline{\psi}\psi] e^{-S[A,\overline{\psi}\psi]} \implies \langle \mathcal{O} \rangle \simeq \frac{1}{N_{\text{conf}}} \sum_{i}^{N_{\text{conf}}} \mathcal{O}([U^{i}])$$

 $e^{-S[U]}$

with field configurations U^i distributed according to

Lattice QCD Systematics

Finite lattice spacing a

Discretisation artifacts Continuum extrapolation

Finite box size L

Momentum quantised, finite-volume effects Finite-volume corrections

Lattice QCD Systematics

Finite lattice spacing a

Discretisation artifacts Continuum extrapolation

Finite box size L

Momentum quantised, finite-volume effects Finite-volume corrections

Durge pion mass $\,m_{\pi}$

Chiral extrapolation BUT: Can map out pion mass dependence of observables

Omitted disconnected loops

BUT: can separate 'connected' and 'disconnected' contributions

Good control over lattice systematics

Direct Calculation of Strange Proton Observables is Expensive

Good control over lattice systematics

Direct Calculation of Strange Proton Observables is Expensive

Good control over lattice systematics

A place for indirect lattice methods

Indirect Lattice Methods

A place for indirect approaches

PRECISION lattice results in unphysical parameter space

Clever ways to deal with systematic effects

Strange Electromagnetic Form Factors

Electromagnetic Form Factors

Form factors characterise the extended nature of composite particles

N current matrix element $G_E(Q^2), G_M(Q^2)$

Form factors

Electromagnetic Form Factors

Form factors characterise the extended nature of composite particles

Static limit:

charge and magnetic moment

$$G_E(Q^2 = 0) = Q_e$$
$$G_M(Q^2 = 0) = \mu$$

N current matrix element $G_E(Q^2), G_M(Q^2)$

Form factors

Strange Magnetic Moment

Strange Magnetic Moment

Magnetic moment quantifies how much torque a proton experiences in a magnetic field

Predictions of theory calculations vary widely!

- Magnitude?
- Sign?

Type of calculation	μ_s (n.m.)
Poles	-0.31 ± 0.09
Kaon loops	$-0.31 \rightarrow -0.40$
Kaon loops	-0.026
Kaon loops	$ \mu_s = 0.8$
SU(3) Skyrme (broken)	-0.13
SU(3) Skyrme (symmetric)	-0.33
SU(3) chiral hyperbag	+0.42
SU(3) chiral color dielectric	$-0.20 \rightarrow -0.026$
SU(3) chiral soliton	-0.45
Poles	-0.24 ± 0.03
Kaon loops	$-0.125 \rightarrow -0.146$
NJL soliton	$-0.05 \rightarrow +0.25$
QCD equalities	-0.75 ± 0.30
Loops	+0.035
Dispersion	$-0.10 \rightarrow -0.14$
Chiral models	-0.25, -0.09
Poles	0.003
SU(3) Skyrme (broken)	+0.36

Beck, McKeown Ann. Rev. Nucl. Part. Sci. 2001

Electromagnetic Form Factors

Interpretation (non-relativistic) of G_E as the Fourier transform of the charge distribution $G_E(Q^2) = \int e^{i\vec{q}\cdot\vec{x}}\rho(r)d^3r$

Electromagnetic Form Factors

Red: Parameterization of experimental results **Blue/Green:** Numerical simulations of QCD (different lattice sizes/spacings)

PES et al., PRD89 PRD90 (2014)

Recall: Hidden flavor

- Fundamental challenge for hadronic physics
- Contributions entirely through interactions with QCD vacuum

Recall: Hidden flavor

- Fundamental challenge for hadronic physics
- Contributions entirely through interactions with QCD vacuum

Extensive **experimental** efforts

- JLAB (G0, HAPPEX)
- MIT-Bates (SAMPLE)
- Mainz (A4)

Compare to theory: Lattice QCD

Direct lattice calculations: Expensive, Large systematics

INDIRECT APPROACH

Take advantage of precise results for connected diagrams on the lattice!

ONLY WORKS IF SYSTEMATICS ARE UNDER CONTROL

Simple idea but many technical challenges!

Red: Parity-violating electron scattering experiments, JLAB, MIT-BATES, MAINZ **Blue/Green:** Lattice (different lattice sizes/spacings)

Red: Parity-violating electron scattering experiments, JLAB, MIT-BATES, MAINZ **Blue/Green:** Lattice (different lattice sizes/spacings)

Red: Experiment, JLAB, MIT-BATES, MAINZ **Blue/Green:** Lattice (different lattice sizes/spacings)

Experimental determinations of G^s:

EM and weak vector currents give access to different combinations of $\boldsymbol{G}^{(u/d/s)}$

$$G^{p,\gamma} = \frac{2}{3}G^{p,u} - \frac{1}{3}\left(G^{p,d} + G^{p,s}\right)$$
$$G^{p,Z} = \left(1 - \frac{8}{3}\sin^2\theta_W\right)G^{p,u} - \left(1 - \frac{4}{3}\sin^2\theta_W\right)\left(G^{p,d} + G^{p,s}\right)$$

JLab (G0, HAPPEX), MIT-Bates (SAMPLE), Mainz (A4)

Models and/or lattice QCD

Breaking of symmetry between *u* quark in proton and *d* quark in neutron

$$G_{\mathsf{CSV}} = \frac{2}{3} (G_{E/M}^{p, \mathbf{u}} - G_{E/M}^{n, \mathbf{d}}) - \frac{1}{3} (G_{E/M}^{p, \mathbf{d}} - G_{E/M}^{n, \mathbf{u}})$$

Breaking of symmetry between *u* quark in proton and *d* quark in neutron

$$G_{\text{CSV}} = \frac{2}{3} (G_{E/M}^{p, \textbf{\textit{u}}} - G_{E/M}^{n, \textbf{\textit{d}}}) - \frac{1}{3} (G_{E/M}^{p, \textbf{\textit{d}}} - G_{E/M}^{n, \textbf{\textit{u}}})$$

CSV indirectly from the lattice

• lattice simulations have $m_u = m_d$

Chiral perturbation theory expressions for $m_u \neq m_d$ have the **same free parameters** as isospin-averaged case

Determine free parameters from isospin-averaged fits
 Input m_u/m_d from experiment or lattice

Kubis & Lewis, PRC (2006), Wagman & Miller, PRC (2014)

CSV in the nucleon EMFFs < 1%

i.e., order of magnitude smaller than the precision of existing PVES studies measuring the strange nucleon form factors

HAPPEX $(Q^2 = 0.109 \text{GeV}^2)$ [PRL 98 (2007)] $G_E^s + 0.09 G_M^s$ Experimental 0.007(14)

Previous CSV uncertainty (theory): 0.009 New CSV uncertainty (this work): 0.0009

Strange Sigma Terms Dark Matter Cross Sections

Sigma Terms

- Strange quark sigma term: Measure of vacuum-quark contributions to proton mass
- Dominant uncertainty in amplitude for spin-independent scattering of weakly-interacting dark matter from nucleons

Not directly accessible to experiment

Not directly accessible to experiment

- RECALL: Disconnected terms expensive + noisy
- BUT: Feynman-Hellmann Theorem relates sigma terms to mass-dependence

$$\sigma_s = \langle N | m_s \overline{s} s | N \rangle = m_s \frac{\partial M_N}{\partial m_s}$$

Not directly accessible to experiment

- **RECALL:** Disconnected terms expensive + noisy
- **BUT:** Feynman-Hellmann Theorem relates sigma terms to mass-dependence

$$\sigma_s = \langle N | m_s \overline{s} s | N \rangle = m_s \frac{\partial M_N}{\partial m_s}$$
 Can vary quark masses on the lattice!

vary quark

Baryon masses as a function of quark mass!

The Evolution of Lattice QCD 1990-2013

Fukugita '95, Dong '96 SESAM '98, Toussaint, Freeman '09, JLQCD '11, Durr '11, Alexandrou '13, Ren '14, Abdel-Rehim '16

Sigma term ~ 2016

SESAM Collaboration (98) JLQCD Collaboration (08) Young & Thomas (10) JLQCD Collaboration (11) BMW Collaboration (12) QCDSF Collaboration (12) Semke et al. (12) MILC Collaboration (13) Junnarkar et al. (13) χ QCD Collaboration (13) JLQCD Collaboration (13) JLQCD Collaboration (13) Shanahan et al. (13) ETM Collaboration (15) χ QCD Collaboration (15) BMW Collaboration (16) ETM Collaboration (16)

Direct Feynman-Hellman Hybrid early Nf=0

Summary

Quantitatively understanding proton strangeness is important!

Direct calculations from QCD are **hard**.

Summary

Quantitatively understanding proton strangeness is important!

- Direct calculations from QCD are hard.
- Precise physics results available NOW by combining information from numerical simulations with experiment and models
- Set benchmarks for experimental tests of nonperturbative QCD
- Strange quark effects \sim a few percent for proton properties
 - Strange sigma terms: new level of precision for direct dark matter searches
 - Strange magnetic moment: new benchmark for experiment

Summary

Quantitatively understanding proton strangeness is important!

- Direct calculations from QCD are hard.
- Precise physics results available NOW by combining information from numerical simulations with experiment and models
- Set benchmarks for experimental tests of nonperturbative QCD
- Strange quark effects \sim a few percent for proton properties
 - Strange sigma terms: new level of precision for direct dark matter searches
 - Strange magnetic moment: new benchmark for experiment
- What next? Gluon distributions: predictions for studies at a proposed electron-ion collider

W. Detmold and P. E. Shanahan, "Gluonic Transversity from Lattice QCD," Phys. Rev. D 94, 014507 (2016) [arXiv:1606.04505].

References

- P. E. Shanahan, A.W. Thomas and R. D. Young, "Mass of the H-dibaryon", Phys. Rev. Lett. 107, 092004 (2011) [arXiv:1106.2851 [nucl-th]].
- *P.E. Shanahan, A.W. Thomas and R. D.Young, "Sigma terms from an SU(3) chiral extrapolation", Phys. Rev. D 87, 074503 (2013) [arXiv:1205.5365].
- P. E. Shanahan, A. W. Thomas and R. D. Young, "Strong contribution to octet baryon mass splittings", Phys. Lett. B 718, 1148 (2013) [arXiv:1209.1892].
- P. E. Shanahan, A. W. Thomas and R. D. Young, "Chiral expansion of moments of quark distributions", Phys. Rev. D 87, 114515 (2013) [arXiv:1301.6861].
- P. E. Shanahan, A. W. Thomas, K. Tsushima, R. D. Young and F. Myhrer, "Octet Spin Fractions and the Proton Spin Problem", Phys. Rev. Lett. 110, 202001 (2013) [arXiv:1302.6300].
- P. E. Shanahan, A. W. Thomas and R. D. Young, "Charge symmetry breaking from a chiral extrapolation of moments of quark distribution functions", Phys. Rev. D 87, 094515 (2013) [arXiv:1303.4806].
- F. B. Erben, P. E. Shanahan, A. W. Thomas and R. D. Young, "Dispersive estimate of the electromagnetic charge symmetry violation in the octet baryon masses", Phys. Rev. C 90, 065205 (2014) [arXiv:1408.6628].
- *P.E. Shanahan et al., "Electric form factors of the octet baryons from lattice QCD and chiral extrapolation", Phys. Rev. D 90, 034502 (2014) [arXiv:1403.1965].
- *P.E. Shanahan et al.''Magnetic form factors of the octet baryons from lattice QCD and chiral extrapolation'', Phys. Rev. D 89, 074511 (2014) [arXiv:1401.5862].
- P. E. Shanahan et al., "Charge symmetry violation in the nucleon electromagnetic form factors from lattice QCD", Phys. Rev. D 91, 113006 (2015) [arXiv:1503.01142].
- P. E. Shanahan et al., "SU(3) breaking in hyperon transition vector form factors," Phys. Rev. D 92, 074029 (2015) [arXiv:1508.06923].
- *P.E. Shanahan et al., "Determination of the strange nucleon form factors", Phys. Rev. Lett. 114, 091802 (2015) [arXiv:1403.6537].
- P. E. Shanahan. Strangeness and Charge Symmetry Violation in Nucleon Structure. Springer International Publishing, Switzerland, 2016. [ISBN 978-3-319-31437-2].