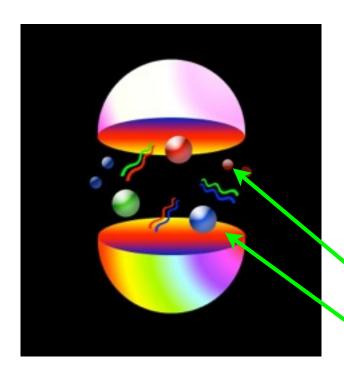
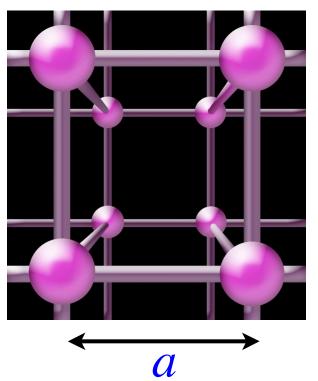

Lattice QCD determination of quark masses and α_s

Christine Davies University of Glasgow HPOCD collaboration

APS GHP2017 Washington Jan 2017 Quark masses and strong coupling are fundamental parameters of the SM but cannot be directly determined from experiment because we do not have direct access to quarks



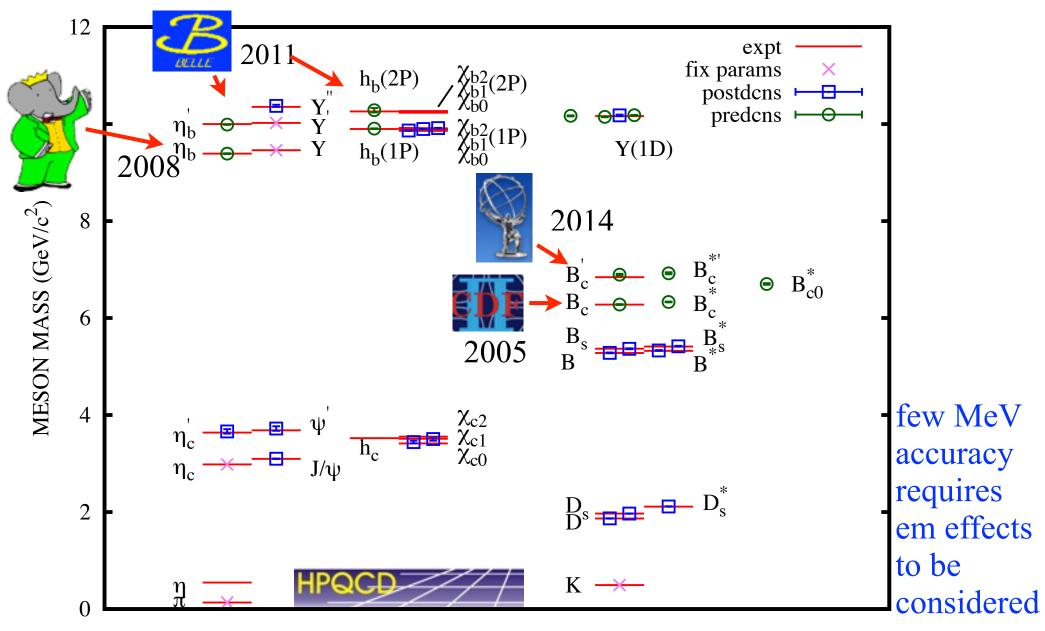

ATLAS@LHC

Well-defined m_q and α_s are scheme and scale-dependent. Convention is to use \overline{MS} .

Compare results from multiple approaches for strong test of QCD. Lattice QCD methods are particularly accurate.

Masses/ α_s are input to theoretical expressions for SM cross-sections e.g. $H \to c\overline{c}$

Lattice QCD: fields defined on 4-d discrete space-(Euclidean) time. Lagrangian parameters: $\alpha_s, m_q a$


 Generate sets of gluon fields for Monte Carlo integrn of Path Integral (inc effect of u, d, s, (c) sea quarks)

2) Calculate valence quark propagators and combine for "hadron correlators".Fit for hadron masses and amplitudes

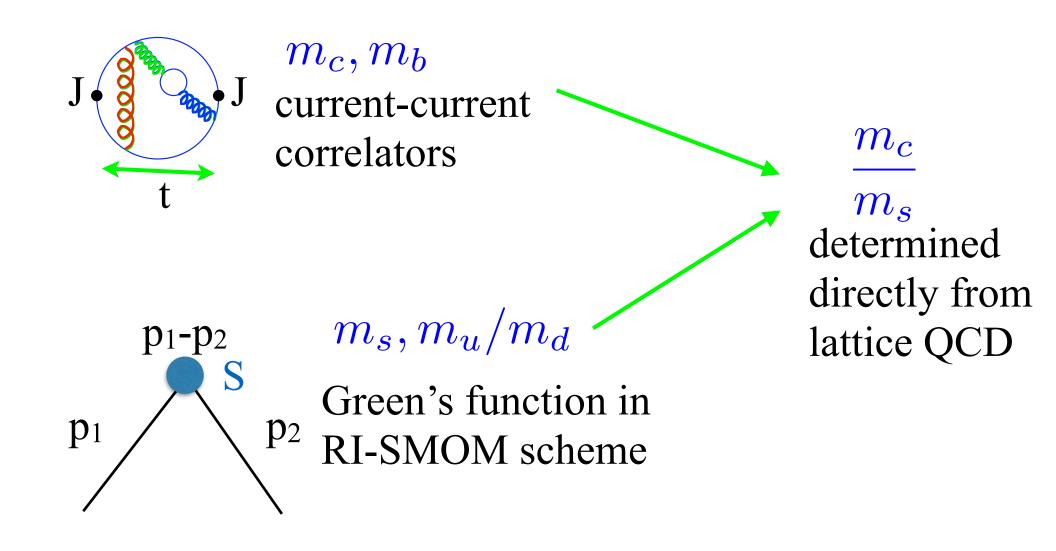
• Determine a to convert results in physical units. Fix m_q from hadron mass

numerically extremely challenging

• cost increases as $a \to 0, m_{u/d} \to \text{phys}$ and with statistics, volume. Can tune bare lattice QCD mass parameters very accurately using experimentally very well-determined ground-state meson masses.

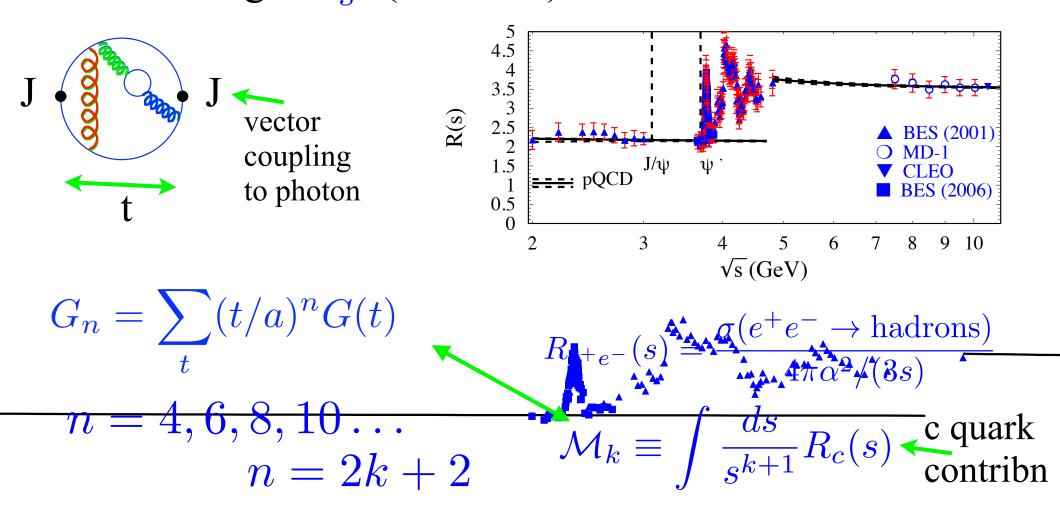
Mass parameters in Lattice QCD Lagrangian can be tuned very accurately against experimental hadron masses

Issue is:


Conversion of lattice quark masses to \overline{MS} scheme

$$m_{\overline{MS}}(\mu) = Z_m(\mu a) m_{latt}$$

Options to calculate Z:


- 1) lattice QCD pert. th. hard to do beyond NLO
- 2) Nonperturbative calculation of a quantity that can be matched to \overline{MS} using continuum QCD pert. theory
 - * Error dominated by that of Z

Note: Z cancels in mass ratios, which are *completely nonperturbative* in lattice QCD in a given quark formalism. Provides critical test of procedure above. various of these Lattice QCD: determining quark masses and providing nonperturbative tests of the determination

Current-current correlator method for m_c (and m_b)

Time-moments of lattice QCD correlators extrapolated to the continuum limit can be related to s⁻¹-moments of $R_{e^+e^-}$ and to continuum QCD perturbation theory known through α_s^3 (NNNLO) e.g. Kuhn et al, hep-ph/0702103

Continuum QCD perturbation theory for the moments is a function of quark mass and known through α_s^3 In lattice QCD can calculate moments not available to expt. e.g. for pseudoscalar density correlator for c quarks:

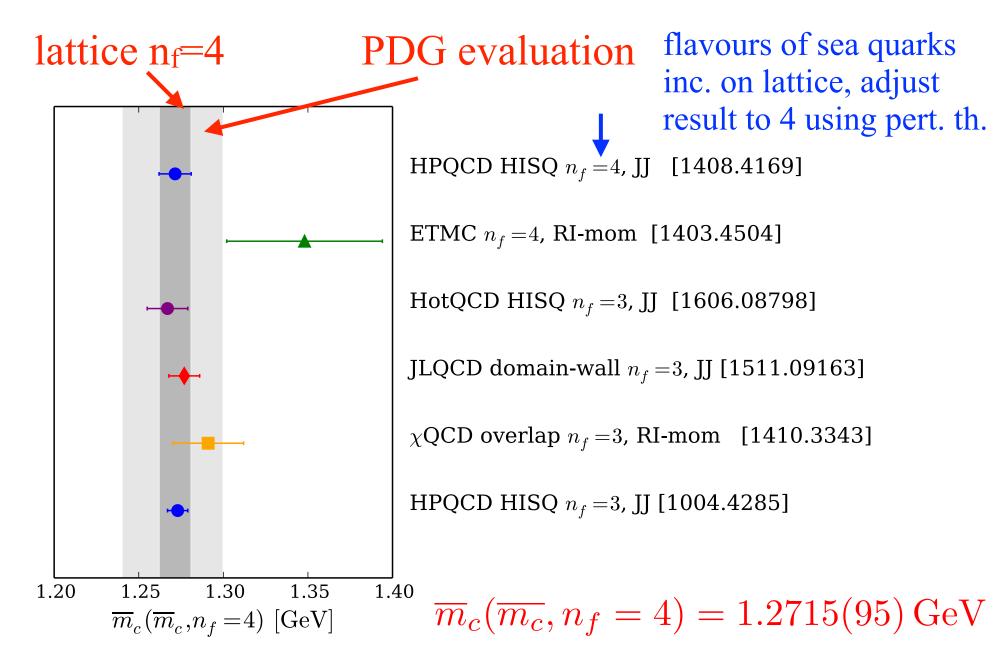
ratio to results with no gluon field improves disc. errors $R_{n,latt} = G_4 / G_4^{(0)} \quad n = 4 \quad \longleftarrow$ $=\frac{am_{\eta_c}}{2am_c}(G_n/G_n^{(0)})^{1/(n-4)} \quad n=6,8,10\dots$ $R_{n,cont} = \frac{m_{\eta_c}}{2m_c(\mu)} \frac{C_k^P}{C^{P,0}}$ 1.6 R_6 $R_n(a,m_{\eta_c})$ \dots R_8 $\frac{C_k^i}{C_i^{P,0}} = 1 + \sum c_i \alpha_s^i(\mu)$ R_{10} 1.2 \sim R_4 simultaneous fit to multiple 0.20.40.0moments - gives α_s, m_c $a^2 \; ({\rm GeV}^{-2})$ HPQCD + Chetyrkin et al, 0805.2999, C. Mcneile et al, HPQCD, 1004.4285

Current-current correlator method -HISQ HPQCD, 1004.4285

• Repeat calcln for $m_q \ge m_c$ inc. ultrafine lattices

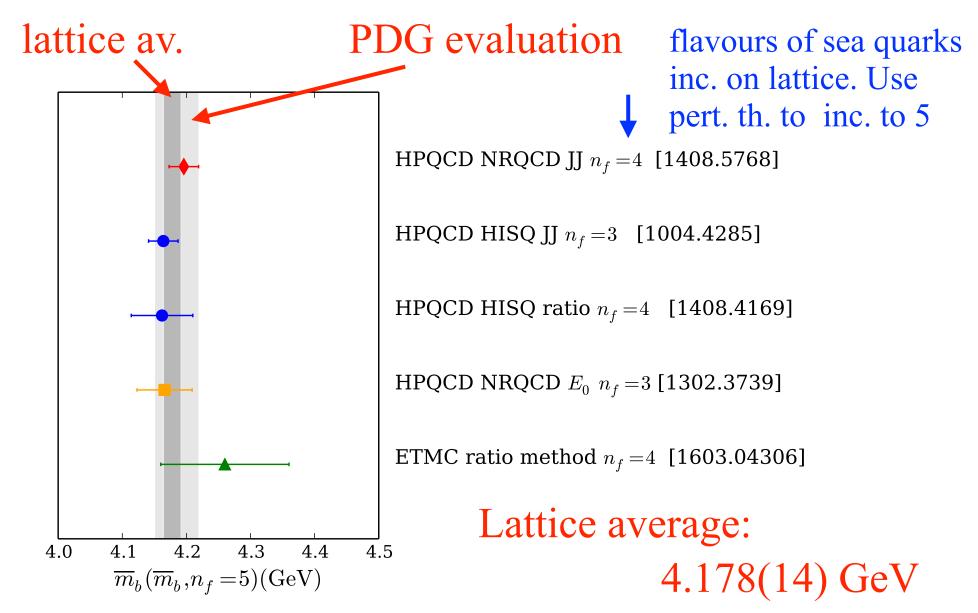
	I			
4	0.1186(4)	$\log W_{11}$	' -	
	0.1184(4)	$\log W_{12}$	-	
	0.1184(5)	$\log W_{\rm BR}$	$\mu)$ _	\mathbf{C}
	0.1183(5)	$\log W_{ m CC}$	_	$\frac{d}{g}$ 1.3 - $3m_h$
	0.1183(6)	$\log W_{13}$	×	
4	0.1184(7)	$\log W_{14}$	' _	u_{g} 1.1 – m_{h}
	0.1182(7)	$\log W_{22}$	_	$1.0 - m_h/2$
	0.1180(8)	$\log W_{23}$	$\mu)$ _	0.9
			-	A3 4 5 6 7 8 9 h
—	0.1188(7)	$\log W_{13} / W_{22}$	×	\mathbf{C} m_{η_h} \mathbf{U}
		$\log W_{11} W_{22} / W_{12}^2$		Can determine m_h/m_{η_h} for
4	0.1184(7)	$\log W_{ m CC} W_{ m BR}/W_{ m 11}^3$	_	
-	· · ·	$\log W_{ m CC}/W_{ m BR}$	$\mu)$ _	heavy quarks - extrapolate
	0.1170(9)	$\log W_{14}/W_{23}$	-	(slightly) to b.
	0.1173(9)	$\log W_{11}W_{23}/W_{12}W_{13}$	×	(Singhiny) to 0.
			$\overline{m_{\eta_b}}$	$-n_{f}=5$ (
	0.1184(5)	$\log W_{12}/u_0^6$		$\overline{m}_{b_{17}}^{n_f=5}(\overline{m}_b) = 4.164(23) \text{GeV}$
Agre	0.1183(8) es well w	$v_{\rm ibg}^{\rm g} W_{\rm BR} / u_0^6$		T •1
-	0.1184(7) ts using	$R^{\log W_{\rm CC}/u_0^{\rm or}}$		1.6 key error is now extrapoln in a
resul	0.1183(6) -	$10g W_{13}^-/u_0^8$		

Example error budget for HISQ current-current method

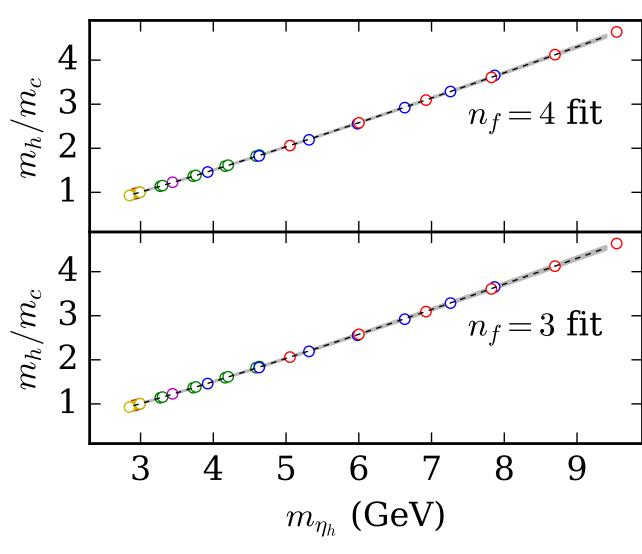

TABLE IV. Error budget [31] for the c mass, QCD coupling, and the ratios of quark masses m_c/m_s and m_b/m_c from the $n_f = 4$ simulations described in this paper. Each uncertainty is given as a percentage of the final value. The different uncertainties are added in quadrature to give the total uncertainty. Only sources of uncertainty larger than 0.05% have been listed.

HPQCD, 1408.4169

$m_c(3)$	$\alpha_{\overline{\mathrm{MS}}}(M_Z)$	m_c/m_s	m_b/m_c
0.3	0.5	0.0	0.0
0.2	0.2	0.3	0.3
0.3	0.3	0.0	1.0
0.2	0.1	0.0	0.0
0.3	0.1	0.0	0.0
0.1	0.1	0.0	0.0
0.2	0.0	0.1	0.4
0.0	0.1	0.0	0.0
0.0	0.0	0.4	0.0
0.0	0.0	0.0	0.4
0.1	0.0	0.1	0.1
0.0	0.0	0.0	0.1
0.64%	0.63%	0.55%	1.20%
	$\begin{array}{c} 0.3 \\ 0.2 \\ 0.3 \\ 0.2 \\ 0.3 \\ 0.1 \\ 0.2 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.1 \\ 0.0 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$


m_c summary

Good consistency between lattice actions using JJ method



mb summary

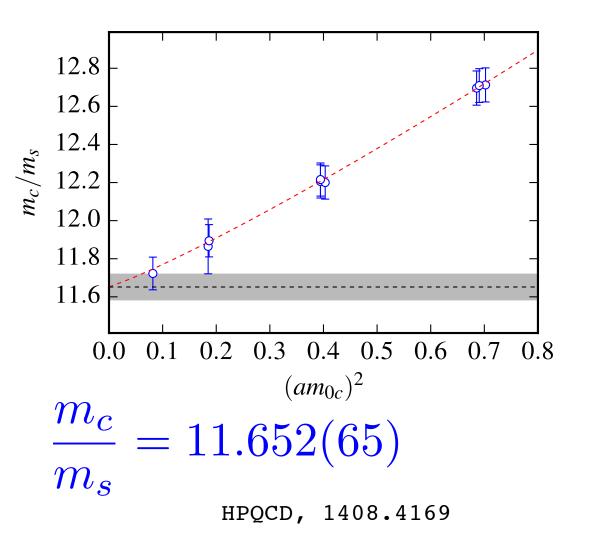
Several different methods here. Good consistency between different methods and b-quark formalisms

m_b/m_c from lattice QCD

update to HPQCD, 1408.4169

 $\begin{pmatrix} \frac{m_{q1,latt}}{m_{q2,latt}} \end{pmatrix} in QCD \\ = \frac{m_{q1,\overline{MS}}(\mu)}{m_{q2,\overline{MS}}(\mu)}$ completely
nonperturbative

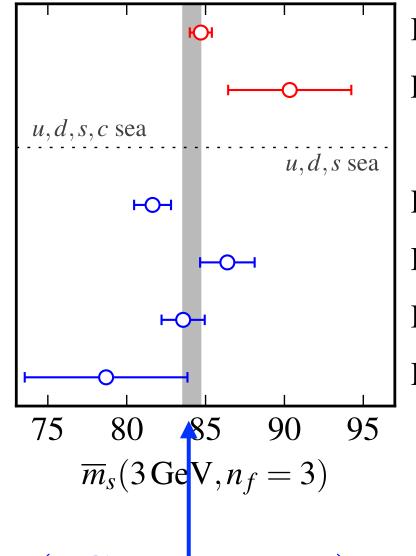
determination of ratio gives:


 $\frac{m_b}{m_c} = 4.541(26)$

see also: HPQCD, 1004.4285; ETM,1603.04306; HotQCD, 1606.08798

Agrees with that from currentcurrent correlator method - test of pert. th.

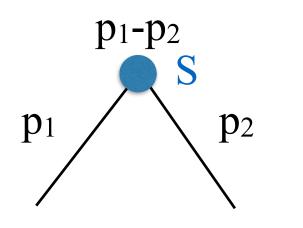
m_c/m_s


Mass ratio can be obtained directly from lattice QCD if same quark formalism is used for both quarks. Not possible with any other method ... summary from hotQCD,

$N_f = 2 + 1 + 1$	<u>+</u>	HPQCD'15					
	≜	MILC'14					
	-▲	ETMC'14					
$N_{f} = 2 + 1$	 ●	this paper					
—		χQCD'15					
	⊢∙⊣	HPQCD'10					
$N_{\rm f} = 2$	 -						
m _c /m _s ⊢	▶	Durr'12					
10.5 11	11.5 12	12.5					

1606 08798 1

Combining m_c and m_c/m_s leads to 1% accuracy in m_s - also compare to RI-SMOM scheme determination


HPQCD 1408.4169 mc/ms+mc ETMC 1403.4504 RI-MOM

RBC/UKQCD 1411.7017 RI-SMOM Durr et al 1011.2403 RI-MOM HPQCD 0910.3102 mc/ms+mc HPQCD (pert) 0511160 lattice pert

> Also hotQCD:1606.08798 83.6(1.5) MeV

 $\overline{m}_s(3 \text{GeV}, n_f = 3) = 84.1(5) \text{MeV}$

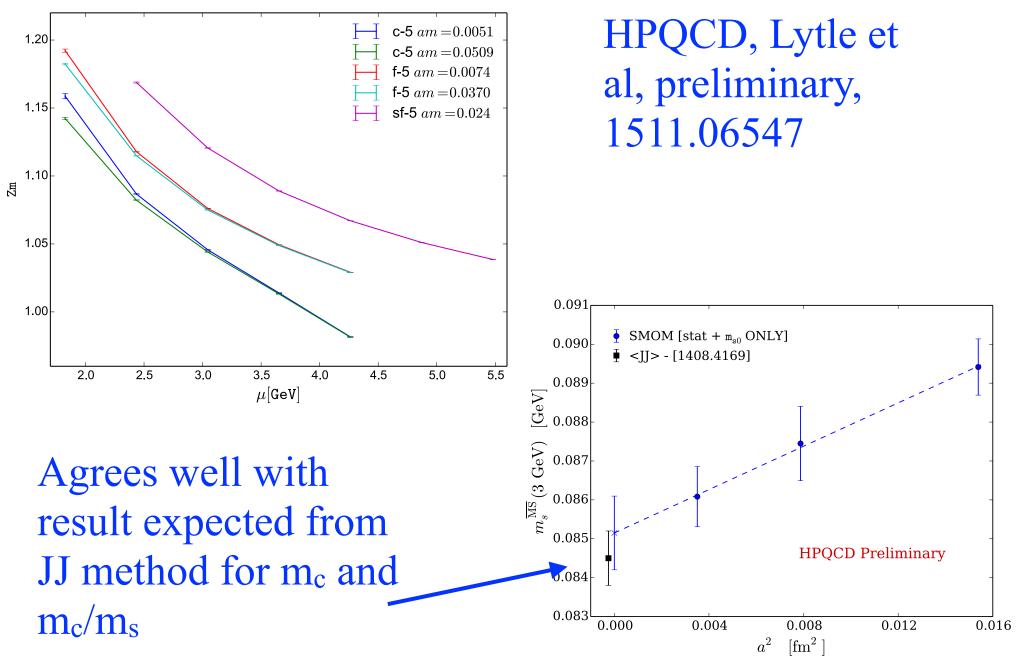
Alternative method to determine (light) quark masses: **RI-SMOM** scheme RBC/UKQCD, 0712.1061

$$\frac{Z_O}{Z_q} \Lambda_O(p_1, p_2) = O^{tree}$$
$$Z_m = Z_S^{-1}$$

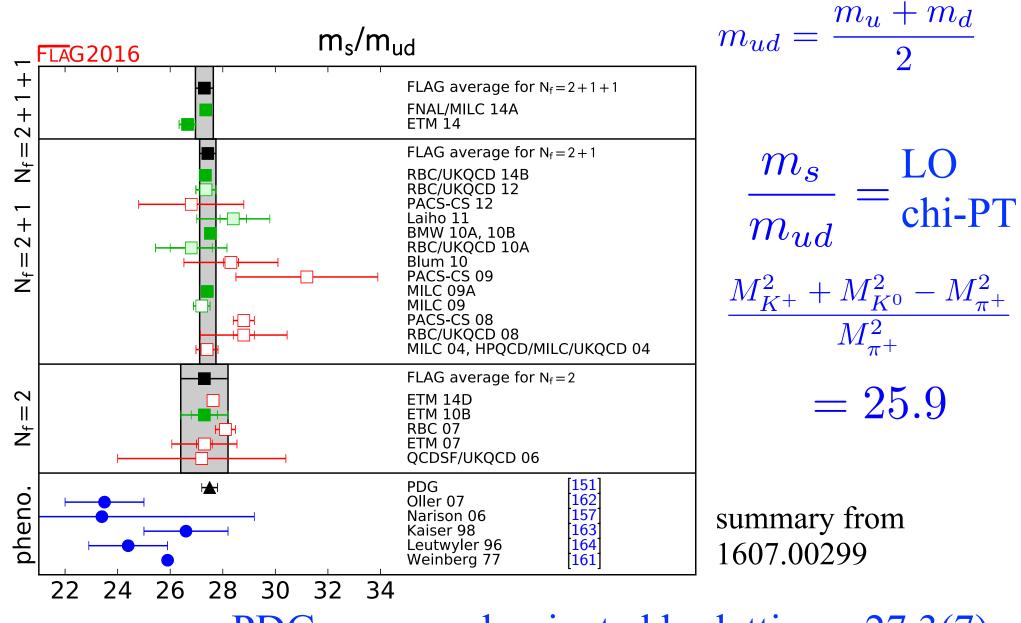
-S

Sturm et al, 0901.2599; Gorbahn, Jäger, 1004.3997

Impose a 'MOM' renormalisation scheme directly on the lattice, i.e. fix an amputated vertex function to its tree-level value (in Landau gauge). Match to \overline{MS} perturbatively - $\alpha_s^2 = \text{NNLO}$


Important improvement:

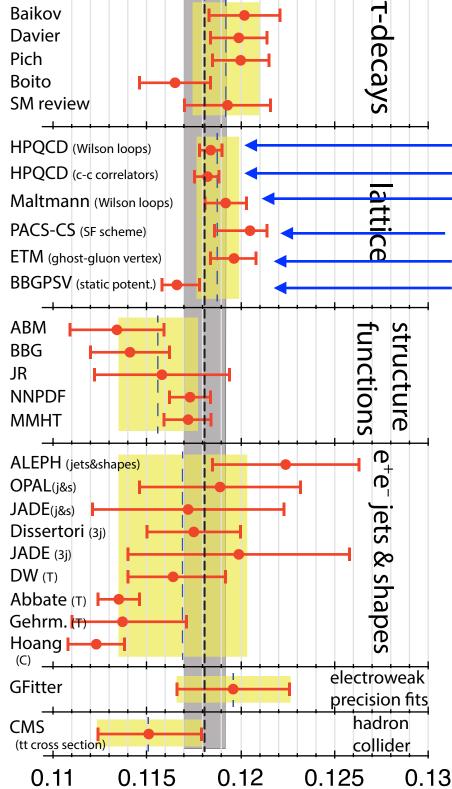
'Non-exceptional' kinematics:


 $p_1^2 = p_2^2 = (p_1 - p_2)^2 = \mu^2$

much smaller systematic errors from non-pert effects AND pert. matching

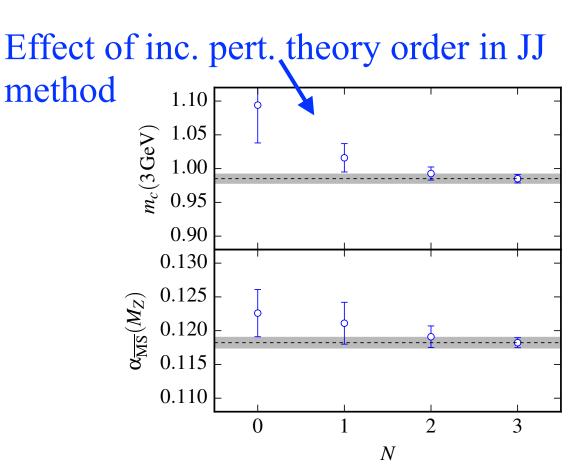
Calculate lattice Z_m - multiply by tuned lattice bare mass and pert. matching to \overline{MS}

Lattice QCD determination of m_s/m_{ud} requires consideration of em effects via charged/neutral π/K


PDG average dominated by lattice = 27.3(7)

Lattice QCD determination of α_s

Lattice QCD Lagrangian has parameter g^2 = lattice scheme coupling at scale π/a - determination of a fixes the coupling.


However, again it is conversion to \overline{MS} which is issue.

 $Q = a_0 + a_1 \alpha_s(\mu) + a_2 \alpha_s(\mu)^2 + \dots$ Calculate in lattice Choice of μ Perturbative depends on Q expansion - using QCD. e.g. ~ $3m_h$ in JJ. continuum QCD Could be e.g. continuum limit Fixing it requires pert. th. in \overline{MS} if Q of 4th moment of JJ determination of a is cont. quantity. correlator. using e.g. a hadron Needs to be high-Minimal exptl uncty order. mass.

$\alpha_s(\overline{MS}, n_f = 5, M_Z), PDG = 0.1181(11)$

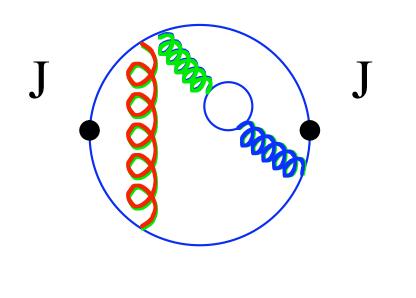
small Wilson loops JJ small Wilson loops Schro. functional ghost-gluon vertex static quark potential Lattice results most precise; several different methods

Conclusions

Lattice QCD results available from multiple quark formalisms and methods now. - good consistency

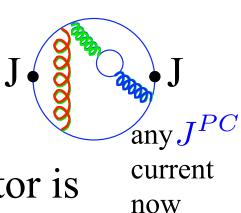
- $m_c(m_c)$ is determined to 1% and $m_b(m_b)$ to 0.5% from continuum and lattice methods. $\alpha_s(M_Z)$ to 1% from lattice - multiple methods
- 1% accurate m_c/m_s ratio allows 1% in m_s also, along with RI-SMOM methods

Tests of perturbation theory from completely nonperturbative mass ratios and JJ/RI-SMOM comparison

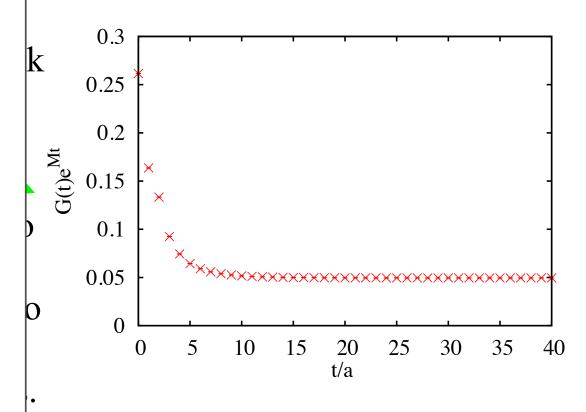

Future improvements from higher order pert th. (?possible) and finer lattices to push up μ values.

Backup slides

t


- use 'nonpert' lattice
- inuum extrapolation.

t) match a quantity n pert. th. in terms



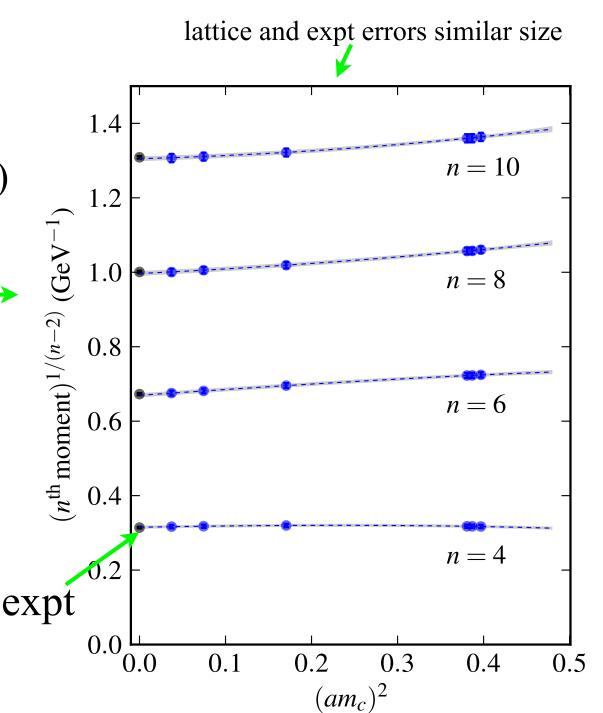
or method for lattice m_c 99, C. Mcneile et al, HPQCD,1004.4285

f lattice experiment. In J It J now.

calar η_c correlator is ly normalised.

Further check of JJ method:

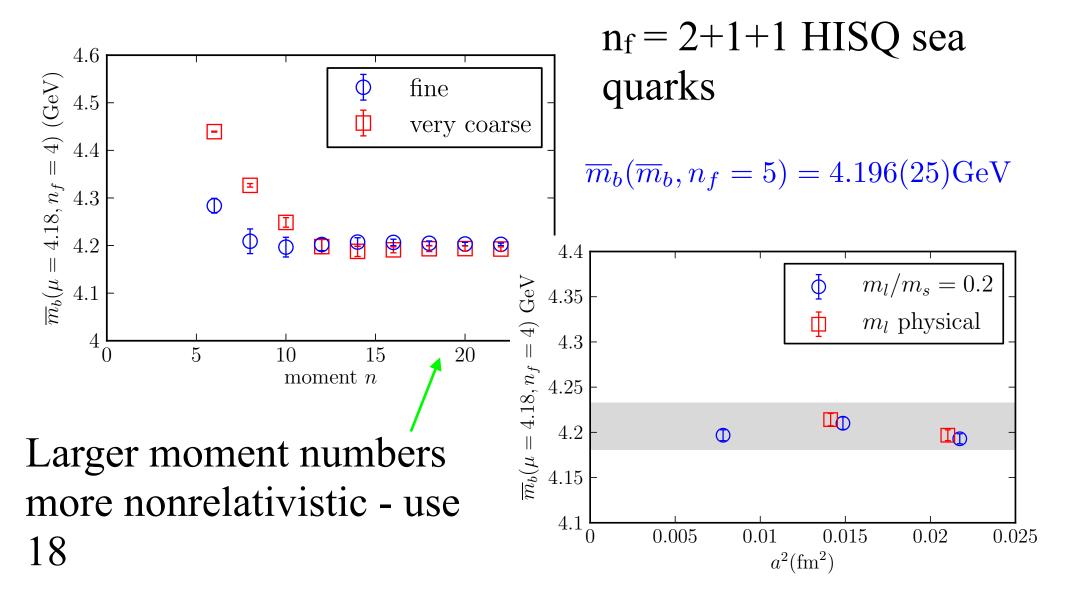
compare vector moments (after normalising current) to those extracted from

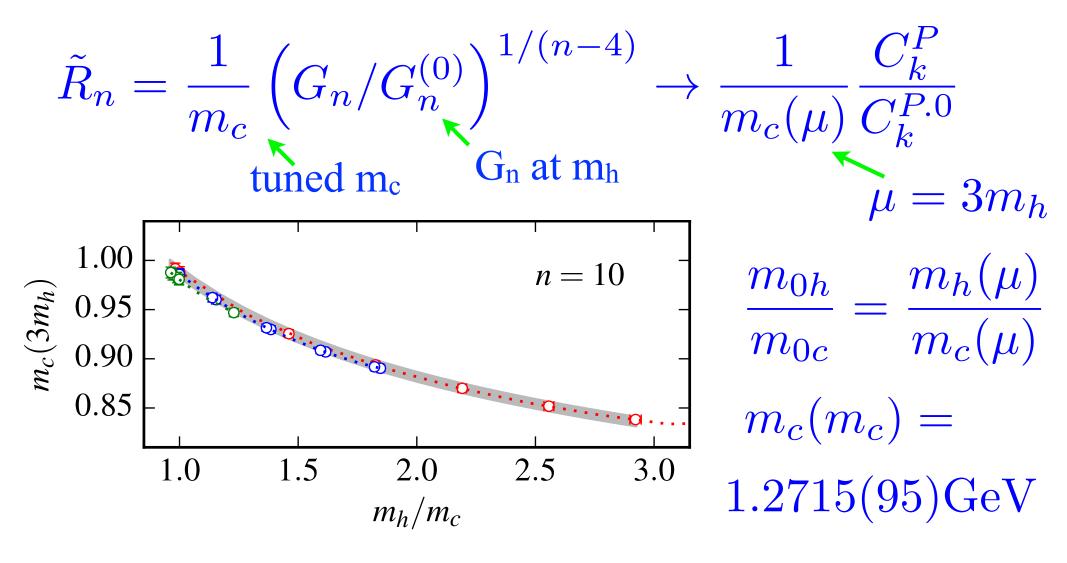

 $R_{e^+e^-}$

Agreement is a 1% test of (lattice) QCD.

Also gives charm quark contribution to anomalous magnetic moment of the muon

$$a_{\mu}^{c} = 14.4(4) \times 10^{-10}$$


HPQCD, 1208.2855, 1403.1778


see also ETMC, 1111.5252

Alternative determinations of m_b HPQCD, 1408.4768

Current-current correlator method using vector bottomonium correlators calculated with improved NRQCD b quarks

Update and improved method HPQCD, 1408.4169 Use improved $n_f = 2+1+1$ gluon field configs, more accurate lattice spacing determination etc etc. Determine m_c at higher scales by using multiple m_h

