Impact of New Results from CLAS on Baryonic Resonances

Michael Döring, Deborah Rönchen, Maxim Mai, Ron Workman et al.

7th Workshop of the APS Topical Group on Hadronic Physics

February 1-3, 2017, Washington, DC

Supported by

HPC support by JSC jikp07

DOE DE-AC05-06OR23177 & DE-SC0016582; NSF PIF 1415459 & CAREER PHY-1452055

The Julich-Bonn Dynamical Coupled-Channel Approach e.g. EPJ A 49, 44 (2013)

Dynamical coupled-channels (DCC): simultaneous analysis of different reactions

The scattering equation in partial-wave basis

$$\langle L'S'p'|T^{IJ}_{\mu\nu}|LSp\rangle = \langle L'S'p'|V^{IJ}_{\mu\nu}|LSp\rangle +$$

$$\sum_{\gamma,L''S''} \int_{0}^{\infty} dq \quad q^{2} \quad \langle L'S'p'|V^{IJ}_{\mu\gamma}|L''S''q\rangle \frac{1}{E - E_{\gamma}(q) + i\epsilon} \langle L''S''q|T^{IJ}_{\gamma\nu}|LSp\rangle$$

- potentials V constructed from effective \mathcal{L}
- *s*-channel diagrams: *T*^P genuine resonance states
- t- and u-channel: T^{NP}
 dynamical generation of poles
 partial waves strongly correlated

Analytic structure

Resonance states: Poles in the *T***-matrix** on the 2^{*nd*} Riemann sheet

 $Re(E_0) = mass, -2Im(E_0) = width$

- (2-body) unitarity and analyticity respected
- 3-body $\pi\pi N$ channel:
 - parameterized effectively as $\pi\Delta$, σN , ρN
 - $\pi N/\pi\pi$ subsystems fit the respective phase shifts
 - ↓ branch points move into complex plane

- pole position E₀ is the same in all channels
- residues→ branching ratios

One aspect: Three-Body Unitarity

Unitary isobar model

 $2 \rightarrow 2$ scattering input for isobars ($\pi\pi$)

Unitarity $\langle q_1, q_2, q_3 | (\hat{T}^+ - \hat{T}^-) | p_1, p_2, p_3 \rangle = i \int \left(\prod_{\ell=1}^3 \frac{\mathrm{d}^4 k_\ell}{(2\pi)^4} (2\pi) \delta^+ (k_\ell^2 - m^2) \right) (2\pi)^4 \delta^4 \left(P - \sum_{\ell=1}^3 k_\ell \right)$

 $\times \langle q_1, q_2, q_3 | \hat{T}^- | k_1, k_2, k_3 \rangle \langle k_1, k_2, k_3 | \hat{T}^+ | p_1, p_2, p_3 \rangle,$

Bethe-Salpter Eq. ansatz

Strategy: To obtain a 3-body unitary amplitude, compare the right-hand sides of unitarity relation, both for generic isobar structure and BSE

Unitarity above breakup [M.D., M. Mai, A. Pilloni, A. Szczepaniak, in preparation]

Results

Preliminary: $K^+\Lambda$ photoproduction in the JüBo model simultaneous fit of $\gamma p \rightarrow \pi^0 p$, $\pi^+ n$, ηp , $K^+\Lambda$ and $\pi N \rightarrow \pi N$, ηN , $K\Lambda$, $K\Sigma$

 $\gamma p \to K^+ \Lambda$:

Differential cross section

JU14: Jude PLB 735 (2014), MC10: McCracken PRC 81 (2010)

• Beam asymmetry

LL07: Lleres EPJA 31 (2007), ZE03: Zegers PRL (2003)

Recoil polarization

MC04: McNabb PRC 69 (2004), MC10: McCracken PRC 81 (2010)

Target asymmetry

LL09: Lleres EPJA 39 (2009)

Preliminary: $K^+\Lambda$ photoproduction in the JüBo model simultaneous fit of $\gamma p \rightarrow \pi^0 p$, $\pi^+ n$, ηp , $K^+\Lambda$ and $\pi N \rightarrow \pi N$, ηN , $K\Lambda$, $K\Sigma$

BR07: Bradford PRC 75 (2007)

LL09: Lleres EPJA 39 (2009)

 $P_{13}(1900)$ resonance claimed by BnGa definitely improves our fit significantly, as well.

Preliminary: $K^+\Lambda$ photoproduction in the JüBo model simultaneous fit of $\gamma p \rightarrow \pi^0 p$, $\pi^+ n$, ηp , $K^+\Lambda$ and $\pi N \rightarrow \pi N$, ηN , $K\Lambda$, $K\Sigma$

• Prediction for new CLAS data (Paterson et al. Phys. Rev. C 93, 065201 (2016)):

Fit to world data on $\pi N \rightarrow \pi N, \eta N, K\Lambda, K\Sigma$ (~ 10⁵ exp. points) [Rönchen, M.D. *et al.*, EPJA 49 (2013)]

Selected results for $\pi^- p \to K^0 \Lambda$ [almost complete experiment]

Re-measuring hadron-induced reactions

Fits: D. Rönchen, M.D., et al., EPJ A49 (2013)

→ Physics Opportunities with meson beams, Briscoe, M.D., Haberzettl, Manley, Naruki, Strakovsky, Swanson, EPJ A**51** (2015)

FROST/CLAS (II)

CLAS/JuBo (M. D., D. Rönchen), Phys.Lett. B755 (2016) First-ever measurement of observable E in η photoproduction, enabled through the <u>FROST</u> target

•

Is this a new narrow baryonic resonance?

→ Conventional explanation in terms of interference effects.

NO additional structure (non-exotic pentaquark) at $W = 1.68 \text{ GeV} \rightarrow$ interferences & $K\Sigma$ threshold.

 \rightarrow How can we automatize/ blindfold resonance spectroscopy?

New developments

- Blindfolding spectroscopy [see also Guegan, Williams et al., JINST 10 (2015)]
 - More detailed talk by Justin Landay (next)
- Toward (entirely) data-driven multi-channel analyses
- Preparing for CLAS12 electroproduction experiments
- Quantifying the impact of new measurements

Blindfolding spectroscopy

[M.D., J. Landay, H. Haberzettl, K. Nakayama, in preparation]

- New statistics tools: Automatized LASSO technique + goodness of fit criteria from information theory/ cross validation
- Model reaction $\bar{K}N \to K\Xi$ scrutinized [based on B. Jackson, Y. Oh, H. Haberzettl, K. Nakayama, Phys.Rev. C91 (2015)]
- Selection of model with minimal resonance content

Toward Data-driven Analyses

[M.D., Revier, Rönchen, Workman, arXiv:1603.07265, PRC 2016]

- Multi-channel analyses to detect faint resonance signals
- All groups use GW/SAID partial waves for $\pi N \to \pi N$
 - The chi-square obtained in fits to single-energy solutions is not related to chi-square of a fit to data → Statistical interpretation of resonance signals difficult.
- Provide online covariance matrices etc. to allow other groups to perform *correlated chi-square* fits.

Slight adaptation of their code allows other groups to obtain a χ^2 (almost) as if they fitted to $\pi N \to \pi N$ directly.

$$\chi^{2}(\mathbf{A}) = \chi^{2}(\hat{\mathbf{A}}) + (\mathbf{A} - \hat{\mathbf{A}})^{T} \hat{\Sigma}^{-1} (\mathbf{A} - \hat{\mathbf{A}}) + \mathcal{O}(\mathbf{A} - \hat{\mathbf{A}})^{3}$$

Transition form factors @ CLAS 12

Hybrid Baryons

J.J. Dudek and R.G. Edwards, PRD85 (2012) 054016

Hybrid states have same J^P values as q^3 baryons. How to identify them? \rightarrow Measure Q^2 dependence of electro-couplings

Transition Form Factors at the Pole

Pole: point of comparison for (unitary) chiral models & lattice [Jido, M.D., Oset, PRC77 (2008); for lattice: A. Agadjanov, Bernard, Meissner, Rusetsky, NPB886 (2014)]

First Results for $\Delta(1232)P33$

[Tiator, M.D., R. Workman, et al. PRC (2017)]

How to quantify the impact of new measurements?

Consider correlations of helicity couplings extracted from experiment

Results from analysis of world data of η photoproduction

[M.D., D. Sadasivan, in preparation]

Here $A = |A|e^{i\phi}$ defined at the resonance pole.

Bulk properties of uncertainties from different data sets

Helicity Coupling	All	No E	No F	No T	No Σ
Number of Data Points	6425	6369	6281	6281	6022
Generalized Variance	0.0494	0.0521	0.1288	0.1239	6.664
$\sqrt{\mathrm{Tr}\ C}$	10.4965	10.51	12.00	11.423	19.85
Multicollinearity	8.173	8.203	9.280	9.5323	10.371
Condition number	133.61	132.10	173.664	164.1	322.66

C=Covariance Matrix

Generalized Variance = Det[C] ~Volume of the Error Ellipsoid

Helicity Coupling	No artificial data	$\mathbf{C}\mathbf{x}$	$\mathbf{C}\mathbf{z}$	Cx and Cz
Number of Data Points	6425	6569	6569	6713
Generalized Variance	0.0494	0.03758	0.0362	0.0132
$\sqrt{\mathrm{Tr}\ C}$	10.4965	10.72	10.487	10.102
Multicollinearity	8.173	7.599	6.770	6.157
Condition number	133.61	112.47	109.69	107.683

- Allows to trace quantitatively the impact of data sets and observables
- Helpful in design of new measurements
- Correlations allow to assess quality of theory predictions

Outlook

- High-precision (double) polarization observables from CLAS, ELSA, MAMI,... in unprecedented quality
- Precision spectroscopy requires
 - Systematic search for new resonances (model selection techniques)
 - Entirely data-driven analyses
 - Quantitative answers to impact of data
 - Extension to Electroproduction planned building on existing SAID analyses.
- First lattice-QCD results on baryons emerging

 \rightarrow Generalize analysis effort to make connection to first-principle calculations.

S = 1 + iT

Unitarity: $SS^{\dagger} = 1 \Leftrightarrow -i(T - T^{\dagger}) = T T^{\dagger}$

3-body unitarity:

discontinuities from *t*-channel exchanges

 \rightarrow Meson exchange from requirements of the S-matrix

Other cuts

- to approximate left-hand cut \rightarrow Baryon *u*-channel exchange
- σ , ρ exchanges from crossing plus analytic continuation.

Amplitude reconstruction from complete experiments and truncated partial-wave expansions

[Workman, Tiator, Wunderlich, M.D., H. Haberzettl, PRC (2017)]

How do complete experiment and truncated partial wave complete experiment compare. Depending on which partial-wave content is admitted in the amplitude?

Set	Included Partial Waves	CEA	TPWA	Complete Sets for TPWA	
1	$L = 0 \ (E_{0+})$	1(1)	1(1)1	<i>I</i> [1]	
2	$J = 1/2 \ (E_{0+}, M_{1-})$	4(4)	4(4)1	$I[1],\check{P}[1],\check{C}_x[1],\check{C}_z[1]$	
			4(3)2	$I[2],\check{P}[1],\check{C}_x[1]$	
3	$L = 0, 1 \ (E_{0+}, M_{1-}, E_{1+})$	6(6)	6(6)1	$I[1]$, $\check{\Sigma}[1]$, $\check{T}[1]$, $\check{P}[1]$, $\check{F}[1]$, $\check{G}[1]$	
			6(4)2	$I[2]$, $\check{\Sigma}[1]$, $\check{T}[2]$, $\check{P}[1]$	
			6(3)3	$I[3]$, $\check{\Sigma}[1]$, $\check{T}[2]$	
4	$L = 0, 1 \ (E_{0+}, M_{1-}, E_{1+}, M_{1+})$	†		TPWA at 1 angle not possible	Or
	full set of $4 S, P$ wave multipoles		8(5)2	$I[2],\check{\Sigma}[1],\check{T}[2],\check{P}[2],\check{F}[1]$	# C
			8(4)3	$I[3]$, $\check{\Sigma}[1]$, $\check{F}[2]$, $\check{H}[2]$	# C
5	$L = 0, 1, 2 \ (E_{0+}, M_{1-}, E_{1+}, E_{2-})$	8(8)	8(8)1	$I[1], \check{\Sigma}[1], \check{T}[1], \check{P}[1], \check{F}[1], \check{G}[1], \check{C}_x[1], \check{O}_x[1]$	# C
			8(4)2	$I[2]$, $\check{\Sigma}[2]$, $\check{T}[2]$, $\check{P}[2]$	
			8(3)3	$I[3]$, $\check{\Sigma}[2]$, $\check{T}[3]$	
6	$J \le 3/2 \ (E_{0+}, M_{1-}, E_{1+}, M_{1+}, E_{2-}, M_{2-})$	†		TPWA at 1 or 2 angles not possible	
			12(5)3	$I[3]$, $\check{\Sigma}[2]$, $\check{T}[3]$, $\check{P}[2]$, $\check{F}[2]$	
			12(4)4	$I[4], \check{\Sigma}[2], \check{F}[3], \check{H}[3]$	
7	$L = 0, 1, 2 \ (E_{0+}, \dots, M_{2+})$	†		TPWA at 1 or 2 angles not possible	
	full set of 8 S, P, D wave multipoles		16(6)3	$I[3]$, $\check{\Sigma}[3]$, $\check{T}[3]$, $\check{P}[3]$, $\check{F}[3]$, $\check{G}[1]$	
			16(5)4	$I[4]$, $\check{\Sigma}[3]$, $\check{T}[3]$, $\check{P}[3]$, $\check{F}[3]$	
		[16(4)5	$I[5], \check{\Sigma}[3], \check{F}[4], \check{H}[4]$ Four are	enough!

Order:

of different measurements,# of different observables# of different angles

Connecting Theory and Phenomenology at the pole

T.A. Gail and T.R. Hemmert, Eur. Phys. J. A 28 (2006).

Lattice: Agadjanov, Bernard, Meißner, Rusetsky, Nucl. Phys. B 886 (2014)

FIG. 4: Magnetic, electric and charge transition form factors compared with the Heavy Baryon chiral effective field theory of Gail and Hemmert $\boxed{14}$ at low Q^2 . The blue and red lines show real and imaginary parts of the complex pole form factors obtained from MAID and SAID. The dashed lines are the HBChEFT calculations.

Improvement in Modern Experimental Facilities: $\pi N \rightarrow \pi N$ EPECUR & GWU/SAID, Alekseev *et al.*, PRC91, 2015

Black: WI08 prediction; Red: WI14 fit; green: KA84.

New High-precision πN data

Data: EPECUR Analysis: SAID (dashed) Gridnev (solid) ArXiv: 1604.02379

Sharp structures seen in EPECUR data are largely accounted for by channel-coupling ($K\Sigma$) leaving less room for narrow resonance candidates.

In general:

Hadronic data serves as "input" for many PWAs!

selected results

$$\tilde{A}_{pole}^{h} = A_{pole}^{h} e^{i\vartheta^{h}}$$

$$h = 1/2, 3/2$$

$$\tilde{A}_{pole}^{h} = I_{F} \sqrt{\frac{q_{p}}{k_{p}} \frac{2\pi (2J+1) \mathsf{E}_{0}}{m_{N} \mathsf{r}_{\pi \mathsf{N}}}} \operatorname{Res} A_{L\pm}^{h}$$

 I_F : isospin factor q_p (k_p): meson (photon) momentum at the pole $J = L \pm 1/2$ total angular momentum E_0 : pole position $r_{\pi N}$: elastic πN residue

		$A_{pole}^{1/2}$		$\vartheta^{1/2}$		A ^{3/2} _{pole}		$\vartheta^{3/2}$	
		$[10^{-3} \text{ GeV}^{-1/2}]$		[deg]		$[10^{-3} \text{ GeV}^{-1/2}]$		[deg]	
	${\rm fit} \rightarrow$	1	2	1	2	1	2	1	2
N(1710) 1/2 ⁺		15	28^{+9}_{-2}	13	77^{+20}_{-9}				
$\Delta(1232) \ 3/2^+$		-116	-114^{+10}_{-3}	-27	-27^{+4}_{-2}	-231	-229^{+3}_{-4}	-15	$-15^{+0.3}_{-0.4}$

Fit 1: only single polarization observables included

Fit 2: also double polarization observables included

FROST/CLAS (I)

The E-observable in charged-pion photoproduction

CLAS/BnGa/JuBo/SAID, PLB 750 (2015)

→ Significant impact on resonance parameters/ New resonance (BnGa) [$\Delta(2200)7/2^{-}$], arXiv: 1503.05774 Data: Akondi et al. (A2 at MAMI) PRL 113, 102001 (2014)

Manifestly gauge invariant approach based on full BSE solution

[M. Mai, P.C. Bruns, U.-G. Meissner PRD 86 (2012) 094033 [arXiv:1207.4923]

 \rightarrow There is no explicit s-channel pole term in this approach; there is no other quantity to compare with PWAs, except at the pole.

Older, more incomplete Chiral unitary prediction

[Jido, M.D., Oset, PRC77 (2008)]

 $\pi N, \, \eta N, \, K\Lambda, \, K\Sigma$ channels

Discrepancy: Genuine problem or due to different definitions?

This workshop: remarkable progress On complex helicity couplings by ANL-Osaka group.

Relevance of three-body dynamics

- Roper pole $+ \pi \Delta$ branch point \rightarrow non-standard resonance shape.
- See results by GWU/SAID data analysis center.

Where is the 3* N(1710)?
 [S. Ceci, M.D. et al, PRC84, 2011]

Fit of a model without ρN branch point (CMB type) [solid lines] to the Jülich amplitude [dashed lines]

- CMB fit to JM has pole at 1698 – 130 *i* MeV, simulates missing branch point.
- Inclusion of full analytic structure important to avoid false pole signals in baryon spectroscopy.

Input parameters and their stability

Eur. Phys. J. A (2013) 49: 44

Field-theoretical approach; TOPT unitarized; implemented on supercomputers. Example:

 $\gamma N (\pi N) \rightarrow K\Sigma$ $\gamma \text{ or } \pi$ π π π N Δ N N

K