Overview of the Jefferson Lab 12 GeV Experimental Program in Halls A, B, and C

Dave Gaskell Jefferson Lab *GHP – February 3, 2017*

<u>Outline</u>

- 1. JLab at 12 GeV
- 2. Semi-inclusive and Deep-exclusive processes
- 3. Form factors
- 4. Nuclear Effects
- 5. ...and more

Jefferson Lab 12 GeV Upgrade

JLab 12 GeV Upgrade expands physics reach by doubling maximum available beam energy: $6 \text{ GeV} \rightarrow 12 \text{ GeV}$

- New experimental Hall D experiments with (polarized) photons – gluonic excitations in meson spectrum
- → Halls A, B, and C will build on their rich 6 GeV program to provide new insight into hadronic structure

Experimental Capabilities

<u>Hall A</u> Existing HRS magnetic focusing spectrometers + Big Bite + new, large acceptance Super Big Bite

Hall B
New CLAS12, large
acceptance spectrometer
→ Good hadron PID
→ Simultaneous
measurement of broad
phase space

Hall C HMS + new SHMS magnetic focusing spectrometers → Precision cross sections, LT separations

More new equipment in future

- → Hall A: SOLID spectrometer, MOLLER
- → Hall C: Neutral Particle Spectrometer

Semi-inclusive Processes

- Interest in semi-inclusive processes dominated originally by potential use in "flavor" tagging
- \rightarrow deconvolution of polarized PDFs
- \rightarrow constraints on unpolarized sea

Transverse degrees of freedom allow us to explore k_T dependence of quarks – access to orbital angular momentum

- \rightarrow Transversity distribution
- → Transverse Momentum Distributions (TMDs)

$$(E, p)$$

$$(E, p)$$

$$\gamma^* \qquad q$$

$$h$$

$$h$$

$$h$$

$$h$$

$$r$$

$$(U)$$

$$(E, p)$$

$$\gamma^* \qquad q$$

$$r$$

$$d\sigma^h \propto \sum f^{H o q}(x) d\sigma_q(y) D^{q o h}(z)$$

 \downarrow
 $d\sigma^h \propto \sum f^{H o q}(x, k_T) \otimes d\sigma_q(y) \otimes D^{q o h}(z, p_\perp)$

Partonic Structure of Nucleons in 3D

U=unpolarized L=long. polarized T=trans. polarized

 $f_{1T}^{\perp} \rightarrow$ Sivers function, describes unpolarized quark in trans. pol. nucleon

 $h_1^{\perp}, h_{1L}^{\perp}, h_{1T}^{\perp} \rightarrow$ Boer-Mulders functions describe transversely polarized quarks in un/long./trans./polarized nucleon

 $f^{a}(x, k_{T}^{2}; Q^{2})$

Understanding of the 3D structure of nucleon requires studies of spin and flavor dependence of quark transverse momentum and space distributions

> → Transverse position and momentum of partons are correlated with the spin of the parent hadron and the spin of the parton itself
> → Transverse position and momentum of partons depend on flavor
> → Transverse position and momentum of partons correlated with longitudinal momentum

CLAS12: Evolution and k_{τ} -dependence of TMDs

ເ ເ 8.50 ⊧ π^+ 5.75 3.75 2.50 z)=0.85 0.75 1.75 0.65 1.25 Si ⟨x⟩ 27 0.33 0.39 .45 5 5 គ្គ

Jefferson Lab

 k_{τ} -dependence of $g_1(x, k_T)$

Large acceptance of CLAS12 allows studies of P_{τ} and • Q²-dependence of SSAs in a wide kinematic range

0

 $e p^{\uparrow} \rightarrow e' \pi^+ X$

0.2<x<0.3

Q²-dependence of Sivers, $f_1^{\perp}(x, k_T)$

 $Q^{2}(GeV^{2})$ 10

CLAS 12 GeV (predicted) EIC 4x60 GeV (predicted)

Comparison of JLab12 data with HERMES, COMPASS • (and EIC) will pin down transverse momentum dependence and the non-trivial Q² evolution of TMD PDFs in general, and Sivers function in particular.

Hall C – Cross Sections in SIDIS

Cross section measurements with magnetic focusing spectrometers (HMS/SHMS) will play important role in JLab SIDIS program

- → Demonstrate understanding of reaction mechanism, test factorization
- \rightarrow Able to carry out precise comparisons of charge states, π +/ π -
- → Complete ϕ dependence at small P_T , access to large P_T at fixed ϕ

SHMS/HMS will allow precise L-T separations \rightarrow Does $R_{DIS} = R_{SIDIS}$?

Measure P_T dependence to access k_T dependence of parton distributions $\boldsymbol{\sigma} = \sum_{q} e_{q}^{2} \boldsymbol{f}(\boldsymbol{x}) \otimes D(\boldsymbol{z})$

Hall C SIDIS Program – HMS+SHMS

Accurate cross sections for validation of SIDIS factorization framework and for L/T separations

Courtesy R. Ent

Hall C SIDIS Program – HMS+SHMS+NPS

Hall A – SIDIS with Super Big Bite and SOLID

Jeffe

"Near term" – Hall A will use new Super Big Bite Spectrometer (approaching completion) with polarized ³He target to access Sivers and Collins asymmetries

"Long term" – Solenoid Large Intensity Device (SOLID) will be used to measures SIDIS from polarized ³He, and NH3 targets \rightarrow combines large acceptance with high luminosity (10³⁶-10³⁷)

Generalized Parton Distributions

GPDs provide another handle for 3-D mapping of the quark structure of the nucleon.

- → JLab 6 GeV began the first stages of a program of exclusive reactions to access GPDs
- → 12 GeV program will allow a comprehensive GPD program

x = Longitudinal momentum fraction

son Lab

GPD program experimental requirements

- → Need to isolate exclusive channel via missing mass resolution or recoil detector
- → Measure Q² dependence at fixed x, access –t dependence

Exclusive Reactions – Leading Twist GPDs

DVCS:

 $H, E, ilde{H}, ilde{E}$

Beam-spin asymmetry $\rightarrow H$ Long. target asymmetry $\rightarrow H, \tilde{H}$

Trans. target asymmetry $\rightarrow E$

Meson production:

pseudoscalar mesons (π,η) : \tilde{H}, \tilde{E} vector mesons (ρ,ω) : H, E**Note: need \sigma_{I}**

DVCS with CLAS12

DVCS in Hall A

6 GeV measurements looked at Q² dependence of cross sections and asymmetries → test factorization

12 GeV experiment greatly increases Q^2 range at fixed x, and -t

 \rightarrow Initial running in Hall A recently completed!

Hall A-C DVCS Program

HMS + new NPS in Hall C will allow

- \rightarrow Measurement of DVCS cross sections to even larger Q^2
- → Energy dependence of DVCS cross at fixed x and Q^{2-} allow full deconvolution exclusive photon cross section

In addition – can also access π^0 cross sections. → Rosenbluth separation to access σ_L and σ_T separately

Deep Exclusive π⁰

 $\sigma_L \rightarrow$ access to leading twist GPDs (non-pole backgrounds!)

 $\sigma_{\tau} \rightarrow$ access to transversity GPD, H_{τ}

L-T separation required to see if σ_T dominates – if so, can access H_T without LT separation over wide kinematic range \rightarrow CLAS12

Neutral particle spectrometer in Hall C will allow targeted studies of L/T cross sections

Little existing L-T separated data above resonance region

x=0.36, Q²=3-5.5 GeV² x=0.5, Q²=3.4, 4.8 GeV² x=0.6, Q²=5.1, 6.0 GeV²

E12-13-10: C. Munoz Camacho, T. Horn, C. Hyde, R. Paremuzyan, J. Roche

Meson Production with CLAS12

10

9

8

7

5

1

10

Measure cross sections and asymmetries for π^0 and η electroproduction \rightarrow Vector mesons also accessible $\rightarrow \sigma_T + \epsilon \sigma_L$ $\rightarrow \sigma_{TT} \sigma_{LT} \sigma_{LT'}$

Study Q^2 (at low -t) dependence of all to look for evidence of factorization

Exclusive π⁺ and K⁺ Production at Large Q²

- Access to GPDs requires factorization \rightarrow Can be checked using L-T separated cross sections for charged pions and kaons
- E12-07-105 and E12-09-011 (Hall C)
- Deep exclusive π + and K+ production:
- \rightarrow Look for scaling in long. cross section
- \rightarrow Study reaction mechanism
- → Almost no L-T separated kaon data above resonance region

E12-09-011: T. Horn, G. Huber, P. Markowitz

E12-07-105: T. Horn, G. Huber

Factorization theorem predicts: $\sigma_L \sim 1/Q^6$ $\sigma_T/\sigma_L \sim 1/Q^2$

Nucleon Elastic Form Factors

Measurements of nucleon elastic form factors provide still more information with which to test models of quark structure of nucleons \rightarrow "simplest" reaction (?)

 \rightarrow 12 GeV program will increase reach and precision for proton and neutron form factors

Meson Form Factors: $F_{\pi}(Q^2)$

$$F_{\pi}(Q^2) \xrightarrow[Q^2 \to \infty]{} \frac{16\pi\alpha_s(Q^2)f_{\pi}^2}{Q^2}$$

Is it possible to apply pQCD at experimentally accessible Q^2 ?

- \rightarrow Use pion DA derived using DSE formalism
- → DSE-based result consistent with DA derived using constraints from lattice

Projected precision using R from VR model

JLab 12 GeV upgrade + HMS/SHMS will allow measurement up to Q²=8.5 GeV² *Tanja Horn's talk (yesterday)*

Meson Form Factors: $F_{\pi}(Q^2)$

Future Measurements of $F_2^n/F_2^p \rightarrow d/u$

0.2

 \cap

0.4

0.6

0.8

X

Hadrons in Nuclei - EMC Effect and SRCs

Jefferson Lab

Two 12 GeV Hall C experiments will join forces to further explore this connection w/more nuclei \rightarrow E12-06-105 x>1 \rightarrow E12-10-008 EMC Effect

A major result for the Jlab 6 GeV program was the observed linear correlation between size of EMC effect and Short Range Correlation "plateau"

 \rightarrow Observing Short Range Correlations requires measurements at x>1

→ Reaction dynamics very different – DIS vs. QE scattering, why the same nuclear dependence?

A dependence in light nuclei, some with significant cluster structure

In-Medium Structure Functions

Measure structure function of high momentum nucleon in deuterium by tagging the spectator

 \rightarrow Final state interactions cancelled by taking double ratios

 \rightarrow Requires new, large acceptance proton/neutron detector at back angles

Tagged protons measured in Hall C with LAD E12-11-107, tagged neutrons with BAND in Hall B as part of E12-11-003a

Spokespersons: O. Hen, L. Weinstein, S. Gilad, S. Wood, H. Hakobyan

EMC effect in polarized structure functions \rightarrow CLAS12 using ⁷Li target \rightarrow E12-14-001, W. Brooks and S. Kuhn

For polarized EMC effect, SRCs would play a smaller role (I. Cloet)

New Physics - BSM

MOLLER: Elastic e-e scattering

Building on JLab 6 GeV parity program

→ Dedicated measurements in Hall A will measure Moller scattering and PVDIS

 \rightarrow Sensitive to running of weak mixing \rightarrow new physics at TeV scales

Summary

- JLab 12 GeV program will provide a rich body of data aimed at exploring the quark structure of hadrons
- Equipment in Halls A,B, C provide complementary capabilities and information
 - CLAS12 (Hall B) → Large phase space in single measurement for exploring multi-dimensional measurements, azimuthal asymmetries
 - HMS+SHMS (Hall C) → Magnetic focusing spectrometers for precision cross sections, L-T separations, ratios
 - HRS+SBS (Hall A) → Measurements requiring high luminosity, large acceptance at particular kinematics
- Planned future equipment will augment these capabilities
 - Neutral particle spectrometer in Hall C \rightarrow SIDIS and exclusive π^0 , DVCS, wideangle Compton scattering
 - SOLID spectrometer in Hall A → Large acceptance at high luminosity for SIDIS, PVDIS
 - MOLLER spectrometer/experiment in Hall A \rightarrow weak mixing angle

Color Transparency

From fundamental considerations (quantum mechanics, relativity, nature of the strong interaction) it is predicted (Brodsky, Mueller) that fast protons scattered from the nucleus will have decreased final state interactions

Color Transparency is closely intertwined with the notion of softhard factorization in exclusive processes

Nuclear Dependence of $R = \sigma_L / \sigma_T$

SLAC + 6 GeV JLab data provides hints of nuclear dependence of $R = \sigma_L / \sigma_T$ at large x

E12-14-002: S. Malace et al

Measurement in Hall C will provide new, high precision measurements of R_A - R_D

SHMS and HMS in Experimental Hall C

Excellent control of point-to-point systematic uncertainties required for precise L-T separations
→ Ideally suited for focusing spectrometers
→ One of the drivers for SHMS design

Spectrometer properties

HMS: Electron arm <u>Nominal capabilities:</u> $d\Omega \sim 6 \text{ msr}, P_0 = 0.5 - 7 \text{ GeV/c}$ $\vartheta_0 = 10.5 \text{ to } 80 \text{ degrees}$ *e* ID via calorimeter and gas Cerenkov

SHMS: Pion arm <u>Nominal capabilities:</u> $d\Omega \sim 4 \text{ msr}, P_0 = 1 - 11 \text{ GeV/c}$ $\vartheta_0 = 5.5 \text{ to } 40 \text{ degrees}$ $\pi:K:p$ separation via heavy gas Cerenkov and aerogel detectors

