Results from the OLYMPUS* Experiment at DESY

Michael Kohl <kohlm@jlab.org> **

Hampton University, Hampton, VA 23668 Jefferson Laboratory, Newport News, VA 23606

* Supported by the Ministry of Education and Science of Armenia, Deutsches Elektronen-Synchrotron (DESY), the Deutsche Forschungsgemeinschaft, the European Community-Research Infrastructure Activity, the United Kingdom Science and Technology Facilities Council and the Scottish Universities Physics Alliance, the United States Department of Energy and the National Science Foundation, and the Ministry of Education and Science of the Russian Federation. ** Presently supported by DOE DE-SC0013941, NSF HRD-1649909, PHY-1505934 and PHY-1436680

Outline

- Proton form factors in the context of one-photon exchange (OPE)
- The limit of OPE or:
 - What is G_E^p?
 - What is the nature of lepton scattering?
- Two-photon exchange (TPE): New observables
- Current and future experiments to probe TPE
 OLYMPUS & more

OLYMPUS @ DESY

Nucleon elastic form factors ...

- Fundamental quantities
- Defined in context of single-photon exchange
- Describe internal structure of the nucleons
- Related to spatial distributions of charge and magnetism
- Rigorous tests of nucleon models
- Determined by quark structure of the nucleon
- Role of orbital angular momentum and diquark correlation
- Ultimately calculable by Lattice-QCD
- Input to nuclear structure and parity violation experiments

60+ years of ever increasing activity

- Considerable progress in experiment and theory over last two decades
- New techniques: polarization experiments
- Unexpected results

Form factors from Rosenbluth method

In One-photon exchange, form factors are related to radiatively corrected elastic electron-proton scattering cross section

$$\frac{d\sigma/d\Omega}{(d\sigma/d\Omega)_{Mott}} = S_0 = A(Q^2) + B(Q^2) \tan^2 \frac{\theta}{2}$$
$$= \frac{G_E^2(Q^2) + \tau G_M^2(Q^2)}{1+\tau} + 2\tau G_M^2(Q^2) \tan^2 \frac{\theta}{2}$$
$$= \frac{\epsilon G_E^2 + \tau G_M^2}{\epsilon (1+\tau)}, \qquad \epsilon = \left[1 + 2(1+\tau) \tan^2 \frac{\theta}{2}\right]^{-1}$$

Nucleon form factors and polarization

Double polarization observable = spin correlation

$$-\sigma_0 \vec{P_p} \cdot \vec{A} = \sqrt{2\tau\epsilon(1-\epsilon)} G_E G_M \sin\theta^* \cos\phi^* + \tau \sqrt{1-\epsilon^2} G_M^2 \cos\theta^*$$

Asymmetry ratio ("Super ratio")

independent of polarization or analyzing power

$$rac{P_{\perp}}{P_{\parallel}} = rac{A_{\perp}}{A_{\parallel}} \propto rac{G_E}{G_M}$$

Akhiezer & Rekalo (1968), Dombey (1969) Arnold, Carlson & Gross (1984), Donnelly & Raskin (1986)

Proton form factor ratio

Another look

Up to Q² < 2 (GeV/c)² : Form factor discrepancy small Both Rosenbluth and polarization data deviating from scaling

Effect of two-photon exchange

J. Arrington, P. Blunden, W. Melnitchouk, Prog. Part. Nucl. Phys. 66, 782 (2011)

by construction, theorists sought mechanism that affects the "slope" in the Rosenbluth plot (ε-dependence)

At high Q^2 , the contribution of G_E to the cross section is of similar order as the TPE effect (few %)

Two-photon exchange: exp. evidence

Polarized target data at high Q²

A. Liyanage, M.K. et al., to be published

Polarized Target:

Independent verification of recoil polarization result is crucial

Polarized internal target / low Q²: **BLAST** Q²<0.65 (GeV/c)² not high enough to see deviation from scaling

RSS /Hall C: Q² ≈ 1.5 (GeV/c)²

SANE/Hall C: completed March 2009 BigCal electron detector Recoil protons in HMS parasitically G_E/G_M at Q² ≈ 2.1 and 5.7 (GeV/c)²

Decline of G_E/G_M has been confirmed!

Future precision measurements at high Q² are feasible

Elastic ep scattering beyond OPE

$$P \equiv \frac{p+p'}{2}, \quad K \equiv \frac{k+k'}{2}$$

Kinematical invariants :

$$Q^2 = -(p - p')^2$$

$$\nu = K \cdot P = (s - u)/4$$

Next-to Born approximation:

$$\begin{split} T^{non-flip}_{h'\lambda'_N,h\lambda_N} &= \frac{e^2}{Q^2} \bar{u}(k',h')\gamma_{\mu}u(k,h) \\ &\times \quad \bar{u}(p',\lambda'_N) \left(\tilde{G}_M \gamma^{\mu} - \tilde{F}_2 \frac{P^{\mu}}{M} + \tilde{F}_3 \frac{\gamma \cdot K P^{\mu}}{M^2}\right) u(p,\lambda_N) \\ \end{split}$$
(m_e = 0) The T-matrix still factorizes, however a new response term F₃ is generated by TPE

The T-matrix still factorizes, however a new response term F_3 is generated by TPE Born-amplitudes are modified in presence of TPE; modifications $\sim \alpha^3$

$$\begin{split} \tilde{G}_M(\nu,Q^2) &= G_M(Q^2) + \delta \tilde{G}_M \\ \tilde{F}_2(\nu,Q^2) &= F_2(Q^2) + \delta \tilde{F}_2 \\ \tilde{F}_3(\nu,Q^2) &= 0 + \delta \tilde{F}_3 \end{split}$$

$$\begin{split} \tilde{G}_E &\equiv \tilde{G}_M - (1+\tau) \,\tilde{F}_2 \\ \tilde{G}_E(\nu,Q^2) &= G_E(Q^2) + \delta \tilde{G}_E \end{split}$$

New amplitudes are complex!

Inherited from M. Vanderhaeghen

Observables involving real part of TPE

$$\begin{split} P_{t} &= -\sqrt{\frac{2\varepsilon(1-\varepsilon)}{\tau}} \frac{G_{M}^{2}}{d\sigma_{red}} \left\{ R + R \frac{\Re\left(\delta\tilde{G}_{M}\right)}{G_{M}} + \frac{\Re\left(\delta\tilde{G}_{E}\right)}{G_{M}} + Y_{2\gamma} \right\} \\ P_{l} &= \sqrt{(1+\varepsilon)(1-\varepsilon)} \frac{G_{M}^{2}}{d\sigma_{red}} \left\{ 1 + 2 \frac{\Re(\delta\tilde{G}_{M})}{G_{M}} + \frac{2}{1+\varepsilon} \varepsilon Y_{2\gamma} \right\} \\ \frac{P_{t}}{P_{l}} &= -\sqrt{\frac{2\varepsilon}{(1+\varepsilon)\tau}} \left\{ R - R \frac{\Re\left(\delta\tilde{G}_{M}\right)}{G_{M}} + \frac{\Re\left(\delta\tilde{G}_{E}\right)}{G_{M}} + 2\left(1-R\frac{2\varepsilon}{1+\varepsilon}\right)Y_{2\gamma} \right\} \\ \frac{d\sigma_{red}}{G_{M}} - \frac{2\varepsilon}{\tau} + 2\frac{\Re(\delta\tilde{G}_{M})}{G_{M}} + 2R\frac{\varepsilon\Re(\delta\tilde{G}_{E})}{\sigma_{M}} + 2\left(1+\frac{R}{\tau}\right)\varepsilon Y_{2\gamma} \\ \Re(\tilde{G}_{E}) &= G_{E}\left(Q^{2}\right) + \Re(\delta\tilde{G}_{E}\left(Q^{2},\varepsilon\right)) \\ \Re(\tilde{G}_{M}) &= G_{M}\left(Q^{2}\right) + \Re(\delta\tilde{G}_{M}\left(Q^{2},\varepsilon\right)) \\ R &= G_{E}/G_{M} - Y_{2\gamma} = 0 \\ R &= O_{E}/G_{M} - Y_{2\gamma} = 0 \\ R &= O_{E}/G_{M} - V_{2\gamma} = 0 \\ R &= O_{E}/G_{M}$$

P.A.M. Guichon and M.Vanderhaeghen, Phys.Rev.Lett. 91, 142303 (2003) M.P. Rekalo and E. Tomasi-Gustafsson, E.P.J. A 22, 331 (2004)

Slide idea: L. Pentchev

Jefferson Lab E04-019 (Two-gamma)

Jlab – Hall C $Q^2 = 2.5 (GeV/c)^2$

 G_E/G_M from P_t/P_I constant vs. ϵ

→ no effect in P_t/P_1 → some effect in P_1

Expect larger effect in e+/e-!

M. Meziane *et al.*, hep-ph/1012.0339v2 Phys. Rev. Lett. 106, 132501 (2011)

Empirical extraction of TPE amplitudes

J. Guttmann, N. Kivel, M. Meziane, and M. Vanderhaeghen, EPJA 47, 77 (2011)

Lepton-proton elastic scattering

Interference term depends on lepton charge sign (C-odd)

$$\sigma_{e^{\pm}p} = |\mathcal{M}_{1\gamma}|^2 \pm 2\Re\{\mathcal{M}_{1\gamma}^{\dagger}\mathcal{M}_{2\gamma}\} + \cdots$$

e⁺/e⁻ ratio deviates from unity by two-photon contribution

$$\frac{\sigma_{e^+p}}{\sigma_{e^-p}} \approx 1 + 4 \frac{\Re\{\mathcal{M}_{1\gamma}^{\dagger}\mathcal{M}_{2\gamma}\}}{|\mathcal{M}_{1\gamma}|^2}$$

Comparison of e⁺/e⁻ experiments

- VEPP-3 @ Novosibirsk: E_{beam} = 1.6, 1.0 (and 0.6) GeV E_{beam} = 0.5 – 4.0 GeV continuous CLAS @ JLAB :
- OLYMPUS @ DESY:

 $E_{beam} = 2.0 \text{ GeV}$

Projected results for OLYMPUS

OL¥MPUS

OLYMPUS @ **DORIS/DESY**

PIA

18

- Electrons/positrons (100mA) in 2.0–4.5 GeV storage ring DORIS at DESY, Hamburg, Germany
- Unpolarized internal hydrogen target (buffer system) $3x10^{15} \text{ at/cm}^2 @ 100 \text{ mA} \rightarrow \text{L} = 2x10^{33} / (\text{cm}^2\text{s})$
- Large acceptance detector for e-p in coincidence BLAST detector from MIT-Bates available
- Redundant monitoring of luminosity Pressure, temperature, flow, current measurements Small-angle elastic scattering at high epsilon / low Q² Symmetric Moller/Bhabha scattering
- Measure ratio of positron-proton to electron-proton unpolarized elastic scattering to 1% stat.+sys.

OLYMPUS kinematics at 2.0 GeV

<u>ÓL¥MPÙS</u>

The designed OLYMPUS detector

OL¥MPUS

The realized OLYMPUS detector

July 2011

Apparatus: "The OLYMPUS Experiment", R. Milner et al., NIMA 741, 1 (2014)

Target:"The OLYMPUS internal hydrogen target", J.C. Bernauer, NIMA 755, 20 (2014)

Magnet: "Measurement and tricubic interpolation of the magnetic field for the OLYMPUS experiment", J.C. Bernauer et al., NIMA 823, 9 (2016)

Target and vacuum system

Designed and built in 2010 Very stable operation

"The OLYMPUS Internal Hydrogen Target", J.C. Bernauer *et al.*, NIMA 755, 20 (2014)

Timeline of OLYMPUS

24

- 2007 Letter of Intent
- 2008 Proposal
- 2009 Technical review
- 2010 Approval and funding
- Summer 2010 BLAST transfer
- Spring 2011 Target test run
- Summer 2011 Detector installed
- Fall 2011 Commissioning

First run Jan 30 – Feb 27, 2012 ... acquired < 0.3 fb⁻¹

Summer 2012 Repairs and upgrades

Second run Oct 24, 2012 – Jan 2, 2013 ... acquired > 4.0 fb⁻¹

- Smooth performance of machine, target, detector
- Spring 2013 Survey & field mapping
- Analysis progressing framework, calibrations, tracking, simulations
- Results released in Nov 2016

<u>OL*MPUS</u>

Based on 100 runs (~2% of the data)

Electron beam

Positron beam

Polar angle in the right sector versus polar angle in left sector

26

Based on 100 runs (~2% of the data)

Electron beam

Polar angle in the right sector versus polar angle in left sector Coplanarity cut ±5 degrees

θ

OLYMPUS

Positron beam

27

Based on 100 runs (~2% of the data)

90° 5000 90° 14000 80° 80° 400012000 70° 70° 10000 60° 60° 3000 right θ counts soon stino right 20° 50° 6000 2000 40° 40° 4000 30° 30° 1000 2000 20° 20° 10° 0 10° 0 20° 30° 40° 50° 90° 10° 20° 30° 40° 50° 60° 70° 80° 90° 10° 60° 70° 80° left θ left θ

Polar angle in the right sector versus polar angle in left sector Coplanarity cut ±5 degrees Common vertex ±100 mm

Electron beam

OL MPUS

Positron beam

28

Based on 100 runs (~2% of the data)

90° 5000 90° 14000 80° 80° 400012000 70° 70° 10000 60° 60° 3000 right θ night θ 200 counts sounts 0008 50° 6000 2000 40° 40° 4000 30° 30° 1000 2000 20° 20° 10° 0 10° 0 50° 20° 30° 40° 50° 70° 80° 90° 10° 20° 30° 40° 60° 70° 80° 90° 10° 60° left θ left θ

Polar angle in the right sector versus polar angle in left sector Coplanarity cut ±5 degrees Common vertex ±100 mm Polar angle kinematic cut $|\theta_1 - \theta_1(\theta_p)| < 5$ degrees

Electron beam

Positron beam

Based on 100 runs (~2% of the data)

Electron beam

Polar angle in the right sector versus polar angle in left sector Coplanarity cut ±5 degrees Common vertex ±100 mm Polar angle kinematic cut $|\theta_1 - \theta_1(\theta_p)| < 5$ degrees Momentum kinematic cut $|P_p - P_p(\theta_p)| < 400$ MeV/c

Only for illustration – final analysis more sophisticated

Backgrounds

Radiative corrections of order α^3

- Use MC framework to accurately implement all 'standard' RC and to extract effect from hard TPE
- Ensure consistency between different experiments

MIT radiative generator

MIT radiative generator

Standard C-odd radiative corrections are ~1-6% for OLYMPUS
 Variation due to higher orders at ~1% level

B.S. Henderson et al., arXiv:1611.04685v2, accepted by PRL

Luminosity

- Five redundant systems: Slow Control, SYMB, MIE, 12DEG-L,R
- Absolute luminosity from each rate to a few %
- Ratio of e⁺/e⁻ luminosities for R_{2v} to sub %
- Time variation, mean and variance, systematics from comparisons
- Excellent agreement between SC, MIE, and 12DEG-L,R
- Final luminosity ratio from MIE, using 12DEG for high-ε data point

OL¥MPUS

Yields

<u>Ól¥MPÙş</u>

Result for hard two-photon exchange

- Mo-Tsai to all orders
- Results based on 3.1 fb⁻¹, statistics 0.2 – 1%

Hard TPE is small !

- Below Hadronic Model
 by Blunden at low Q²
- Good agreement with phenomenology

Correlated contributions	Uncertainty in $R_{2\gamma}$
Beam energy	0.04 – 0.13%
MIE luminosity	0.36%
Beam and detector geometry	0.25%
Uncorrelated contributions	
Tracking efficiency	0.20%
Elastic selection and background subtraction	0.25 – 1.17%

Data needed at higher Q² > 2.5 (GeV/c)² where TPE effects are expected to be larger

B.S. Henderson *et al.,* arXiv:1611.04685v2, accepted by PRL

- OLYMPUS, VEPP-3 and CLAS all in agreement
- Hard TPE observed by VEPP-3 and OLYMPUS below Blunden
- Limited precision for CLAS

Summary and outlook

- The limits of OPE have been reached with the achieved precision
 - → Large discrepancy between unpolarized and polarized data
 - → Nucleon elastic form factors, particularly $G_{E^{p}}$ under doubt
- The TPE hypothesis is suited to remove form factor discrepancy, however calculations of TPE are model-dependent
- New observables: ε dependence of polarization transfer, ε-nonlinearity of cross sections, single-spin asymmetries, e⁺/e⁻ comparisons
- Positron/electron comparisons for a definitive test of TPE: VEPP-3, CLAS, OLYMPUS
- **OLYMPUS:** Hard TPE found to be
 - consistent with other TPE experiments but more precise
 - ➔ smaller than expected by standard hadronic theory at low Q²
 - → consistent with phenomenology at Q² < 2.5 (GeV/c)²
 - required to be tested at higher Q² > 2.5 (GeV/c)² with future experiments (e.g. by adding positron source to CEBAF, or by conceiving internal-target experiment at storage ring or ERL)

Need to improve theoretical precision for radiative corrections !

XM₽Ī

OLYMPUS

39

~50 physicists from 13 institution	ons in 6 countries		
Elected spokesmen / deputy:	R. Milner / R. Beck	(2009–2011)	
	M.K. / A. Winnebeck	(2011–2013)	
	D. Hasell / U. Schneekloth	(2013–)	

PhDs: O. Ates, A. Schmidt, R. Russell, B. Henderson, L. Ice, C. O'Connor, D. Khaneft

- Arizona State University: TOF support, particle identification, magnetic shielding
- DESY: Modifications to DORIS accelerator and beamline, toroid support, infrastructure, installation
- **Hampton University:** GEM luminosity monitor
- INFN Bari: GEM electronics
- INFN Ferrara: Target
- **INFN Rome:** GEM electronics
- MIT: BLAST spectrometer, wire chambers, tracking upgrade, target and vacuum system, transportation to DESY, simulations, slow control, analysis framework
- Petersburg Nuclear Physics Institute: MWPC luminosity monitor
- **University of Bonn:** Trigger, data acquisition, and online monitor
- **University of Mainz:** Trigger, DAQ, Symmetric Moller monitor
- University of Glasgow: TOF scintillators
- University of New Hampshire: TOF scintillators
- A. Alikhanyan National Laboratory (AANL), Yerevan: TOF scintillators

Backup

Proton form factor experiments

Recoil polarization and polarized target (Jlab)

E04-108 – high-Q² recoil polarization (Gep-III) E04-019 – ε dependence of recoil pol. (2-Gamma) E08-007 – part I: low-Q² recoil polarization E08-007 – part II: low-Q² polarized target E07-003 – high-Q² polarized target (SANE) E12-07-109 – high Q² recoil pol. (GEp-SBS)

Unpolarized cross sections (Jlab)

E12-07-108 – high-Q² unpolarized (GMp) E05-017 – high-Q² Rosenbluth (Super-Rosen)

Positron-electron comparisons

Novosibirsk / VEPP-3 CLAS / Jlab OLYMPUS / DESY

Proton radius measurements

PSI / (muonic hydrogen Lamb shift, HFS) MAMI / A1 (e-scattering) MAMI / A1 (ISR) Jlab / PRad (e-scattering) PSI / MUSE (e[±], µ[±] scattering)

- published (2010)
- published (2011)
- published (2011)
- analysis in progress
- to be published
- proposed
- completed running (2016)
- analysis in progress
- published (2015)
- published (2015)
- accepted by PRL (2016)
- published (2010, 2013)
- published (2010, 2014)
- pilot data released (2016)
- completed running (2016)
- proposed (2016-2019)

Comparison of e⁺/e⁻ experiments

	VEPP–3 Novosibirsk	OLYMPUS DESY	EG5 CLAS JLab
hoom onergy	2 fixed	1 fixed	wide spectrum
beam energy		T lixed	wide spectrum
equality of e $^\pm$ beam energy	measured	measured	reconstructed
e^+/e^- swapping frequency	half-hour	24 hours	simultaneously
e ⁺ /e ⁻ lumi monitor	elastic low-Q ²	elastic low-Q ² , Möller/Bhabha	from simulation
energy of scattered e $^\pm$	EM-calorimeter	mag. analysis	mag. analysis
proton PID	$\Delta E/E$, TOF	mag. analysis, TOF	mag. analysis, TOF
e^+/e^- detector acceptance	identical	big difference	big difference
luminosity	$1.0 imes10^{32}$	$2.0 imes10^{33}$	$2.5 imes10^{32}$
beam type target type	storage ring internal H target	storage ring internal H target	secondary beam liquid H target
data taken published	2009, 2011-12 2015	2012 PRL accepted 2016	2011 2015

TPE experiments: Novosibirsk/VEPP-3

I.A. Rachek et al., PRL 114, 062005 (2015)

TPE experiments: CLAS (E04-116)

D. Adikaram et al., PRL 114, 062003 (2015)

TPE experiments: CLAS (E04-116)

ε dependence

CLAS: D. Rimal *et al.*, arXiv:1603.00315v1 D. Adikaram *et al.*, PRL 114, 062003 (2015) VEPP-3: I.A. Rachek *et al.,* PRL 114, 062005 (2015)

CLAS result consistent with "standard" TPE prescription ... however, limited precision

TPE experiments: CLAS (E04-116)

Q² dependence

CLAS:

D. Rimal et al., arXiv:1603.00315v1

D. Adikaram et al., PRL 114, 062003 (2015)

VEPP-3:

I.A. Rachek et al., PRL 114, 062005 (2015)

CLAS result consistent with "standard" TPE prescription ... however, limited precision

Wire chambers and TOF scintillators

- 2x18 TOFs for PID, timing and trigger
- 2 WCs for PID and tracking (z,θ,φ,p)
- WC and TOF refurbished from BLAST WC re-wired at DESY TOF rewrapped, efficiency tested
- Installed in OLYMPUS Apr-May 2011
- Stable operation

Glasgow, Yerevan, UNH, ASU

Designed to fit into forward cone

Luminosity monitors: GEM + MWPC

- Forward elastic scattering of lepton at 12° in coincidence with proton in main detector
- **Two GEM + MWPC telescopes with** interleaved elements operated independently
- SiPM scintillators for triggering and timing
- Sub-percent (relative) luminosity measurement per hour at 2.0 GeV
- **High redundancy alignment, efficiency Two independent groups (Hampton/INFN, PNPI)**

Luminosity monitors: **GEM + MWPC**

Telescopes of three GEMs and MWPCs interleaved Mounted on wire chamber forward end plate Extensively tested at DESY test beam facility

- Symm. angle 1.3° @ 2.0 GeV
- Matrix of 3x3 PbF₂ crystals
- **Tested at DESY and MAMI**

Event display (3D)

Run 4975, event 78

C. O'Connor (MIT)

Performance of DORIS

- DORIS top-up mode established
- Typically 65mA / 0.5 sccm

Refills every ~2 minutes by few mA
PETRA refills every 30 minutes

OLYMPUS

12DEG-L / SC

B. Henderson (MIT)

12DEG-R / SC

B. Henderson (MIT)

Luminosity monitoring

OLYMPUS

12DEG-L / R

B. Henderson (MIT)

OLYMPUS

12DEG L+R / SC

B. Henderson (MIT)

Luminosity monitoring

OLYMPUS

57

MIE / SC

A. Schmidt, B. Henderson (MIT)

Luminosity monitoring

OLYMPUS

58

12DEG / MIE

A. Schmidt, B. Henderson (MIT)

<u>ÓL¥MPÙS</u>

<u>ÓL¥MPUS</u>

<u>ÓL¥MPÙS</u>

<u>ÓL¥MPUS</u>

Global analysis

J.C. Bernauer et al., PRC 90 (2014) 015206 [arXiv:1307.6227v2]